游韓莉 袁義杭 李長江 張凌云
(北京林業(yè)大學(xué) 省部共建森林培育與保護(hù)教育部重點(diǎn)實(shí)驗(yàn)室 北京 100083)
?
青杄MYB轉(zhuǎn)錄因子基因PwMYB20的克隆及表達(dá)分析*
游韓莉 袁義杭 李長江 張凌云
(北京林業(yè)大學(xué) 省部共建森林培育與保護(hù)教育部重點(diǎn)實(shí)驗(yàn)室 北京 100083)
【目的】 MYB轉(zhuǎn)錄因子家族是植物中最大的一類轉(zhuǎn)錄因子,在植物生長發(fā)育及抗逆調(diào)控網(wǎng)絡(luò)中發(fā)揮重要作用。對青杄中MYB同源基因PwMYB20的克隆與分析,有利于進(jìn)一步探究PwMYB20在植物生長發(fā)育及逆境響應(yīng)中的功能,挖掘與利用青杄中的優(yōu)質(zhì)基因。【方法】 采用RACE-PCR技術(shù),從青杄cDNA文庫中克隆得到PwMYB20基因,并通過PCR技術(shù)克隆驗(yàn)證。利用ProtParam、ProtScale、FoldIndex等生物信息學(xué)軟件對PwMYB20理化性質(zhì)進(jìn)行分析預(yù)測。通過BLAST在線工具得到植物同源蛋白,并對其進(jìn)行比對分析和進(jìn)化樹分析。采用實(shí)時(shí)熒光定量PCR技術(shù)分析PwMYB20基因在不同組織中的表達(dá)性,以及干旱、低溫、鹽、ABA等非生物逆境脅迫處理后的表達(dá)變化。通過亞細(xì)胞定位及轉(zhuǎn)錄激活活性驗(yàn)證試驗(yàn),揭示其生物學(xué)特性。【結(jié)果】 通過RACE-PCR克隆得到PwMYB20 cDNA全長966 bp,含675 bp的完整開放閱讀框,編碼225個(gè)氨基酸。ProtParam工具計(jì)算蛋白分子式為C1104H1740N340O330S8,分子質(zhì)量為25.3 kDa,等電點(diǎn)為9.11; Protscale工具疏水性分析發(fā)現(xiàn),PwMYB20的疏水位點(diǎn)與親水位點(diǎn)均勻分布,推測該蛋白為親水蛋白; SignalP工具預(yù)測發(fā)現(xiàn)該蛋白沒有信號(hào)肽結(jié)構(gòu)域; 利用FoldIndex工具對蛋白質(zhì)固有無序化進(jìn)行分析,結(jié)果表明該蛋白固有無序化序列較多,推測在生理環(huán)境下蛋白的動(dòng)態(tài)活性較大; TMHMM工具預(yù)測發(fā)現(xiàn)該蛋白沒有跨膜結(jié)構(gòu)域。通過對比分析發(fā)現(xiàn)PwMYB20屬于MYB家族基因,編碼1個(gè)R2R3-MYB蛋白。進(jìn)化樹分析結(jié)果顯示,青杄PwMYB20與白云杉PgMYB20聚為一簇。實(shí)時(shí)熒光定量PCR結(jié)果表明,PwMYB20在種子中的表達(dá)量最高,其次是在針葉中,在花粉中的表達(dá)相對較少。PwMYB20對干旱、4 ℃和ABA處理均有響應(yīng),而對NaCl處理響應(yīng)相對較弱。在干旱處理下,PwMYB20表達(dá)量先上升后下降;4 ℃低溫處理3 h和12 h時(shí)PwMYB20的表達(dá)量上升,在4 ℃處理6 h時(shí)存在波動(dòng),呈現(xiàn)上升—下降—上升的趨勢;PwMYB20的表達(dá)受ABA處理持續(xù)誘導(dǎo)。亞細(xì)胞定位分析表明,PwMYB20是一個(gè)主要定位于細(xì)胞核中的蛋白質(zhì)。轉(zhuǎn)錄激活活性分析結(jié)果顯示,PwMYB20的C端存在轉(zhuǎn)錄激活活性,而PwMYB20全長及其N端沒有轉(zhuǎn)錄激活活性?!窘Y(jié)論】 青杄PwMYB20,作為一個(gè)轉(zhuǎn)錄因子發(fā)揮作用,其轉(zhuǎn)錄激活活性位于C端; 受干旱、低溫和ABA誘導(dǎo),普遍參與了植物應(yīng)對逆境脅迫的響應(yīng)過程。
青杄; MYB轉(zhuǎn)錄因子; 基因克?。?脅迫響應(yīng); 基因表達(dá)
轉(zhuǎn)錄因子是指能特異性結(jié)合靶基因啟動(dòng)子上順式作用元件的蛋白質(zhì),對轉(zhuǎn)錄起著激活或抑制作用。在植物生長發(fā)育及抗逆調(diào)控網(wǎng)絡(luò)中,轉(zhuǎn)錄因子發(fā)揮了十分重要的作用(Broun, 2004; Wangetal., 2016)。MYB家族轉(zhuǎn)錄因子是一類含有長為50~53個(gè)氨基酸殘基且高度保守的MYB結(jié)構(gòu)域的轉(zhuǎn)錄因子,是植物轉(zhuǎn)錄因子中最大的轉(zhuǎn)錄因子家族。Paz-Ares等(1987)在玉米(Zeamays)中鑒定出第1個(gè)植物MYB基因,并命名為C1。之后,越來越多的MYB相關(guān)基因被分離鑒定。
MYB轉(zhuǎn)錄因子在結(jié)構(gòu)上具有由1~4個(gè)MYB重復(fù)單元(R)組成的MYB結(jié)構(gòu)域。根據(jù)R的個(gè)數(shù),可以將其分為4個(gè)亞類,即只含1個(gè)R的MYB-related類型、包含2個(gè)R的R2R3-MYB類型、包含3個(gè)R的3R-MYB類型以及包含4個(gè)R的4R-MYB類型(Strackeetal., 2001; Dubosetal., 2010)。在植物中,R2R3-MYB類型MYB蛋白數(shù)量較多(Chenetal., 2006),且參與了植物的初生和次生代謝、植物細(xì)胞形態(tài)和模式建成、植物生長發(fā)育等多個(gè)生命過程的調(diào)節(jié)(Dubosetal., 2010; Ambawatetal., 2013)。擬南芥(Arabidopsisthaliana)中MYB11、MYB12和MYB111通過調(diào)控FLAVONOLSYNTHASE1等下游靶基因,調(diào)節(jié)類黃酮的生物合成(Strackeetal., 2007)。在許多物種中均鑒定到參與細(xì)胞壁形成的MYB轉(zhuǎn)錄因子,例如小麥(Triticumaestivum)的TaMYB4和玉米的ZmMYB31(Fornaleetal., 2010; Maetal., 2011)。此外,MYB對種子胚的發(fā)育、根系的發(fā)育等均有調(diào)控作用(Tominagaetal., 2008; Yangetal., 2009)。
此外,研究發(fā)現(xiàn)MYB家族基因也參與了植物逆境響應(yīng)過程。干旱脅迫能顯著誘導(dǎo)擬南芥AtMYB2的表達(dá),在植物受到干旱脅迫時(shí),AtMYB2可以激活一些受ABA誘導(dǎo)表達(dá)基因的轉(zhuǎn)錄,從而提高對干旱脅迫的耐受程度(Uraoetal., 1993; Abeetal., 2003)。AtMYB44是一個(gè)R2R3類型的MYB轉(zhuǎn)錄因子,參與調(diào)節(jié)植物氣孔閉合和植物對非生物脅迫的響應(yīng)(Jungetal., 2008)。進(jìn)一步研究發(fā)現(xiàn),AtMYB44通過直接與WRKY70結(jié)合,抑制茉莉酸介導(dǎo)的防衛(wèi)反應(yīng),激活水楊酸介導(dǎo)的防衛(wèi)反應(yīng)(Shimetal., 2013)。此外,水稻(Oryzasativa)中OsMYB2和小麥中的TaMYB4在植物響應(yīng)生物脅迫與非生物脅迫中均發(fā)揮了重要作用(Yangetal., 2012; Al-Attalaetal., 2014)。
青杄(Piceawilsonii)是松科(Pinaceae)云杉屬(Picea)的一種常綠高大喬木,高可達(dá)50 m,是我國特有的針葉樹種。其適應(yīng)能力強(qiáng),喜陰且極耐寒,多分布于涼爽濕潤地區(qū)。目前,青杄已被多個(gè)地區(qū)列為水源涵養(yǎng)林及用材林的主要造林和更新樹種。早期對青杄的研究多集中于青杄的群落生態(tài)學(xué)(張大勇等, 1989),隨后有研究者對青杄愈傷組織的誘導(dǎo)(楊映根等, 1994)及育苗栽培(許家春等, 2004)也進(jìn)行了相關(guān)研究。近年來,隨著分子生物學(xué)和細(xì)胞生物學(xué)的快速發(fā)展,對于青杄基因的功能研究也有了一定進(jìn)展。本文通過RACE-PCR的方法,從青杄cDNA文庫中克隆得到1個(gè)R2R3-MYB轉(zhuǎn)錄因子全長cDNA序列; 采用熒光定量PCR分析其在青杄各組織以及各種非生物脅迫下的表達(dá)情況,并進(jìn)一步利用亞細(xì)胞定位及轉(zhuǎn)錄激活活性驗(yàn)證試驗(yàn)揭示其生物學(xué)特性,為進(jìn)一步探究其在植物生長發(fā)育及逆境響應(yīng)中的功能打下基礎(chǔ),同時(shí)有利于挖掘與利用木本植物中的優(yōu)質(zhì)基因。
1.1 試驗(yàn)材料及處理方法
青杄花粉及種子均采集于北京植物園。3年生青杄幼苗的根、莖、針葉與花粉用于組織特異表達(dá)試驗(yàn),將青杄種子播種于體積1∶1蛭石和草炭土的培養(yǎng)基質(zhì)中,置于溫度21 ℃、相對濕度60%~70%、日照時(shí)間16 h的條件下培養(yǎng),每周定時(shí)澆1次水。8周的青杄幼苗用于逆境響應(yīng)試驗(yàn)。
逆境響應(yīng)試驗(yàn)的處理方法參照張通等(2014)和李長江等(2014)略有改動(dòng): 將8周的青杄幼苗裸根置于室溫(25 ℃),于吸水紙上放置0,3,6,12 h; 用100 mmol·L-1NaCl處理青杄幼苗0,3,6,12 h; 將青杄幼苗于清水中4 ℃處理0,3,6,12 h。為了驗(yàn)證PwMYB20對逆境脅迫的響應(yīng)是否通過ABA途徑,進(jìn)行了外施ABA試驗(yàn),即用100 μmol·L-1ABA分別處理青杄幼苗0,3,6,12 h。
1.2 青杄PwMYB20全長cDNA的獲得
青杄cDNA文庫通過Gateway方法構(gòu)建,由Invitrogen(上海)公司完成(張盾等, 2012)。在前期構(gòu)建的多年生青杄均一化cDNA文庫的基礎(chǔ)上,利用RACE-PCR的方法得到PwMYB20末端序列,再經(jīng)過序列拼接得到cDNA全長。RACE-PCR所用引物為MYB20-RACE-F、MYB20-RACE-R(表1)。設(shè)計(jì)引物MYB20-F、MYB20-R從青杄cDNA文庫克隆得到PwMYB20的ORF,連接到pEASY-T1上,獲得PwMYB20單克隆。
1.3 PwMYB20生物信息學(xué)分析
PwMYB20生物信息學(xué)分析方法參照李長江等(2014)。利用DNAMAN軟件進(jìn)行PwMYB20的cDNA序列編碼區(qū)預(yù)測及蛋白翻譯。運(yùn)用ProtParam工具(http: //biopython.org/wiki/ProtParam)分析蛋白的理化特性和氨基酸組成。通過BLAST工具在NCBI(https: //www.ncbi.nlm.nih.gov/)上進(jìn)行核酸序列與蛋白序列的同源性分析。利用ClustalX軟件進(jìn)行氨基酸多序列比對分析,并用MEGA5軟件基于鄰位相連法構(gòu)建系統(tǒng)發(fā)育樹。利用WoLF-PSORT(http: //www.genscript.com/tools/wolf-psort)進(jìn)行蛋白亞細(xì)胞定位預(yù)測。通過Protscale(http: //web.expasy.org/protscale/)、SignalP4.1(http: //www.cbs.dtu.dk/services/SignalP/)、TMHMM(http: //www.cbs.dtu.dk/services/TMHMM/)、FoldIndex(http: //bip.weizmann.ac.il/fldbin/findex)對蛋白疏水性、信號(hào)肽區(qū)域、跨膜結(jié)構(gòu)域以及蛋白無序化位點(diǎn)進(jìn)行預(yù)測分析。
1.4PwMYB20組織特異性表達(dá)及逆境響應(yīng)分析
利用艾德萊(北京)公司的植物RNA快速提取試劑盒提取各試驗(yàn)材料的RNA,并用天根(北京)公司反轉(zhuǎn)錄試劑盒合成第1條cDNA鏈,置于-20 ℃保存。根據(jù)基因序列的非保守區(qū)設(shè)計(jì)定量引物為qMYB20-F、qMYB20-R。選取青杄EF1-α基因作為內(nèi)參基因(李長江等, 2014),引物為EF1-α-F、EF1-α-R。將合成的cDNA第1條鏈均一化濃度之后在StepOnePlus Real Time RT-PCR儀器上進(jìn)行熒光定量PCR,引物序列詳見表1。試驗(yàn)分別設(shè)置2次生物學(xué)重復(fù),3次技術(shù)重復(fù)。利用2-△△Ct法分析數(shù)據(jù),用SPASS與SigmaPlot分析作圖。
表1 所用引物序列Tab.1 Primer sequences
1.5 PwMYB20瞬時(shí)表達(dá)載體構(gòu)建與亞細(xì)胞定位
圖1 pEZS-NL的載體Fig.1 Map of pEZS-NL35S表示啟動(dòng)子序列; Ala10表示10個(gè)丙氨酸序列; EGFP表示GFP序列; Ocs3′表示章魚堿合成酶基因的終止子。35S shows promoter sequence; Ala10 shows 10 alanine sequences; EGFP shows GFP sequence; Ocs3′ shows terminator.
通過引物MYB20-F-KpnⅠ、MYB20-R-BamHⅠ(表1)擴(kuò)增PwMYB20編碼區(qū)序列,擴(kuò)增產(chǎn)物經(jīng)雙酶切后定向連入pEZS-NL載體(圖1)。構(gòu)建好的表達(dá)載體轉(zhuǎn)化大腸桿菌(Escherichiacoli)菌株DH5α。利用天根(北京)質(zhì)粒大型大量提取試劑盒提取質(zhì)粒,質(zhì)粒濃度至少達(dá)到1 μg·μL-1。通過基因槍將質(zhì)粒轟擊入洋蔥(Alliumcepa)表皮細(xì)胞(Yuetal., 2011)。將轉(zhuǎn)化的洋蔥表皮置于MS培養(yǎng)基上暗培養(yǎng)1天,用共聚焦顯微鏡(OLYMPUS,F(xiàn)V10i)觀察拍照。為了確定PwMYB20表達(dá)部位,用空pEZS-NL載體所表達(dá)的綠色熒光以及DAPI熒光作為參照。
1.6 PwMYB20轉(zhuǎn)錄激活活性檢測
設(shè)計(jì)引物,并在上游和下游引物分別加入EcoRⅠ和BamHⅠ酶切位點(diǎn),將PwMYB20全長(1-225 aa)、N端(1-127 aa)和C端(133-225 aa)分別連入pGBKT7載體,引物詳見表1。構(gòu)建好的表達(dá)載體轉(zhuǎn)化大腸桿菌菌株DH5α,并測序驗(yàn)證。利用天根(北京)公司質(zhì)粒小提試劑盒提取重組質(zhì)粒,存于-20 ℃?zhèn)溆谩⒔?jīng)測序驗(yàn)證正確后的重組質(zhì)粒轉(zhuǎn)入酵母AH109(Saccharomycescerevisiae)菌株,操作按照上海唯地生物技術(shù)有限公司說明書進(jìn)行。以轉(zhuǎn)入空pGBKT7載體為陰性對照,轉(zhuǎn)入pGBKT7-ANAC092為陽性對照(Heetal., 2005),均勻涂于SD-Trp單缺陷平板上。生長2~3天后用接種針挑取少量的酵母單克隆,混于500 mL無菌水中,吸取5 μL滴在SD-Trp和含有10 mmol·L-13-氨基-1, 2, 4-三氮唑(3-AT)的SD-Trp-His-Ade缺陷型酵母培養(yǎng)基上。培養(yǎng)3~4天后,若在SD-Trp-His-Ade缺陷型酵母培養(yǎng)基上長出菌落,則具有轉(zhuǎn)錄激活活性,反之則無。
2.1 基因克隆與序列分析
用RACE-PCR的方法得到末端序列,與EST序列拼接,得到PwMYB20的cDNA全長(圖2)。利用DNAMAN軟件分析發(fā)現(xiàn),PwMYB20的cDNA全長為966 bp,在86 bp處出現(xiàn)起始密碼子ATG,在741 bp處出現(xiàn)終止密碼子TGA,編碼區(qū)共675 bp,編碼225個(gè)氨基酸,在949 bp處出現(xiàn)PolyA尾巴。
圖2 PwMYB20的核酸序列與蛋白氨基酸序列Fig.2 Nucleotide sequence and deduced protein amino acids sequence of PwMYB20起始密碼子(ATG)與終止密碼子(TGA)用下劃線標(biāo)記,氨基酸序列用單字母表示,黑體字母表示PolyA尾巴。Potential translation initiation codon (ATG) and termination codon (TGA) are underlined, amino acid residues are indicated by single letter code and PolyA tail are indicated by bold letters.
圖3 PwMYB20的理化特性分析Fig.3 Physicochemical properties of PwMYB20A: Protscale工具預(yù)測蛋白疏水性; B: PwMYB20的信號(hào)肽預(yù)測(C-score表示剪切位置分值,S-score表示信號(hào)肽分值,Y-score表示綜合剪切位置分值); C: PwMYB20蛋白的固有無序化分析; D: PwMYB20的跨膜結(jié)構(gòu)域分析,圖中第1條橫線(1.0~1.2)表示綜合結(jié)果。A: Hydrophobic analysis of PwMYB20; B: Signal peptide analysis of PwMYB20(C-score means Cleavage site score, S-score means Signal peptide score, Y-score means Combined cleavage site score); C: Intrinsically disordered protein analysis of PwMYB20; D: Transmembrane analysis of PwMYB20,the first horizontal line(1.0-1.2)in the graph represents the comprehensive result.
圖4 PwMYB20及同源蛋白的多序列比對Fig.4 Multiple sequence alignment of PwMYB20 and homological proteins線段示意不同結(jié)構(gòu)域(R2,R3,TAD),虛線框示意青杄等物種中特有的結(jié)構(gòu)域。相似性: 黑色=100%; 粉色≥75%; 藍(lán)色≥50%。The lines indicate different domains (R2, R3, TAD), the dashed box indicates a specific domain in Picea wilsonii et al. Conserved percent: Black=100%; Pink≥75%; Blue≥50%.青杄Picea wilsonii:PwMYB20; 白云杉Picea glauca:PgMYB10(ABQ51226.1), PgMYB5 (ABQ51221.1), PgMYB17 (ACN12959.1), PgMYB13(ABQ51229.1); 火炬松Pinus taeda:PtMYB14(ABD60279.1); 擬南芥Arabidopsis thaliana:AtMYB6 (NP_192684.1), AtMYB7(NP_179263.1),AtMYB32(NP_195225.1),AtMYB4(NP_195574.1).
利用ProtParam工具計(jì)算蛋白分子式為C1104H1740N340O330S8,分子量為25.3 kDa,等電點(diǎn)為9.11。亮氨酸(Leu)含量最高(9.8%),其次為8.9%的絲氨酸(Ser)與8.0%的精氨酸(Arg)。預(yù)測在體外半衰期為30 h,不穩(wěn)定指數(shù)為55.02,說明蛋白不穩(wěn)定。Protscale工具疏水性分析發(fā)現(xiàn),苯丙氨酸(Phe81)分值最大,為1.633,谷氨酰胺(Gln20)分值最小,為-2.647。疏水位點(diǎn)與親水位點(diǎn)均勻分布,推測該蛋白為親水蛋白(圖3A)。SignalP工具預(yù)測發(fā)現(xiàn)該蛋白沒有信號(hào)肽結(jié)構(gòu)域(圖3B)。利用FoldIndex工具對蛋白質(zhì)固有無序化進(jìn)行分析,結(jié)果表明該蛋白固有無序化序列較多,推測在生理環(huán)境下蛋白的動(dòng)態(tài)活性較大(圖3C)。TMHMM工具預(yù)測發(fā)現(xiàn),整條肽鏈都位于膜外,因此推測該蛋白沒有跨膜結(jié)構(gòu)域(圖3D)。此外,利用WOLF-PSORT對PwMYB20亞細(xì)胞定位進(jìn)行預(yù)測,發(fā)現(xiàn)其可能定位在細(xì)胞核中。
2.2 多重序列比對及系統(tǒng)進(jìn)化樹分析
通過BLAST工具在NCBI上用翻譯后的蛋白序列進(jìn)行檢索,結(jié)果表明其屬于R2R3-MYB家族,且在N端發(fā)現(xiàn)SANT結(jié)構(gòu)域。選取擬南芥、白云杉(Piceaglauca)等物種同源基因進(jìn)行檢索,發(fā)現(xiàn)PwMYB20與其他MYBs相似性較高。利用ClustalX工具進(jìn)行多序列比對,發(fā)現(xiàn)PwMYB20與其他物種的MYBs在N端有較高的相似性,且為R2R3結(jié)構(gòu)域,在C端則擁有比較特異的轉(zhuǎn)錄激活域TAD。與擬南芥相比,C端的結(jié)構(gòu)域是青杄、白云杉等物種特有的(圖4)。
利用MEGA5軟件的鄰位相連法進(jìn)行系統(tǒng)發(fā)育樹的構(gòu)建,可以發(fā)現(xiàn)PwMYB20與PgMYB20聚為一簇,擬南芥的MYBs與木本植物的MYBs明顯分為兩大類(圖5),進(jìn)而推測2類的激活域TAD擁有不同的分子功能。
圖5 PwMYB20的系統(tǒng)發(fā)育樹分析Fig.5 Phylogenetic tree analysis of PwMYB20MEGA5用于構(gòu)建系統(tǒng)發(fā)育樹,計(jì)算方法為鄰位相連法。每個(gè)分支上的數(shù)字表示1 000次重復(fù)搜索的置信度。MEGA5 is applied to construct the tree by Neighbor-joining method. Numbers on branches indicate bootstrap estimates for 1 000 replicate analysis.
2.3PwMYB20組織特異表達(dá)分析
利用RT-qPCR試驗(yàn)檢測PwMYB20在青杄各組織中的表達(dá)模式,結(jié)果發(fā)現(xiàn)PwMYB20在青杄的各個(gè)組織中均有表達(dá),在種子中的表達(dá)量最高,其次是在針葉中,在花粉中的表達(dá)相對較少(圖6)。說明PwMYB20基因?qū)儆诮M成型表達(dá),可能對青杄種子、針葉、花粉、莖和根的發(fā)育均有影響。
2.4 逆境脅迫對PwMYB20表達(dá)的影響
為了研究不同脅迫條件下PwMYB20的表達(dá)模式,取脅迫處理后的整株青杄幼苗,提取RNA后進(jìn)行反轉(zhuǎn)錄,濃度均一化后進(jìn)行熒光定量PCR試驗(yàn)。結(jié)果表明,PwMYB20對干旱、4 ℃和ABA處理均有響應(yīng),而NaCl處理對PwMYB20表達(dá)的影響相對較弱(圖7)。在干旱處理下,PwMYB20表達(dá)量先上升后下降,在處理6 h后表達(dá)量最高,為未處理幼苗表達(dá)量的7倍。4 ℃低溫處理3 h和12 h時(shí)PwMYB20的表達(dá)量顯著高于未處理的幼苗,而4 ℃處理6 h時(shí)PwMYB20的表達(dá)量并沒有明顯上升,呈現(xiàn)上升—下降—上升的趨勢。ABA處理顯著提高了PwMYB20的表達(dá)量,其表達(dá)量持續(xù)上升,處理12 h后PwMYB20的表達(dá)量是未處理幼苗表達(dá)量的8倍。
2.5 PwMYB20的亞細(xì)胞定位分析
pEZS-NL載體是CaMV 35S驅(qū)動(dòng)的植物瞬時(shí)表達(dá)載體,具有GFP表達(dá)序列(圖1)。將PwMYB20構(gòu)建在pEZS-NL載體上,與GFP融合表達(dá),最終可以通過觀察GFP的熒光確定PwMYB20的表達(dá)部位。結(jié)果顯示,空載體GFP分布于整個(gè)細(xì)胞(圖8A, B, C),而PwMYB20與GFP的融合蛋白雖然在細(xì)胞質(zhì)中也有微量表達(dá)(圖8D),但主要分布在細(xì)胞核中(圖8D, E, F)。這些結(jié)果表明PwMYB20是一個(gè)主要定位在細(xì)胞核中的蛋白。
2.6 PwMYB20在酵母中的轉(zhuǎn)錄激活活性
為驗(yàn)證PwMYB20是否作為轉(zhuǎn)錄因子發(fā)揮作用,構(gòu)建不同載體并轉(zhuǎn)化酵母。圖9顯示,轉(zhuǎn)化空載體pBD和pBD-PwMYB20的酵母不能在-Trp-His-Ade缺陷型培養(yǎng)基中正常生長,而轉(zhuǎn)化陽性對照pBD-ANAC092的酵母可以在-Trp-His-Ade缺陷型培養(yǎng)基中正常生長,表明PwMYB20全長沒有轉(zhuǎn)錄激活活性。為了研究PwMYB20 N端和C端的激活活性,又分別構(gòu)建了包含PwMYB20 N端和C端的酵母轉(zhuǎn)化載體,結(jié)果顯示: PwMYB20-133-225具有轉(zhuǎn)錄激活活性,而PwMYB20-1-127不具有轉(zhuǎn)錄活性(圖9)。這些結(jié)果表明包含TAD激活域的PwMYB20的C端具有激活活性,而全長沒有轉(zhuǎn)錄激活活性,可能是由于N端存在轉(zhuǎn)錄抑制結(jié)構(gòu)域。
圖6 PwMYB20在青杄各組織的相對表達(dá)量Fig.6 Expression analysis of PwMYB20 in different tissues of Picea wilsonii利用單因素方差分析進(jìn)行差異顯著性分析,多重比較方法為Duncan(α=0.05)法,不同字母表示差異顯著(P<0.05)。內(nèi)參基因?yàn)榍鄸eEF1-α。下同。Single factor analysis of variance is used to analyze the difference, Duncan (α=0.05) test is used as the multiple comparison method, and different letters indicate significant difference (P<0.05). EF1-α is the reference gene.The same below.
圖7 不同處理下PwMYB20的相對表達(dá)量Fig.7 Expression analysis of PwMYB20 with different treatments內(nèi)參基因?yàn)榍鄸eEF1-α。各處理0 h時(shí)相對表達(dá)量為“1”。EF1-α is the reference gene. The relative expression of PwMYB20 with different treatments for 0 h is ‘1’.
圖8 PwMYB20的亞細(xì)胞定位(標(biāo)尺: 75 μm)Fig.8 Subcellular localization analysis of PwMYB20(Bar=75 μm)A, B, C: 35S驅(qū)動(dòng)GFP在洋蔥(Allium cepa)中瞬時(shí)表達(dá)(A: 空載體GFP熒光; B: 明場下的洋蔥表皮細(xì)胞; C: A與B的融合圖像); D: PwMYB20-GFP在洋蔥中瞬時(shí)表達(dá); E: DAPI染色; F: GFP與DAPI熒光重疊。A, B, C: Onion (Allium cepa) epidermal cells that are transformed with GFP driven by 35S promoter (A: The GFP fluorescence of empty plasm; B: Onion epidermal cell under bright field; C: The merged picture of A and B); D: Onion epidermal cell that is transformed with PwMYB20-GFP; E: Onion epidermal cell that is stained by DAPI; F: The overlap between GFP and DAPI fluorescence.
植物中的MYB基因最早在玉米中分離出來,被命名為C1(Paz-Areset al., 1987),隨后分離鑒定的MYB轉(zhuǎn)錄因子越來越多。擬南芥中已經(jīng)發(fā)現(xiàn)198個(gè)MYB相關(guān)基因,而在水稻、玉米、二倍體粗山羊草(Aegilopstauschii)等植物中發(fā)現(xiàn)MYB基因均超過了200個(gè)。本試驗(yàn)從青杄中克隆得到PwMYB20基因,通過多序列對比發(fā)現(xiàn),PwMYB20屬于R2R3類型的MYB轉(zhuǎn)錄因子(圖4)。序列比對發(fā)現(xiàn)PwMYB20與其他物種的MYBs在N端有較高的相似性,且為R2R3結(jié)構(gòu)域,在C端則擁有比較特異的轉(zhuǎn)錄激活域TAD。與擬南芥相比,C端的結(jié)構(gòu)域是青杄、白云杉等物種特有的。R2R3-MYB類蛋白是植物中數(shù)目最多的一類MYB蛋白,擬南芥中198個(gè)MYB基因,其中編碼R2R3-MYB的MYB基因數(shù)量高達(dá)126,占60%以上(Chenetal., 2006)。
圖9 PwMYB20在酵母中的轉(zhuǎn)錄激活活性檢測Fig.9 Transcriptional activity test of the PwMYB20 proteins in yeast空載體pBD和pBD-ANAC092分別作為陰性和陽性對照,圖中蛋白后面的數(shù)字指示片段的位置。The pBD vector alone and pBD-ANAC092 are used as negative and positive controls, and the numbers indicate the position of truncated fragments of protein.
本研究通過轉(zhuǎn)錄激活活性試驗(yàn),發(fā)現(xiàn)PwMYB20全長及N端沒有激活活性,而C端具有激活活性(圖9)。Hao等(2010)在研究NAC轉(zhuǎn)錄因子的激活活性時(shí)發(fā)現(xiàn),NAC的N端存在1個(gè)NARD結(jié)構(gòu)域,抑制了NAC的轉(zhuǎn)錄激活活性(Haoetal., 2010)。因此,推測PwMYB20 N端可能存在一個(gè)轉(zhuǎn)錄抑制區(qū)域,抑制了PwMYB20的轉(zhuǎn)錄激活活性。本文中亞細(xì)胞定位試驗(yàn)結(jié)果表明,PwMYB20主要存在于細(xì)胞核中(圖8),此結(jié)果與利用WoLF-PSORT工具進(jìn)行亞細(xì)胞定位預(yù)測結(jié)果相符。因此推測PwMYB20作為一個(gè)轉(zhuǎn)錄因子主要在細(xì)胞核中發(fā)揮功能。
以往研究發(fā)現(xiàn)MYB轉(zhuǎn)錄因子在模式植物及作物類植物響應(yīng)逆境脅迫中扮演了重要角色(Agarwaletal., 2006; Daietal., 2007; Chenetal., 2013; Baldonietal., 2015)。本文的研究結(jié)果顯示,PwMYB20在青杄冷脅迫及干旱脅迫后表達(dá)量有顯著變化(圖7),表明其可能在植物冷脅迫及干旱脅迫響應(yīng)中發(fā)揮了功能。在低溫處理3 h和12 h時(shí)PwMYB20表達(dá)量均顯著高于未處理幼苗,而在低溫處理6 h時(shí)PwMYB20表達(dá)量與未處理幼苗相比并沒有顯著變化,表明PwMYB20對于低溫處理的響應(yīng)存在時(shí)間上的差異,主要在處理早期和后期發(fā)揮作用。類似地,Shi等(2014)研究發(fā)現(xiàn),AtHAP5A和AtXTH21在NaCl處理3,6,24 h時(shí)表達(dá)量均明顯上升,而NaCl處理12 h時(shí)表達(dá)量卻沒有明顯變化。
根據(jù)在植物抗逆脅迫過程中對ABA信號(hào)傳導(dǎo)途徑的依賴性,可將MYB轉(zhuǎn)錄因子分成2類: 一類是和ABA信號(hào)相關(guān)的MYB轉(zhuǎn)錄因子,而另一類是獨(dú)立于ABA信號(hào)途徑的MYB轉(zhuǎn)錄因子。AtMYB60與AtMYB96可以通過ABA信號(hào)級(jí)聯(lián)調(diào)節(jié)氣孔運(yùn)動(dòng)(Cominellietal., 2005),從而提高抗旱性和抗病性(Seoetal., 2009; 2010)。厚葉旋蒴苣苔(Boeacrassifolia)中的BcMYB1對干旱脅迫響應(yīng)顯著,同時(shí)能被低溫、PEG、高鹽等脅迫誘導(dǎo),但在外源ABA處理后其表達(dá)量卻很低,說明可能通過一種不依賴ABA的途徑參與調(diào)控基因表達(dá)從而對逆境產(chǎn)生應(yīng)答(Chenetal., 2005)。在本試驗(yàn)中,外源ABA處理時(shí)PwMYB20表達(dá)顯著上升(圖7),因此推測PwMYB20可能通過ABA途徑響應(yīng)外界非生物脅迫,但其具體的調(diào)控與響應(yīng)機(jī)制有待深入研究。
青杄PwMYB20,作為一個(gè)R2R3類型的MYB轉(zhuǎn)錄因子發(fā)揮作用,其轉(zhuǎn)錄激活活性位于C端。PwMYB20在青杄各組織中均有表達(dá),屬于組成型表達(dá)。此外,在干旱、低溫和ABA處理下PwMYB20表達(dá)發(fā)生顯著變化,說明其普遍參與了青杄應(yīng)對逆境脅迫的響應(yīng)過程。
李長江, 崔曉燕, 孫 帆, 等. 2014. 青杄干旱誘導(dǎo)基因PwWDS1的cDNA分離與表達(dá)分析. 林業(yè)科學(xué), 50(4): 129-136.
(Li C J, Cui X Y, Sun F,etal. 2014. Isolation and expression analysis ofPwWDS1 inPiceawilsonii. Scientia Silvae Sinicae, 50(4): 129-136. [in Chinese])
許家春, 邵海燕, 李殿波. 2004. 優(yōu)良綠化樹種青杄云杉引種栽培技術(shù). 中國林副特產(chǎn), (3): 24-25.
(Xu J C, Shao H Y, Li D B. 2004. Introduction and cultivation techniques ofPiceawilsonii. Forest By-Product and Speciality in China, (3): 24-25. [in Chinese])
楊映根, 桂耀林, 唐 巍, 等. 1994. 青杄愈傷組織在繼代培養(yǎng)中的分化能力及染色體穩(wěn)定性研究. 植物學(xué)報(bào), 36(12): 934-939.
(Yang Y G, Gui Y L, Tang W,etal. 1994. Observation on differentiation potential and chromosome stability of callus in subculture ofPiceawilsonii. Journal of Integrative Plant Biology, 36(12): 934-939. [in Chinese])
張大勇, 趙松嶺, 張鵬云, 等. 1989. 青杄林恢復(fù)演替過程中的鄰體競爭效應(yīng)及鄰體干擾指數(shù)的改進(jìn)模型. 生態(tài)學(xué)報(bào), 9(1): 53-58.
(Zhang D Y, Zhao S L, Zhang P Y,etal. 1989. An improved model of neighborhood competition effect and neighborhood disturbance index in the process of restoration and succession in spruce forest. Acta Ecologica Sinica, 9(1): 53-58. [in Chinese])
張 盾, 劉亞靜, 李長江, 等. 2012. 青杄均一化cDNA文庫構(gòu)建及EST序列分析. 生物技術(shù)通報(bào), (6): 71-76.
(Zhang D, Liu Y J, Li C J,etal. 2012. Construction of normalized cDNA library and analysis of corresponding EST sequences inPiceawilsonii. Biotechnology Bulletin, (6): 71-76. [in Chinese])
張 通, 李巧玲, 張凌云. 2014.PwEXP1在青杄種子萌發(fā)及逆境響應(yīng)中的表達(dá)特征. 林業(yè)科學(xué), 50(12): 56-62.
(Zhang T, Li Q L, Zhang L Y. 2014. Expression characteristics ofPwEXP1 gene in seed germination and adversity inPiceawilsonii. Scientia Silvae Sinicae, 50(12): 56-62. [in Chinese])
Abe H, Urao T, Ito T,etal. 2003.ArabidopsisAtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. The Plant Cell, 15(1): 63-78.
Agarwal M, Hao Y J, Kapoor A,etal. 2006. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. Journal of Biological Chemistry, 281(49): 37636-37645.
Al-Attala M, Wang X, Abou-Attia M,etal. 2014. A novelTaMYB4 transcription factor involved in the defence response againstPucciniastriiformisf. sp.triticiand abiotic stresses. Plant Molecular Biology, 84(4/5): 589-603.
Ambawat S, Sharma P, Yadav N R,etal. 2013. MYB transcription factor genes as regulators for plant responses: an overview. Physiology and Molecular Biology of Plants, 19(3): 307-321.
Baldoni E, Genga A, Cominelli E. 2015. Plant MYB transcription factors: Their role in drought response mechanisms. International Journal of Molecular Sciences, 16(7): 15811-15851.
Broun P. 2004. Transcription factors as tools for metabolic engineering in plants. Current Opinion in Plant Biology, 7(2): 202-209.
Chen B J, Wang Y, Hu Y L,etal. 2005. Cloning and characterization of a drought-inducible MYB gene fromBoeacrassifolia. Plant Science, 168(2): 493-500.
Chen Y, Chen Z L, Kang J Q,etal. 2013.AtMYB14 regulates cold tolerance inArabidopsis. Plant Molecular Biology Reporter, 31(1): 87-97.
Chen Y H, Yang X Y, He K,etal. 2006. The MYB transcription factor superfamily ofArabidopsis: Expression analysis and phylogenetic comparison with the rice MYB family. Plant Molecular Biology, 60(1): 107-124.
Cominelli E, Galbiati M, Vavasseur A,etal. 2005. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Current Biology, 15(13): 1196-1200.
Dai X Y, Xu Y Y, Ma Q B,etal. 2007. Overexpression of an R1R2R3 MYB gene,OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenicArabidopsis. Plant Physiology, 143(4): 1739-1751.
Dubos C, Stracke R, Grotewold E,etal. 2010. MYB transcription factors inArabidopsis. Trends in Plant Science, 15(10): 573-581.
Fornale S, Shi X H, Chai C L,etal. 2010. ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. Plant Journal, 64(4): 633-644.
Hao Y J, Song Q X, Chen H W,etal. 2010. Plant NAC-type transcription factor proteins contain a NARD domain for repression of transcriptional activation. Planta, 232(5): 1033-1043.
He X J, Mu R L, Cao W H,etal. 2005. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant Journal, 44(6): 903-916.
Jung C, Seo J S, Han S W,etal. 2008. Overexpression ofAtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenicArabidopsis. Plant Physiology, 146(2): 623-635.
Ma Q H, Wang C, Zhu H H. 2011.TaMYB4 cloned from wheat regulates lignin biosynthesis through negatively controlling the transcripts of both cinnamyl alcohol dehydrogenase and cinnamoyl-CoA reductase genes. Biochimie, 93(7): 1179-1186.
Paz-Ares J, Ghosal D, Wienand U,etal. 1987. The regulatory c1 locus ofZeamaysencodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO, 6(12): 3553-3558.
Seo P J, Park C M. 2010. MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis inArabidopsis. New Phytologist, 186(2): 471-483.
Seo P J, Xiang F N, Qiao M,etal. 2009. The MYB96 transcription factor mediates abscisic acid signaling during drought stress response inArabidopsis. Plant Physiology, 151(1): 275-289.
Shi H T, Ye T T, Zhong B,etal. 2014.AtHAP5Amodulates freezing stress resistance inArabidopsisthrough binding to CCAAT motif ofAtXTH21. New Phytologist, 203(2): 554-567.
Shim J S, Jung C, Lee S,etal. 2013. AtMYB44 regulatesWRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling. Plant Journal, 73(3): 483-495.
Stracke R, Ishihara H, Barsch G H A,etal. 2007. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of theArabidopsisthalianaseedling. Plant Journal, 50(4): 660-677.
Stracke R, Werber M, Weisshaar B. 2001. The R2R3-MYB gene family inArabidopsisthaliana. Current Opinion in Plant Biology, 5(5): 447-456.
Tominaga R, Iwata M, Sano R,etal. 2008.ArabidopsisCAPRICE-LIKE MYB 3 (CPL3) controls endoreduplication and flowering development in addition to trichome and root hair formation. Development, 135(7): 1335-1345.
Urao T, Yamaguchi-Shinozaki K, Urao S,etal. 1993. AnArabidopsismyb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. The Plant Cell, 5(11): 1529-1539.
Wang H Y, Wang H L, Shao H B,etal. 2016. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Frontiers in Plant Science, 7. Doi: 10.3389/fpls.2016.00067
Yang A, Dai X Y, Zhang W H. 2012. A R2R3-type MYB gene,OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. Journal of Experimental Botany, 63(7): 2541-2556.
Yang S W, Jang I C, Henriques R,etal. 2009. FAR-RED ELONGATED HYPOCOTYL1 and FHY1-LIKE associate with theArabidopsistranscription factors LAF1 and HFR1 to transmit phytochrome a signals for inhibition of hypocotyl elongation. The Plant Cell, 21(5): 1341-1359.
Yu Y L, Li Y Z, Huang G X,etal. 2011. PwHAP5, a CCAAT-binding transcription factor, interacts with PwFKBP12 and plays a role in pollen tube growth orientation inPiceawilsonii. Journal of Experimental Botany, 62(14): 4805-4817.
(責(zé)任編輯 徐 紅)
Cloning and Expression Analysis of MYB Homologous GenePwMYB20 fromPiceawilsonii
You Hanli Yuan Yihang Li Changjiang Zhang Lingyun
(Key Laboratory of Forestry Silviculture and Conservation of Ministry of Education Beijing Forestry University Beijing 100083)
【Objective】 MYB is the largest family of transcription factor in plants, which is widely involved in the regulation of plant life and play an important role in both plant development and growth,and in the regulation of stress resistance. Cloning and analysis of MYB homologous genePwMYB20 inPiceawilsoniiis propitious to explore the function of PwMYB20 in plant growth and development, for the purpose of efficient use of high-qualified genes inPiceawilsonii.【Method】ThePwMYB20 was cloned and verified based on the cDNA library of the EST sequence ofPwMYB20 with RACE-PCR method. ProtParam, ProtScale, FoldIndex and other bioinformatics software were used to analyze and predict the physical and chemical properties of PwMYB20. The homologous proteins were obtained by BLAST online tools, and their comparative analysis and phylogenetic tree analysis were carried out. The tissue specific expression ofPwMYB20 in different tissues,as well as the changes ofPwMYB20 expression with drought, cold, NaCl and ABA treatments were analyzed using real-time quantitative PCR. Furthermore, subcellular localization and transcriptional activation assay were carried out to reveal its biological properties.【Result】The full length ofPwMYB20 cDNA was 966 bp with an open reading frame (ORF) of 675 bp encoding 225 amino acids. ProtParam analysis showed that the protein molecular formula is C1104H1740N340O330S8, molecular weight is 25.3 kDa and isoelectric point is 9.11. Hydrophobicity analysis with Protscale showed that the hydrophobic sites of PwMYB20 were uniformly distributed, suggesting that the protein is hydrophilic. No protein peptide domain was found with SignalP. Furthermore, Protein inherent disorder analysis showed the protein contains many inherently disordered sequences. In addition, TMHMM tools predicted that the protein has no transmembrane domain. BLAST online tools analysis showed thatPwMYB20 belongs to the MYB family gene, which encodes a R2R3-MYB protein. The results of phylogenetic tree analysis showed that PwMYB20 and PgMYB20 were clustered into one cluster. The real-time quantitative PCR analysis indicated thatPwMYB20 expressed constitutively at a high level in seed, followed by needle, and the least was in pollen. The expression ofPwMYB20 displayed responses to drought, cold and ABA treatments, but slightly to NaCl treatment. With drought treatment, the expression ofPwMYB20 was up-regulated at the early stage, and then decreased after 6 h. Additionally, the expression ofPwMYB20 was induced when it was 4 ℃ treated for 3 h, 12 h and with a fluctuation in 6 h, the expression showed an up-down-up trend. Moreover, the expression ofPwMYB20 was induced by ABA continuously. Subcellular localization analysis showed that PwMYB20 was mainly localized in the nucleus. Transcriptional activation analysis revealed that C terminal of PwMYB20 had a transcriptional activation activity, whereas the full-length PwMYB20 and its N terminal had no transcriptional activation activity.【Conclusion】 The results indicated that the expression ofPwMYB20 was constitutive in different tissues, and induced by drought, cold and ABA. In addition, PwMYB20 was located in the nucleus. Its C terminal had a transcriptional activation activity, although its full length is not activated.It is widely involved in responding to different stresses.
Piceawilsonii; MYB transcription factor; gene cloning; stress response; gene expression
10.11707/j.1001-7488.20170504
2016-12-29;
2017-02-21。
轉(zhuǎn)基因生物新品種培育重大專項(xiàng)(2016ZX08009003-002)。
S718.46
A
1001-7488(2017)05-0023-10
* 張凌云為通訊作者。