韓文華+方維萱+張貴山+魯佳+王磊+賈潤幸+李天成
摘要:新疆薩熱克砂礫巖型銅礦床受薩熱克巴依中生代陸內(nèi)拉分盆地控制,礦體主要賦存于上侏羅統(tǒng)庫孜貢蘇組蝕變雜礫巖層中。受后期碎裂巖化相強(qiáng)烈改造,碎裂巖化相對薩熱克砂礫巖型銅礦床具有明顯控制作用。碎裂巖化相形成于盆地改造過程,并具有裂隙盆地流體強(qiáng)烈耦合作用。碎裂巖化裂隙構(gòu)造是深源熱流體疊加成礦的運(yùn)移通道和儲礦構(gòu)造。碎裂巖化相宏觀特征以順層裂隙破碎帶+切層裂隙破碎帶+碎裂巖化+瀝青化+網(wǎng)脈狀銅硫化物為主。微觀裂縫類型主要為礫內(nèi)縫、礫緣縫與穿礫縫,沿裂隙和裂縫充填綠泥石、輝銅礦、瀝青質(zhì)、石英和鐵碳酸鹽等。地層從老到新,裂縫密度整體呈現(xiàn)由低到高的特征。裂隙滲透率和氣測滲透率表明上侏羅統(tǒng)庫孜貢蘇組含礦層的裂隙滲透率比其他非含礦層更高,裂隙和裂縫為盆地成礦流體提供了運(yùn)移通道和儲礦空間。
關(guān)鍵詞:銅礦;斷裂;碎裂巖化相;宏觀特征;微觀特征;裂縫;密度;滲透率
中圖分類號:P618.41文獻(xiàn)標(biāo)志碼:A
Abstract: Sereke glutenitetype Cu deposit in Xinjiang is controlled by Mesozoic intracontinental pullapart basin in Serekebayi. The orebodies are mainly hosted in Upper Jurassic Kuzigongsu Formation alteration and conglomerate. Because of the strong alteration at the later stage, the cataclastic lithofacies has significant controlling on Sereke glutenitetype Cu deposit. The cataclastic lithofacies forms in the process of basin reformation, and has the strong coupling between fissure and basin fluid. Cataclastic lithificationfissure structure is the migration channel and reservoir structure of the superposition mineralization of deepsource thermal fluid. The macroscopic characteristics of cataclastic lithofacies are mainly consequent cracked fissure zone+shear cracked fissure zone+cataclastic lithification+bituminization+net vein copper sulfide. The types of microscopic fissures are mainly the fissure inside gravel, the fissure around gravel and the fissure across gravel; the fissures are filled with chlorite, chalcocite, asphaltenes, quartz and iron carbonate. The densities of fissures increase from the ancient stratum to nowadays. The fissure permeability and gas logging permeability show that the fissure permeabilities of Upper Jurassic Kuzigongsu Formation orebearing strata are higher than the others, and the fissures provide migration pathway and storage space for oreforming fluid in basin.
Key words: Cu deposit; fault; cataclastic lithofacies; macroscopic characteristic; microscopic characteristic; fissure; density; permeability
0引言
砂礫巖型銅礦的巖性非均質(zhì)性較強(qiáng),且?guī)r石成分成熟度和結(jié)構(gòu)成熟度較低,巖層具有高孔隙度和滲透率[12]。高孔隙度和滲透率的砂礫巖裂縫是流體運(yùn)移的構(gòu)造通道,而且是連通其他類型孔隙并成為成礦流體匯聚的有利儲礦構(gòu)造空間[34],同時也是隱伏層狀礦體的重要指示標(biāo)志[58],對油氣及金屬勘探具有重要的研究價值。雷秉舜等通過研究安基山銅礦來判斷深部銅礦化強(qiáng)度[9];鞏磊等將裂縫分為宏觀裂縫和微觀裂縫 [1014]。新疆維吾爾自治區(qū)烏恰縣薩熱克砂礫巖型銅礦床是近年來新勘查的中型礦床,受到眾多研究人員的關(guān)注,并已取得大量研究成果[1522]。薩熱克砂礫巖型銅礦主要賦存于上侏羅統(tǒng)庫孜貢蘇組(J2k)蝕變雜礫巖層中,成礦過程中有較強(qiáng)的構(gòu)造活動,導(dǎo)致巖石較為破碎,并可能有深源物質(zhì)的加入[23]。由于受后期碎裂巖化相的強(qiáng)烈改造,碎裂巖化相對薩熱克砂礫巖型銅礦床具有明顯控制作用,輝銅礦和銀輝銅礦以熱液膠結(jié)物形式產(chǎn)出,或呈網(wǎng)脈狀和透鏡狀分布在裂隙交匯部位、層間斷裂裂隙和切層斷裂裂隙的交匯部位,其次為細(xì)脈狀環(huán)繞礫石和微細(xì)脈狀穿切礫石。碎裂巖和碎裂巖化相是因脆性破裂、剪切和研磨作用而產(chǎn)生的一種固結(jié)的細(xì)粒巖石,宏觀特征主要表現(xiàn)為巖石發(fā)育較高密度的裂縫[24],而與宏觀裂縫相比,巖石中的微觀裂隙和裂縫一般更為發(fā)育, 并且它們作為宏觀裂縫的微觀表現(xiàn), 能夠提供一些與之相關(guān)的宏觀裂縫信息[2527]。薩熱克砂礫巖型銅礦區(qū)(簡稱“薩熱克礦區(qū)”)砂礫巖儲礦空間裂隙形成后,含礦流體再運(yùn)移并充填在這些裂隙和裂縫中,從而成礦。裂縫是薩熱克礦區(qū)成礦流體運(yùn)移的重要通道與儲礦空間,但目前對本區(qū)裂隙、裂縫與成礦系統(tǒng)的關(guān)系尚不清楚。本文旨在野外鉆孔和構(gòu)造巖相學(xué)編錄基礎(chǔ)上,對薩熱克礦區(qū)主要含礦層位的裂隙和裂縫進(jìn)行顯微觀察和統(tǒng)計,結(jié)合裂隙滲透率與氣測滲透率,進(jìn)一步探求碎裂巖化相和砂礫巖型銅礦床的關(guān)系。
1區(qū)域地質(zhì)概況
薩熱克砂礫巖型銅礦床位于塔里木盆地西南緣的中新生代坳陷西北緣的次級盆地——托云盆地,夾持于西南天山與西昆侖山之間,東臨托云—康蘇侏羅紀(jì)陸相含煤盆地。托云盆地上疊于西南天山的阿賴—闊克沙嶺古生代島弧帶中,屬新生代繼承性拉分坳陷盆地,薩熱克砂礫巖型銅礦位于該盆地西緣。受薩熱克巴依中生代陸內(nèi)拉分盆地制約,區(qū)域構(gòu)造單元為推覆褶皺沖斷巖塊,斷裂較為發(fā)育;受斷裂的影響,巖石一般具有不同程度的劈理化、碎裂巖化。薩熱克南(NE65°)、北(NE45°)兩側(cè)逆沖推覆斷裂帶呈對沖式,逆沖推覆構(gòu)造作用強(qiáng)烈,并將中元古界阿克蘇巖群逆沖推覆到侏羅系和下白堊統(tǒng)之上。薩熱克巴依復(fù)式向斜構(gòu)造形成了強(qiáng)烈的疊加改造,復(fù)式向斜的軸向約為NE50°,兩翼陡傾(50°~65°),軸面產(chǎn)狀近直立(15°~342°),傾角為82°~87°,核部上白堊統(tǒng)產(chǎn)狀較緩。
本區(qū)主要出露地層為長城系阿克蘇巖群(Chak)、志留系(S)、下侏羅統(tǒng)莎里塔什組(J1s)和康蘇組(J1k)、中侏羅統(tǒng)楊葉組(J2y)和塔爾尕組(J2t)、上侏羅統(tǒng)庫孜貢蘇組(J3k)及下白堊統(tǒng)克孜勒蘇群(K1kz)。銅礦體主要賦存于上侏羅統(tǒng)庫孜貢蘇組褪色化雜礫巖中(圖1),大體呈NE向展布,局部與長城統(tǒng)阿克蘇巖群呈斷層接觸,并與下白堊統(tǒng)克孜勒蘇群呈整合接觸。含礦層上侏羅統(tǒng)庫孜貢蘇組沉積環(huán)境為沖積扇相旱地扇,主要巖性為灰綠色礫巖、含礫砂巖、巖屑砂巖、粉砂巖夾紫灰色和灰綠色粉砂質(zhì)泥巖,其底部的灰綠色礫巖穩(wěn)定產(chǎn)出為標(biāo)志層。銅礦石礦物以輝銅礦和斑銅礦為主,主要賦存于上侏羅統(tǒng)庫孜貢蘇組二段上部(J3k22)的灰色、灰綠色中厚層塊狀礫巖中。金屬礦物有黃銅礦、輝銅礦、鉛鋅礦、黃鐵礦,次生礦物為孔雀石、斑銅礦。礦石礦物呈塊狀、顆粒狀、粉末狀結(jié)構(gòu),具塊狀、細(xì)脈侵染狀構(gòu)造,其中輝銅礦分布最廣泛,也是最主要的成礦礦物;脈石礦物為方解石,主要結(jié)構(gòu)為浸染狀、碎裂狀等。以薩熱克向斜的軸部(NE向)為界,將薩熱克礦區(qū)整體分為南礦帶和北礦帶。其中,北礦帶為主要礦帶,位于薩熱克向斜的北翼。礦體位于上侏羅統(tǒng)庫孜貢蘇組二段(J3k2),在北礦帶厚度約為123.81 m,呈NE—SW向展布,產(chǎn)狀與地層一致,圍巖為灰色、淺灰綠色礫巖。
2宏觀特征
薩熱克礦區(qū)宏觀碎裂巖化相發(fā)育主要受南(NE65°)、北(NE45°)斷裂和NE向褶皺控制(圖1)。侏羅系和白堊系的巖石變形特征表現(xiàn)為NW向大型節(jié)理[圖2(a)]以及裂隙、顯微裂隙(裂縫)等小型構(gòu)造或微型構(gòu)造。這些構(gòu)造均為脆性構(gòu)造變形域,形成了碎裂巖化相。在上述構(gòu)造樣式的交匯部位和旁側(cè)發(fā)育一組或多組裂隙,形成了由單裂隙—密集裂隙帶和碎裂巖化等組成的小型構(gòu)造面,構(gòu)造裂隙面的力學(xué)結(jié)構(gòu)面以張剪性和壓剪性為主,并伴有明顯斜沖走滑特征。從碎裂巖化相與盆地流體運(yùn)移的關(guān)系來看,NE向切層斷裂為盆地流體大規(guī)模上升運(yùn)移的構(gòu)造通道,層間斷裂破碎帶為盆地流體順層間運(yùn)移的構(gòu)造通道,碎裂巖化相為盆地流體的小型—微型儲礦構(gòu)造空間。
碎裂巖化相宏觀特征表現(xiàn)為順層裂隙破碎帶+切層裂隙破碎帶+碎裂巖化+瀝青化+網(wǎng)脈狀銅硫化物(以輝銅礦為主),在層間斷裂切層和順層裂隙面上發(fā)育輝銅礦拉伸線理、方解石拉伸線理[圖2(e)]、黃鐵礦和黃銅礦金屬鏡面、瀝青和粉末狀輝銅礦、細(xì)脈帶細(xì)脈型輝銅礦,顯示具有兩期以上同構(gòu)造期的構(gòu)造成礦流體疊加和耦合作用。切層分布的碎裂巖相主要受NE向穿層斷裂帶控制,一般分布在斷裂帶內(nèi)或附近,伴有較強(qiáng)的褪色化瀝青化鐵碳酸鹽化蝕變;隨著遠(yuǎn)離斷裂帶,碎裂巖化相逐漸減弱,以褪色化方解石化為主。正常未變形地層碎裂巖化相消失。順層分布的碎裂巖化相主要受層間斷裂裂隙破碎帶控制,多發(fā)育在礫巖類和含礫粗砂巖中或含礫粗砂巖和粉砂質(zhì)泥巖泥質(zhì)粉砂巖過渡部位,多伴有褪色化和瀝青化蝕變,從層間滑動斷層→碎裂巖化相礫巖→弱碎裂巖化相礫巖,蝕變分帶為黑色瀝青化蝕變帶→灰黑色瀝青化+灰色褪色化蝕變帶→灰色—灰綠色褪色化蝕變帶。多組斷裂裂隙帶交匯部位碎裂巖化瀝青化最強(qiáng),也是銅富集成礦最佳部位,以發(fā)育碎裂狀銅礦石、細(xì)網(wǎng)脈狀和微網(wǎng)脈狀瀝青輝銅礦為特征[圖2(b)~(e)]。
受控于盆地內(nèi)部的裙邊式復(fù)式向斜(NE50°)和NE向斷裂構(gòu)造,碎裂巖化相主要分布于下白堊統(tǒng)克孜勒蘇群和上侏羅統(tǒng)庫孜貢蘇組。下白堊統(tǒng)克孜勒蘇群碎裂巖化相較為發(fā)育,裂隙強(qiáng)烈發(fā)育,其典型特征為瀝青化,礦化較弱;上侏羅統(tǒng)庫孜貢蘇組具有較強(qiáng)的碎裂巖化相特征,裂隙整體上較為發(fā)育,銅硫化物和鐵錳方解石呈網(wǎng)脈狀[圖2(b)、(c)]沿礫巖層間裂隙充填,成礦方式表現(xiàn)為硫化物交代礫巖的膠結(jié)物之后生成礦,后期的含礦流體運(yùn)移充填早期形成的礫巖裂縫而富集成礦。
3微觀特征
3.1顯微裂隙類型
由于受到盆地兩側(cè)的逆沖推覆和擠壓構(gòu)造運(yùn)動,薩熱克礦區(qū)廣泛分布構(gòu)造裂隙,為砂礫巖型銅礦床的儲礦空間創(chuàng)造良好條件。構(gòu)造裂隙廣泛分布在上侏羅統(tǒng)庫孜貢蘇組巖石中,使巖石呈碎裂狀構(gòu)造,并且在裂隙中常充填方解石細(xì)脈、白云石脈、瀝青、輝銅礦、斑銅礦、黃鐵礦等[圖3(a)、(b)、(d)~(f)]。
根據(jù)微觀裂縫分布特征,將本區(qū)上侏羅統(tǒng)庫孜貢蘇組砂礫巖的微觀裂隙分為礫內(nèi)縫、礫緣縫、穿礫縫3種類型。礫內(nèi)縫主要分布在礫石內(nèi)部,均為早期沉積成巖時形成,多已被早期非含礦的熱液流體所充填,延伸長度短,未切穿礫石的邊緣[圖3(a)、(f)];這類裂隙的規(guī)模小,但密度約為5 條·cm-1,開度較小,為05~08 mm。礫緣縫主要沿著礫石的邊緣分布[圖3(a)、(c)、(d)、(e)],規(guī)模小,延伸長度短,密度也較小;此類裂隙在后期構(gòu)造運(yùn)動和異常高壓流體的作用下明顯擴(kuò)大,開度為2.2~5.0 mm,密度為50 條·cm-1,且多已被白云石脈、瀝青細(xì)脈、方解石脈、綠泥石脈所充填;輝銅礦細(xì)脈、斑銅礦細(xì)脈、黃銅礦細(xì)脈沿此類裂隙分布[圖3(b)~(f)];礫緣縫是后期的主要儲礦空間類型。穿礫縫為本區(qū)發(fā)育的最主要構(gòu)造裂隙[圖3(a)、(c)~(e)],開度為1.5~7.0 mm,密度為95 條·cm-1。
礫內(nèi)縫為沉積成因期所形成,屬于原生裂隙,絕大部分已經(jīng)被礦物充填,對成礦的貢獻(xiàn)小,屬于無效裂隙,此類裂隙只有在后期發(fā)生構(gòu)造運(yùn)動或溶蝕作用以后,才有可能形成有效的儲礦空間。礫緣縫與穿礫縫為構(gòu)造裂隙,是受局部構(gòu)造事件或區(qū)域構(gòu)造應(yīng)力場控制的次生裂隙;穿礫縫與礫緣縫在上侏羅統(tǒng)庫孜貢蘇組廣泛分布,且開度與密度明顯大于礫內(nèi)縫,有效性較好。薩熱克礦區(qū)上部為下白堊統(tǒng)克孜勒蘇組一段紅褐色粉砂質(zhì)泥巖,下部為上侏羅統(tǒng)庫孜貢蘇組一段灰綠色粉砂質(zhì)泥巖;這種由粉砂質(zhì)泥巖組成的不透水層形成了盆地流體的圈閉構(gòu)造;這種巖性巖相組成的圈閉構(gòu)造有利于盆地流體沿著中間滲透率較高的細(xì)—中礫巖礫石間隙運(yùn)移,并最終使含礦流體在上侏羅統(tǒng)庫孜貢蘇組大規(guī)模沉積成礦。
3.2顯微裂隙密度
微觀下巖石薄片的裂縫觀察和統(tǒng)計數(shù)據(jù)[表1、圖4(a)]顯示:下白堊統(tǒng)克孜勒蘇群裂縫密度最高,最高值為30 條·cm-1,平均為16 條·cm-1;富礦層位(上侏羅統(tǒng)庫孜貢蘇組)也有較高的裂縫密度,最高為20 條·cm-1,平均為73 條·cm-1。微觀裂縫密度與銅礦石Cu品位關(guān)系曲線[圖4(b)]顯示,銅礦石Cu品位最高處的裂縫密度為9~13 條·cm-1。地層從老到新,裂縫密度整體呈現(xiàn)由低到高的特征,而長城系阿克蘇巖群裂縫密度也具有增加的趨勢,但Cu品位明顯偏低,這可能與長城系阿克蘇巖群早期的糜棱巖相疊加了碎裂巖化相有關(guān)。對薩熱克礦區(qū)深部2 685 m中段裂隙的研究表明:上侏羅統(tǒng)庫孜貢蘇組裂隙密度變化范圍為4~18 條·cm-1,碎裂巖化相強(qiáng)烈發(fā)育;圍巖裂縫密度有明顯的減小趨勢,為1~7 條·cm-1,碎裂巖化明顯減弱。
3.3顯微裂隙滲透率
依據(jù)達(dá)西定律,當(dāng)多孔介質(zhì)流體運(yùn)移時,破碎巖石的滲透率(K)是裂隙密度(n)和破碎裂隙寬度(d)的函數(shù)[28]。其表達(dá)式為
K=nd3/12
上侏羅統(tǒng)庫孜貢蘇組含礦層的裂隙滲透率為0002 73~0689 21 cm2,均值為0156 91 cm2(表1)。其他非含礦層的滲透率為0000 17~0911 25 cm2,均值為0068 278 cm2,其中最大值對應(yīng)的地層巖性為碎裂巖化粉砂巖,巖石較為破碎。上侏羅統(tǒng)庫孜貢蘇組含礦層巖性的氣測滲透率為(0.003 53~0093 54)×10-3 μm2;均值為0037 12×10-3 μm2;非含礦層的氣測滲透率為(0002 12~0003 11)×10-3 μm2,均值為0.002 727×10-3 μm2。上侏羅統(tǒng)庫孜貢蘇組含銅雜礫巖較下白堊統(tǒng)克孜勒蘇群砂巖具有更好的滲透率(表2)。所計算的裂隙滲透率與實驗得出的氣測滲透率都證實上侏羅統(tǒng)庫孜貢蘇組含礦層的裂隙滲透率比其他非含礦層更高,這也證明上侏羅統(tǒng)庫孜貢蘇組巖性發(fā)育較強(qiáng)的碎裂巖化相比,為成礦流體提供了天然的運(yùn)移通道和儲存空間。
4結(jié)語
(1)新疆薩熱克砂礫巖型銅礦區(qū)碎裂巖化相宏觀特征以順層裂隙破碎帶+切層裂隙破碎帶+碎裂巖化+瀝青化+網(wǎng)脈狀銅硫化物為主,微觀裂隙類型主要為礫內(nèi)縫、礫緣縫與穿礫縫。早期形成的裂隙主要為礫內(nèi)縫,并被后期的流體所充填,有效性較差;晚期形成的裂隙被礦物充填的機(jī)率小,有效性更好,構(gòu)造運(yùn)動明顯增加了穿礫縫和礫緣縫的密度,同時增加了含銅成礦流體儲存的有效性,后期的含礦流體充填晚期形成礫巖裂縫而富集成礦。
(2)微觀裂縫統(tǒng)計研究表明,地層從老到新,裂縫密度整體呈現(xiàn)由低到高的特征,裂隙滲透率與氣測滲透率證實上侏羅統(tǒng)庫孜貢蘇組含礦層的裂隙滲透率相比其他非含礦層更高。
(3)經(jīng)過對碎裂巖化相宏觀特征、微觀裂縫的統(tǒng)計以及鉆孔資料的實例研究,結(jié)果表明薩熱克礦區(qū)上侏羅統(tǒng)庫孜貢蘇組含礦層比其他非含礦層具有更優(yōu)越的儲礦性能,并為后期大規(guī)模含礦流體提供了良好的運(yùn)移通道與儲礦空間。
參考文獻(xiàn):
References:
[1]李紹華,何汶鍶,吳育鵬.低滲透砂礫巖儲層裂縫發(fā)育特征及主控因素[J].西部探礦工程,2015,27(1):7374,77.
LI Shaohua,HE Wensi,WU Yupeng.Development Characteristics of Fracture for Glutenite Reservoirs with Low Permeability and Its Main Controlling Factors[J].WestChina Exploration Engineering,2015,27(1):7374,77.
[2]肖榮閣,陳卉泉,帥開業(yè),等.沉積巖銅礦的儲礦建造與成礦構(gòu)造[J].成都理工學(xué)院學(xué)報,1994,21(4):2225.
XIAO Rongge,CHEN Huiquan,SHUAI Kaiye,et al.The Impounding Formation and Metallotectonics of Sedimenthosted Copper Deposits[J].Journal of Chengdu Institute of Technology,1994,21(4):2225.
[3]方維萱,胡瑞忠,王明再,等.云南墨江含金脆韌性剪切構(gòu)造帶中顯微構(gòu)造的礦物地球化學(xué)研究[J].礦物學(xué)報,2001,21(4):602608.
FANG Weixuan,HU Ruizhong,WANG Mingzai,et al.Mineral Geochemistry on Micro Structures in the Mojiang Aubearing Brittleductile Shear Zone in Yunnan[J].Acta Mineralogica Sinica,2001,21(4):602608.
[4]方維萱.論熱液角礫巖構(gòu)造系統(tǒng)及研究內(nèi)容、研究方法和巖相學(xué)填圖應(yīng)用[J].大地構(gòu)造與成礦學(xué),2016,40(2):237265.
FANG Weixuan.On Tectonic System of Hydrothermal Breccia:Objective,Methodology and Lithofaciesmapping Applications[J].Geotectonica et Metallogenia,2016,40(2):237265.
[5]羅呂科.東川湯丹銅礦床裂隙礦找礦研究[J].采礦技術(shù),2008,8(1):2628.
LUO Luke.Fractured Ore Prospecting Research of Tangdan Copper Deposit,Dongchuan[J].Mining Technology,2008,8(1):2628.
[6]劉文劍,梁紅飛,劉衛(wèi)明.東川銅礦區(qū)層控礦床裂隙礦類型和分布規(guī)律分析[J].有色金屬:礦山部分,2013,65(4):2730.
LIU Wenjian,LIANG Hongfei,LIU Weiming.Analysis of Fractured Ore Types and Distribution Rules in Stratabound Mineral Deposit of Dongchuan Copper Mining Area[J].Nonferrous Metals:Mining Section,2013,65(4):2730.
[7]韓業(yè)鳴,劉正桃,方同輝,等.紅石銅礦裂隙構(gòu)造分布特征研究[J].科學(xué)技術(shù)與工程,2011,11(20):47094714.
HAN Yeming,LIU Zhengtao,F(xiàn)ANG Tonghui,et al.The Structuralfissures Distribution Research of Hongshi Copper[J].Science Technology and Engineering,2011,11(20):47094714.
[8]陶俊.湯丹銅礦床同生含礦層成礦后的構(gòu)造熱液改造及裂隙型富礦的找礦方向[J].礦產(chǎn)與地質(zhì),2003,17(增1):328330.
TAO Jun.Structurehydrothermal Transformation of Post Metallogenic Stage of Contemporaneous Ores and Prospecting Orientation of Crack Type Bonanza in Tangdan Copper Deposit[J].Mineral Resources and Geology,2003,17(S1):328330.
[9]雷秉舜,尚曉春,李嘉曾,等.安基山銅礦含礦裂隙分布特征及其與成礦的關(guān)系[J].地質(zhì)找礦論叢,1988,3(4):2033.
LEI Bingshun,SHANG Xiaochun,LI Jiazeng,et al.Distribution Pattern of Ore Bearing Fissures and Its Relation to Minerallzation in Anjishan Copper Deposit,Jiangsu Province[J].Contributions to Geology and Mineral Resources Research,1988,3(4):2033.
[10]鞏磊,曾聯(lián)波,陳樹民,等.致密礫巖儲層微觀裂縫特征及對儲層的貢獻(xiàn)[J].大地構(gòu)造與成礦學(xué),2016,40(1):3846.
GONG Lei,ZENG Lianbo,CHEN Shumin,et al.Characteristics of Microfractures and Contribution to the Compact Conglomerate Reservoirs[J].Geotectonica et Metallogenia,2016,40(1):3846.
[11]鞠瑋,侯貴廷,黃少英,等.庫車坳陷依南—吐孜地區(qū)下侏羅統(tǒng)阿合組砂巖構(gòu)造裂縫分布預(yù)測[J].大地構(gòu)造與成礦學(xué),2013,37(4):592602.
JU Wei,HOU Guiting,HUANG Shaoying,et al. Structural Fracture Distribution and Prediction of the Lower Jurassic Ahe Formation Sandstone in the YinanTuzi Area,Kuqa Depression [J].Geotectonica et Metallogenia,2013,37(4):592602.
[12]ORTEGA O J,MARRETT R A,LOUBACH S E.A Scaleindependent Approach to Fracture Intensity and Average Spacing Measurement[J].AAPG Bulletin,2006,90(2):193208.
[13]ZENG L B.Microfracturing in the Upper Triassic Sichuan Basin Tightgas Sandstones:Tectonic,Overpressure,and Diagenetic Origins[J].AAPG Bulletin,2010,94(12):18111825.
[14]呂文雅,曾聯(lián)波,張俊輝,等.川中地區(qū)中下侏羅統(tǒng)致密油儲層裂縫發(fā)育特征[J].地球科學(xué)與環(huán)境學(xué)報,2016,38(2):226234.
LU Wenya,ZENG Lianbo,ZHANG Junhui,et al.Development Characteristics of Fractures in the MiddleLower Jurassic Tight Oil Reservoirs in Central Sichuan Basin[J].Journal of Earth Sciences and Environment,2016,38(2):226234.
[15]劉玄,范宏瑞,胡芳芳,等.沉積巖型層狀銅礦床研究進(jìn)展[J].地質(zhì)論評,2015,61(1):4563.
LIU Xuan,F(xiàn)AN Hongrui,HU Fangfang,et al.Research Progresses on Sedimenthosted Stratiform Copper Deposit[J].Geological Review,2015,61(1):4563.
[16]劉池洋.沉積盆地動力學(xué)與盆地成藏(礦)系統(tǒng)[J].地球科學(xué)與環(huán)境學(xué)報,2008,30(1):123.
LIU Chiyang.Dynamics of Sedimentary Basin and Basin Reservoir(Ore) Forming System[J].Journal of Earth Sciences and Environment,2008,30(1):123.
[17]劉增仁,漆樹基,田培仁,等.塔里木盆地西北緣中新生代砂礫巖型鉛鋅銅礦賦礦層位的時代厘定及意義[J].礦產(chǎn)勘查,2014,5(2):149158.
LIU Zengren,QI Shuji,TIAN Peiren,et al.Determination of Age and Its Significance of Orebearing Strata of the MesoCenozoic Glutenite Type Leadzinccopper Deposit in the Northwestern Edge of Tarim Basin,Xinjiang[J].Mineral Exploration,2014,5(2):149158.
[18]李志丹,薛春紀(jì),辛江,等.新疆烏恰縣薩熱克銅礦床地質(zhì)特征及硫、鉛同位素地球化學(xué)[J].現(xiàn)代地質(zhì),2011,25(4):720729.
LI Zhidan,XUE Chunji,XIN Jiang,et al.Geological Characteristics and S,Pbisotope Geochemistry of Sareke Copper Deposit in Wuqia County,Xinjiang[J].Geoscience,2011,25(4):720729.
[19]胡慶雯,劉宏林.新疆烏恰縣薩熱克砂巖銅礦床地質(zhì)特征與找礦前景[J].礦產(chǎn)與地質(zhì),2008,22(2):131134.
HU Qingwen,LIU Honglin.Geological Characteristics and Prospecting Perspective of the Sareke Sandstone Cu Deposit in Wuqia County,Xinjiang[J].Mineral Resources and Geology,2008,22(2):131134.
[20]方維萱,賈潤幸,王磊,等.新疆薩熱克大型砂礫巖型銅多金屬礦床的成礦控制規(guī)律[J].礦物學(xué)報,2015,35(增):202204.
FANG Weixuan,JIA Runxing,WANG Lei,et al.Metallogenic Control Law of Sareke Large Scale Glutenite Type Copper Polymetallic Deposit in Xinjiang[J].Acta Mineralogica Sinica,2015,35(S):202204.
[21]陸俊吉,胡煜昭,江小均,等.新疆烏恰薩熱克銅礦北礦帶庫孜貢蘇組沉積相、古流向、物源區(qū)及其找礦意義:來自礫石統(tǒng)計分析的證據(jù)[J].地質(zhì)通報,2016,35(6):963970.
LU Junji,HU Yuzhao,JIANG Xiaojun,et al.Sedimentary Facies,Paleocurrent,Provenances and Prospecting Significance of Kuzigongsu Formation in the Northern Ore Belt of the Sareke Copper Deposit in Wuqia,Xinjiang:Evidence from Gravel Statistic Analysis[J].Geological Bulletin of China,2016,35(6):963970.
[22]喬欣,胡煜昭,江小均,等.新疆烏恰薩熱克含銅盆地上侏羅統(tǒng)庫孜貢蘇組復(fù)合型沖積扇沉積相研究[J].地質(zhì)通報,2016,35(11):18841894.
QIAO Xin,HU Yuzhao,JIANG Xiaojun,et al.A Study of Complex Alluvial Fan Sedimentary Facies of Upper Jurassic Kuzigongsu Formation of Sareke Copperbearing Basin in Wuqia County, Xinjiang[J].Geological Bulletin of China,2016,35(11):18841894.
[23]祝新友,王京彬,王玉杰,等.新疆薩熱克銅礦:與盆地鹵水作用有關(guān)的大型礦床[J].礦產(chǎn)勘查,2011,2(1):2835.
ZHU Xinyou,WANG Jingbin,WANG Yujie,et al.The Geologic Characteristics of Sareke Copper Deposit,Xinjiang,China:Ore Genesis Related to Basin Brines[J].Mineral Exploration,2011,2(1):2835.
[24]方維萱,賈潤幸,郭玉乾,等.塔西地區(qū)富烴類還原性盆地流體與砂礫巖型銅鉛鋅鈾礦床成礦機(jī)制[J].地球科學(xué)與環(huán)境學(xué)報,2016,38(6):727752.
FANG Weixuan,JIA Runxing,GUO Yuqian,et al.Hydrocarbonrich Basin Fluid with Reductibility and Metallogenic Mechanism for Glutenitetype CuPbZnU Deposits in the Western of Tarim Basin[J].Journal of Earth Sciences and Environment,2016,38(6):727752.
[25]DEZAYES C,VILLEMIN T,PECHER A.Microfracture Pattern Compared to CoreScale Fractures in the Borehole of SoultzSousForets Granite,Rhine Graben,F(xiàn)rance[J].Journal of Structural Geology,2000,22(6):723733.
[26]ORTEGA O,MARRETT R.Prediction of Macrofracture Properties Using Microfracture Information,Mesaverde Group Sandstones,San Juan Basin,New Mexico[J].Journal of Structural Geology,2000,22(5):571588.
[27]ZENG L B,TANG X M,WANG T C,et al.The Influence of Fracture Cements in Tight Paleogene Saline Lacustrine Carbonate Reservoirs,Western Qaidam Basin,Northwest China[J].AAPG Bulletin,2012,96(11):20032017.
[28]徐兆文,邱檢生,楊榮勇,等.欒川南泥湖鉬礦床含礦裂隙研究[J].南京大學(xué)學(xué)報:自然科學(xué),1998,34(3):314321.
XU Zhaowen,QIU Jiansheng,YANG Rongyong,et al.An Investigation of the Orebearing Fractures at Nannihu Porphyry Molybdenum Deposit,Luanchuan County,Henan Province[J].Journal of Nanjing University:Natural Sciences,1998,34(3):314321.