商全鴻,張雪松,范偉捷,劉臻,侯先智
(1.國網(wǎng)浙江省電力公司,浙江杭州 310007;2.中國電力科學(xué)研究院,北京 100055;3.北京送變電公司,北京 102401)
電力復(fù)合脂摩擦系數(shù)對導(dǎo)線握力的影響
商全鴻1,張雪松2,范偉捷3,劉臻2,侯先智3
(1.國網(wǎng)浙江省電力公司,浙江杭州 310007;2.中國電力科學(xué)研究院,北京 100055;3.北京送變電公司,北京 102401)
為了研究電力復(fù)合脂摩擦系數(shù)對導(dǎo)線握力的影響,對不同類型電力復(fù)合脂的摩擦系數(shù)進(jìn)行了測試,并開展了涂不同類型電力復(fù)合脂導(dǎo)線握力試驗(yàn)。試驗(yàn)結(jié)果表明:不同類型電力復(fù)合脂的摩擦系數(shù)是不同的。當(dāng)電力復(fù)合脂的摩擦系數(shù)大于0.08時(shí),電力復(fù)合脂對導(dǎo)線的握力基本沒有影響,導(dǎo)線的破壞特征為鋁線斷裂。當(dāng)電力復(fù)合脂的摩擦系數(shù)小于0.015時(shí),電力復(fù)合脂對大截面導(dǎo)線的握力有明顯降低,導(dǎo)線的破壞特征為鋁線滑出。
電力復(fù)合脂;摩擦系數(shù);導(dǎo)線握力;破壞特征
根據(jù)國家相關(guān)標(biāo)準(zhǔn)要求,導(dǎo)線壓接時(shí)應(yīng)在導(dǎo)線表面涂一層電力復(fù)合脂。近年來大截面導(dǎo)線(1250 mm2導(dǎo)線)在工程應(yīng)用中出現(xiàn)了鋁線從壓接管中滑出的現(xiàn)象。通過對影響壓接質(zhì)量的各種因素的分析,排除導(dǎo)線質(zhì)量、金具結(jié)構(gòu)設(shè)計(jì)參數(shù)和壓接工藝等因素的影響[1-2],樣品破壞特征全部為鋁線從壓接管中滑出,其主要原因?yàn)橥磕娏?fù)合脂后壓接管與導(dǎo)線間的摩擦力下降,在拉力作用下鋁線發(fā)生滑移??梢?,隨著導(dǎo)線截面直徑的加大,電力復(fù)合脂摩擦系數(shù)對導(dǎo)線握力的影響不能忽略。此外,目前對電力復(fù)合脂的研究主要集中在電氣性能、耐腐蝕性、磨損性能上[3-8],沒有注重電力復(fù)合脂摩擦系數(shù)對導(dǎo)線握力的影響,造成導(dǎo)線握力計(jì)算值與實(shí)際測量值存在明顯差異。
1.1 電力復(fù)合脂分類
首先對市場上常用的幾類電力復(fù)合脂的分油性進(jìn)行了測試,測試結(jié)果如表1所示。根據(jù)表1,將分油量小于等于0.01的電力復(fù)合脂定為A型;將分油量在0.01~0.03的電力復(fù)合脂定為B型;將分油量在3.80左右的電力復(fù)合脂定為C型;將分油量大于等于12電力復(fù)合脂定為D型。本文選擇A型、B型、C型、D型4類電力復(fù)合脂進(jìn)行摩擦系數(shù)測試。
1.2 試驗(yàn)方案
本文采用四球法[9-10]測試電力復(fù)合脂的摩擦系數(shù)。測試電力復(fù)合脂摩擦系數(shù)時(shí),首先把在試驗(yàn)機(jī)主軸上安裝一個(gè)潔凈的試驗(yàn)鋼球,在油杯中安裝3個(gè)潔凈試驗(yàn)鋼球,用夾具夾緊,設(shè)定試驗(yàn)機(jī)轉(zhuǎn)速為600 r/min±30 r/min,3個(gè)直徑12.7 mm鋼球被夾緊在一起,加入10 mL電力復(fù)合脂,另一個(gè)直徑12.7 mm鋼球作為上鋼球,與3個(gè)夾緊鋼球成3點(diǎn)接觸,施加負(fù)荷392 N;最后在設(shè)定電力復(fù)合脂試驗(yàn)溫度為75℃的條件下,上鋼球以600 r/min的轉(zhuǎn)速運(yùn)行,試驗(yàn)時(shí)間為20 minute,同時(shí)記錄摩擦系數(shù)。
表1 電力復(fù)合脂分油率(w/w%)Tab.1 Oil-removing efficiency of electrical joint compound
1.3 試驗(yàn)結(jié)果分析
根據(jù)上述試驗(yàn)方法測試電力復(fù)合脂的摩擦系數(shù)其試驗(yàn)結(jié)果如表2所示,圖1給出了電力復(fù)合脂摩擦系數(shù)隨時(shí)間的變化??梢钥闯?,A型和B型電力復(fù)合脂的摩擦系數(shù)遠(yuǎn)高于C型和D型電力復(fù)合脂的摩擦系數(shù)。根據(jù)文獻(xiàn)[11~14],用掃描電子顯微鏡對試件磨斑進(jìn)行分析。涂4種類型電力復(fù)合脂鋼板磨斑如圖2所示??梢钥闯觯河捎贏型和B型電力復(fù)合脂摩擦系數(shù)較大,鋼板磨斑不規(guī)則且中間有破損;而C型及D型電力復(fù)合脂摩擦系數(shù)較小,鋼板磨斑較圓且中間沒有發(fā)生破損的現(xiàn)象。
表2 電力復(fù)合脂摩擦系數(shù)Tab.2 Friction coefficient of electrical joint compound
圖1 電力復(fù)合脂摩擦系數(shù)曲線Fig.1 Friction coefficient curve of electrical joint compound
2.1 試驗(yàn)方案設(shè)計(jì)
為了測試上述4種類型電力復(fù)合脂摩擦系數(shù)對導(dǎo)線握力的影響,試驗(yàn)采用同樣壓接設(shè)備、同一盤導(dǎo)線、對涂不同類型電力復(fù)合脂的JL1/G3A-630/45型導(dǎo)線和JL1/G3A-1250/70型導(dǎo)線進(jìn)行握力試驗(yàn)。對導(dǎo)線進(jìn)行握力測試前需要對導(dǎo)線進(jìn)行壓接,根據(jù)文獻(xiàn)[15~18]導(dǎo)線的壓接步驟如下:首先量取一定長度并切斷鋁線,不傷及鋼芯。剝線長度=鋼管壓接長度+鋼管壓接伸長量+25 mm。然后將鋼芯向耐張線夾鋼錨管口穿入,鋼芯穿入時(shí)應(yīng)順絞線絞制方向旋轉(zhuǎn)推入,直至鋼芯穿至管底,如剝露的鋼芯已不呈原絞制狀態(tài),應(yīng)先恢復(fù)其至原絞制狀態(tài)。再將鋁管穿管及預(yù)偏將鋁管穿至極限位置后根據(jù)預(yù)偏量預(yù)偏一定距離。對壓接好的導(dǎo)線進(jìn)行握力測試時(shí),將首先應(yīng)將載荷施加到計(jì)算拉斷力的20%[18],在金具的出口端導(dǎo)線上作記號,以測量導(dǎo)線相對于金具的滑移量。然后在30/s后將張力逐步增加到導(dǎo)線計(jì)算拉斷力的50%,并保持120 s。最后在不少于30 s后,將張力逐步增加到規(guī)定的握力值。
圖2 涂電力復(fù)合脂樣品磨斑Fig.2 Wear scar of specimens with electrical joint compound
圖3 涂電力復(fù)合脂前后JL1/G3A-630/45導(dǎo)線握力Fig.3 Holding force for the JL1/G3A-630/45 conductor with/without electrical joint compound
2.2 試驗(yàn)結(jié)果分析
涂電力復(fù)合脂的JL1/G3A-630/45型導(dǎo)線和JL1/G3A-1250/70型導(dǎo)線握力試驗(yàn)結(jié)果圖3和圖4所示??梢钥闯觯和緼型和B型電力復(fù)合脂(最小摩擦系數(shù)大于0.08)的導(dǎo)線,其握力均和未涂電力復(fù)合脂握力接近且大于規(guī)范[18]要求值;這說明當(dāng)電力復(fù)合脂的摩擦系數(shù)大于0.08時(shí),對導(dǎo)線握力的影響不大。涂C型和D型電力復(fù)合脂(最小摩擦系數(shù)小于0.015)的導(dǎo)線,其握力均小于未涂電力復(fù)合脂導(dǎo)線握力;這說明C型和D型電力復(fù)合脂對JL1/G3A-630/45型導(dǎo)線的握力有所降低,對JL1/G3A-1250/70型導(dǎo)線握力有明顯的降低作用。
表3和表4給出了涂4類電力復(fù)合脂及不涂電力復(fù)合脂導(dǎo)線的握力及其握力比(涂電力復(fù)合脂導(dǎo)線握力與未涂復(fù)合脂導(dǎo)線握力之比)??梢钥闯觯和緼型和B型電力復(fù)合脂的導(dǎo)線,其握力大約降低2%左右,基本和不涂電力復(fù)合脂的導(dǎo)線的握力值相當(dāng)。涂C型和D型電力復(fù)合脂的JL1/G3A-630/4型導(dǎo)線,其握力降低5%左右。涂C型和D型電力復(fù)合脂的JL1/G3A-1250/70型導(dǎo)線,其握力降低10%左右。這說明:當(dāng)電力復(fù)合脂的摩擦系數(shù)小于0.015時(shí),導(dǎo)線的握力值明顯降低,且大截面導(dǎo)線的握力降低更多。因此建議輸電線路用電力復(fù)合脂的摩擦系數(shù)不應(yīng)小于0.08。
圖5給出了涂電力復(fù)合脂導(dǎo)線的破壞形態(tài),可以看出:電力復(fù)合脂的摩擦系數(shù)不但對導(dǎo)線的握力值影響,同時(shí)也影響了導(dǎo)線的破壞特征。當(dāng)電力復(fù)合脂的摩擦系數(shù)大于0.08時(shí),導(dǎo)線的破壞特征均為耐張線夾出口鋁線斷;這說明,鋼芯和導(dǎo)線的鋁單線同時(shí)發(fā)揮作用,導(dǎo)線的握力由鋁線的強(qiáng)度和鋼芯的強(qiáng)度共同決定。當(dāng)電力復(fù)合脂的摩擦系數(shù)小于0.015時(shí),導(dǎo)線的破壞特征均為耐張線夾出口滑出,鋼芯和導(dǎo)線的鋁單線無法同時(shí)發(fā)揮作用,鋁包鋼芯與外層鋁股之間有滑移。
圖4 涂電力復(fù)合脂前后NY-1250/70導(dǎo)線握力Fig.4 Holding force for JL1/G3A-630/45 conductor with/without electrical joint compound
表3 JL1/G3A-630/45型導(dǎo)線握力試驗(yàn)數(shù)據(jù)Tab.3 Data of test for the JL1/G3A-630/45 conductor
表4 JL1/G3A-1250/70導(dǎo)線握力試驗(yàn)數(shù)據(jù)Tab.4 Data of test for the JL1/G3A-1250/70conductor
圖5 涂不同類型電力復(fù)合脂導(dǎo)線的破壞形態(tài)Fig.5 Failure performance of conductor with different electrical joint compound
通過對涂4種類型的電力復(fù)合脂的摩擦系數(shù)試驗(yàn)及相應(yīng)的導(dǎo)線握力試驗(yàn),可以得到以下2點(diǎn)結(jié)論:首先,不同類型的電力復(fù)合脂摩擦系數(shù)是不同的,當(dāng)電力復(fù)合脂的摩擦系數(shù)大于0.08時(shí),對導(dǎo)線的握力基本沒有影響,當(dāng)電力復(fù)合脂的摩擦系數(shù)小于0.015時(shí),電力復(fù)合脂對導(dǎo)線的握力有明顯降低,尤其是對大截面導(dǎo)線。其次,電力復(fù)合脂的摩擦系數(shù)的大小可以改變導(dǎo)線的破壞特征。當(dāng)電力復(fù)合脂的摩擦系數(shù)大于0.08時(shí),導(dǎo)線的破壞特征為耐張線夾出口鋁線斷裂。當(dāng)電力復(fù)合脂的摩擦系數(shù)小于0.015時(shí),導(dǎo)線的破壞特征為耐張線夾出口鋁線滑出,建議輸電線路用電力復(fù)合脂的摩擦系數(shù)不應(yīng)小于0.08。
[1]萬建成.金具對大截面導(dǎo)線握力的影響因素[J].電力建設(shè),2012,33(6):84-88.WAN Jiancheng.Influence factors of fitting on grip strength of large cross-section conductor[J].Electric Power Construction,2012,33(6):84-88(in Chinese).
[2]馮愛軍,金榕.影響導(dǎo)線壓接握著力的因素探討[J].電線電纜,2011,5(1):38-41.FENG Aijun,JIN Rong.Investigate on the factors of holding force of conductor crimping electric wire&Cable,2011,5(1):38-41(in Chinese).
[3]ZHOU Yilin,LAN Fudong,KONG Zhigang.The effect of electrical joint compound on the life of aluminum power connector[C]//Prognostics and System Health Management Conference,Beijing IEEE,2016:1-6.
[4]QIANG C M,WANG G G,ZHANG M,et al.The effects of electrical joint compound on the saving energy and reducing consumption of power hardwares,Electrical Manufacturing,2013,7(1):38-40.
[5]LI X W,WANG G G,QIANG,et al.Experimental investigation of the effects of electrical joint compounds on the corrosion resistance of metal connectors[J].Electric Power Construction,2011,8(1):99-102.
[6]楊韌,吳水鋒,汪金星,等.SF6斷路器中潤滑脂過量引起的分解產(chǎn)物分析[J],高壓電器,2013,49(6):43-47.YANG Ren,WU Shuifeng,WANG Jinxing,et al.Analysis of decomposition products by grease overdose in SF6circuit breaker[J].High Voltage Apparatus,2013,49(6):43-47(in Chinese).
[7]聞?wù)裰?,夏延秋,劉志?堿性復(fù)合磺酸鈣基脂的摩擦學(xué)性能及機(jī)理[J].石油學(xué)報(bào)(石油加工),2013,29(1):151-156.WEN Zhenzhong,XIA Yanqiu,LIU Zhilu.Tribological behavior and mechanismof overbased complex calcium sulfonate grease[J].Acta Petrolei Sinica(Petroleum Processing Section),2013,29(1):151-156(in Chinese).
[8]葛翔宇,夏延秋,馮欣,等.鋰鹽型電力復(fù)合脂的導(dǎo)電性和摩擦學(xué)性能[J].機(jī)械工程學(xué)報(bào),2015,51(15):61-66.GE Xiangyu,XIA Yanqiu,F(xiàn)ENG Xin,et al.Electrical c-onductivities and tribological properties of lithium salts conductive grease[J].Journal of Mechanical Engineering,2015,51(15):61-66(in Chinese).
[9]潤滑油摩擦系數(shù)測定法(四球法)SH/T 0762-2005:[S].北京:石油工業(yè)出版社,2005.
[10]郭志光,徐健生,顧卡麗,等.納米銅潤滑添加劑在四球機(jī)上的摩擦學(xué)性能研究及機(jī)理探討[J].潤滑與密封,2005,30(6):60-63.GUO Zhiguang,XU Jiansheng,GU Kali,et al.Study on tribological behavior of nanocopper lubricant additive by four-ball tester and its lubricating echanism[J]Lubrication Engineering,2005,30(6):60-63(in Chinese).
[11]FAN M,LIANG Y,ZHOU F,et al.Dramatically improved friction reduction and wear resistance by in situ formed ionic liquids[J].Rsc Advances,2012(2):6824-6830.
[12]趙玥.高壓開關(guān)的潤滑技術(shù)[J].高壓電器,2010,46(5):81-85.ZHAO Yue.High voltage switch lubrication technolog-y[J].High Voltage Apparatus,2010,46(5):81-85(in Chinese).
[13]曹正鋒,夏延秋,陳俊寰.氣相生長碳纖維作為潤滑脂導(dǎo)電填料的摩擦學(xué)性能研究摩擦學(xué)學(xué)報(bào),2016,32(2):137-144.CAO Zhengfeng,XIA Yanqiu,CHEN Junhuan,et al.Tribological properties of vapor grown carbon fibers as Conductive Additive in Grease,2016,32(2):137-144(in Chinese).
[14]喬鵬,夏延秋,侯沖,等.含炭黑潤滑脂的摩擦磨損性能與導(dǎo)電性研究[J].電力建設(shè),2014,35(6):112-116.QIAO Peng,XIA Yanqiu,HOU Chong,et al.Tribological properties and conductivity of lubricating grease containing carbon black[J].Electric Power Construction,2014,35(6):112-116(in Chinese)
[15]劉建軍,胡鵬,張建國,等.繼電保護(hù)柜接線端子安裝緊固扭矩試驗(yàn)研究[J].江蘇電機(jī)工程,2016,35(2):79-83.LIU Jianjun,HU Peng,ZHANG Jianguo,et al.Experimental study on fastening torque of terminal block screws in relay protection cabinet[J].Jiangsu Electrical engineering,2016,35(2):79-83(in Chinese).
[16]劉勝春,王洪.900 mm2大截面導(dǎo)線壓接管優(yōu)化設(shè)計(jì)研究[J].電網(wǎng)與清潔能源,2014,12(2):60-65.LIU Shengchun,WANG Hong.Study on optimal design of 900 mm2large cross-section guide line[J].Electric Power NetworkandCleanEnergy,2014,12(2):60-65(inChinese).
[17]耐張線夾DL/T757-2009:[S].北京:中國電力出版社,2009.
[18]電力金具通用技術(shù)條件GB/T 2314-2008:[S].北京:中國標(biāo)準(zhǔn)出版社,2008.
Influence of Friction Coefficient for Electrical Joint Compound on Holding Force of Conductor
SHANG Quanhong1,ZHANG Xuesong2,F(xiàn)AN Weijie3,LIU Zhen2,HOU Xianzhi3
(1.State Grid Zhejiang Electric Power Company,Hangzhou 310007,Zhejiang,China;2.China Electric Power Research Institute,Beijing 100055,China;3.Beijing Transmission and Distribution Company,Beijing 102401,China)
Friction coefficient test of the different categories electrical joint compound,and holding force test of conductor with different categories electrical joint compound were conducted to reveal the influence of friction coefficient for electrical joint compound on holding force of conductor.The test results show that the friction coefficient of different types of electrical joint compound is different.The electrical joint compound,which the friction coefficient is greater than 0.08,exerts little effect on holding force of conductor,and the failure characteristics of the conductor is aluminium wire fracture.The electrical joint compound,which the friction coefficient is less than 0.015,can significantly reduce holding force of conductor,and the failure characteristics of conductor is aluminium wire sliding out.
electricaljointcompound; coefficientof friction;holding force of conductor;failure characteristics
2017-02-21。
商全鴻(1962—),男,本科,高級工程師,研究方向?yàn)殡娏こ桃?guī)劃及防災(zāi)減災(zāi)工作;
(編輯 張曉娟)
國家電網(wǎng)公司科技項(xiàng)目(GCB17201500052)。
Project Supported by the Science and Technology Foundation of SGCC(GCB17201500052).
1674-3814(2017)04-0077-05
TM727
A
張雪松(1971—),男,博士,高級工程師,研究方向?yàn)楣こ塘W(xué)等。