賈志剛, 孔德龍, 王洺浩, 黎德育, 李 寧
(哈爾濱工業(yè)大學(xué) 化工與化學(xué)學(xué)院, 哈爾濱 150001)
尼龍無鉻粗化與無鈀活化的金屬化過程
賈志剛, 孔德龍, 王洺浩, 黎德育, 李 寧
(哈爾濱工業(yè)大學(xué) 化工與化學(xué)學(xué)院, 哈爾濱 150001)
為取代傳統(tǒng)的鉻酐粗化和膠體鈀活化的化學(xué)鍍前處理工藝,通過一種綠色環(huán)保的方法實(shí)現(xiàn)尼龍(PA10T)表面金屬層的制備. 利用傅里葉紅外光譜儀、X射線光電子能譜儀研究前處理過程中尼龍表層官能團(tuán)分布及價(jià)鍵變化,并建立模型闡述金屬化過程. 結(jié)果表明:采用硫酸-乙醇的粗化體系可達(dá)到粗化效果,使PA10T中酰胺鍵斷裂并生成氨基和羧基; 采用無鈀活化工藝時(shí)通過Cu2+與氨基、羧基的配位使尼龍表面活化得以實(shí)現(xiàn). 通過上述簡(jiǎn)易、環(huán)保的方法可以在PA10T表面得到結(jié)合力良好的鍍層,采用電子萬能材料試驗(yàn)機(jī)測(cè)試鍍層結(jié)合力達(dá)到537 N·cm-2.
尼龍;無鉻粗化;無鈀活化;化學(xué)鍍;鍍層結(jié)合力
新型工程塑料PA10T具有耐熱性好、吸水率低的特點(diǎn),金屬化后在電子電器、裝飾材料和機(jī)器零件等領(lǐng)域具有廣泛的應(yīng)用[1]. 通過激光照射、真空蒸鍍、氣相沉積等方法實(shí)現(xiàn)金屬化存在工藝復(fù)雜、設(shè)備昂貴等問題[2-4],而化學(xué)鍍法是一種工藝簡(jiǎn)單、成本低廉、效果明顯的實(shí)用化方法. 化學(xué)鍍法的一般工藝流程為除油→粗化→敏化→活化→化學(xué)鍍. 粗化時(shí)常用的鉻酐嚴(yán)重危害環(huán)境,其使用受到國(guó)內(nèi)外的嚴(yán)格限制;活化工藝主要是利用貴金屬鈀,而鈀資源有限且價(jià)格昂貴.
為了解決粗化、活化過程中存在的制約,國(guó)內(nèi)外對(duì)ABS[5-6]、PI[7-8]、PA[9-10]、PET[11]、PVC[12-13]、PC[14-15]等工程塑料無鉻粗化和無鈀活化的化學(xué)鍍前處理工藝進(jìn)行了大量的研究,針對(duì)不同材料粗化液主要分為MnO2[16-18]、H2SO4[19-20]、NaOH[21-22]三大體系,粗化后可直接進(jìn)行無鈀活化,也可在表面嫁接富含活性官能團(tuán)的有機(jī)配體如殼聚糖[23-24]、聚丙烯酸[25]、聚吡咯[26-27]、硅烷偶聯(lián)劑[28-29]等后再金屬化. 但針對(duì)PA的無鉻粗化主要通過激光照射[30-31]、氧低溫等離子體處理[32],采用多種酸混合的方式也可實(shí)現(xiàn)無鉻粗化[33],但使用多種易揮發(fā)的酸對(duì)環(huán)境和操作人員危害較大. 無鈀活化主要通過在PA表面預(yù)制聚苯胺膜層[9]、聚丙烯酸膜層[34]、含氨基功能層[35]后實(shí)現(xiàn),上述方法較為復(fù)雜且成本昂貴. 本文研究一種簡(jiǎn)易環(huán)保的針對(duì)PA10T的化學(xué)濕法無鉻粗化工藝,粗化后無需嫁接配體可直接進(jìn)行無鈀活化,通過化學(xué)鍍可得到結(jié)合力良好的鍍層.
1.1 實(shí)驗(yàn)材料及試劑
PA10T中玻璃纖維含量約為50%. 膠體鈀活化液、解膠劑、化學(xué)鍍銅液和電鍍酸性鍍銅液采用的是廣東致卓精密金屬科技有限公司生產(chǎn)的IMT-8736、IMT-8746、IMT-8760和IMT-360H,離子鈀活化液為自制.
1.2 金屬化過程
裁取大小約為54 mm×15 mm×2 mm規(guī)格的試片,將其浸入由H2SO4和CH3CH2OH按不同體積配比組成的粗化液中,進(jìn)行一定時(shí)間粗化后取出直接浸入乙醇中清洗,并輔助毛刷涮洗,用熱風(fēng)吹干待用. 無鈀活化步驟:將洗凈的試樣在50 g·L-1的CuSO4溶液中于50 ℃下活化5 min,取出后直接進(jìn)行熱風(fēng)吹干. 接著在組分為30 g·L-1NaBH4、20 g·L-1NaOH的還原溶液中于50 ℃下還原3 min,還原完畢用去離子水清洗干凈,洗凈后立即進(jìn)行化學(xué)鍍銅20 min,此時(shí)表面會(huì)鍍覆厚度為0.8 ~ 1.0 μm的化學(xué)鍍銅層. 試樣清洗后進(jìn)行電鍍酸銅處理,在電流密度為2 A·dm-2的條件下鍍覆20 min. 膠體鈀活化步驟:將試樣浸入膠體鈀活化液中活化2 min后取出用去離子水洗凈,再置于解膠劑中解膠20 s后即可清洗并進(jìn)行化學(xué)鍍. 離子鈀活化步驟:將試樣浸入離子鈀活化液中活化5 min后即可取出清洗并進(jìn)行化學(xué)鍍.
1.3 表面分析及結(jié)合力測(cè)試
用深圳市高索數(shù)碼科技有限公司生產(chǎn)的0-500×型USB電子顯微鏡觀察粗化前后試樣表面形貌;用英國(guó)Perkin Elmer公司的PE-983G型傅里葉紅外光譜儀(FTIR)檢測(cè)粗化前后試樣表面官能團(tuán)的種類;用美國(guó)Physical Electronics公司的PHI5700型X射線光電子能譜儀(XPS)檢測(cè)試樣表面原子間鍵合關(guān)系、元素含量,污染碳C1s按照284.6 eV作能量校正;用美國(guó)FEI公司的Quanta 200FEG型場(chǎng)發(fā)射環(huán)境掃描電子顯微鏡(ESEM)觀察化學(xué)鍍后試樣表面形貌;按照GB/T 5270-2005與GB/T 9286-1998的要求,采用膠帶粘拉法、熱震試驗(yàn)測(cè)試鍍層結(jié)合力,用日本島津公司的AG-X型電子萬能試驗(yàn)機(jī)獲取鍍層結(jié)合力值.
2.1 粗化對(duì)試樣表面狀態(tài)的影響規(guī)律
借鑒刻蝕聚酰胺高聚物的方法,主要的刻蝕劑確定為硫酸,溶劑選用與硫酸有很好互溶性的乙醇,且乙醇對(duì)基體有一定的潤(rùn)脹作用,對(duì)粗化產(chǎn)物有很好的分散作用,這也是清洗步驟中選用乙醇作為清洗劑的主要原因. 圖1(a)為硫酸濃度為20% ~ 70%時(shí)刻蝕量隨時(shí)間的變化趨勢(shì),可知濃度為20%左右時(shí)短時(shí)間內(nèi)刻蝕量很小,而乙醇對(duì)試樣有潤(rùn)脹作用導(dǎo)致其表層結(jié)構(gòu)疏松,對(duì)鍍層與基體的結(jié)合不利. 當(dāng)硫酸濃度為70%時(shí)(如圖1(b)所示),粗化速率又高達(dá)1.32 mm·h-1(3 mg·cm-2·min-1),試樣刻蝕較快. 粗化過程要求溫度適中(40~60 ℃),保證刻蝕時(shí)試樣不會(huì)受熱變形;酸濃對(duì)刻蝕量的影響較大,刻蝕嚴(yán)重易造成試樣強(qiáng)度等性能下降;刻蝕時(shí)間可作為控制刻蝕量的工具.
(a)刻蝕量隨時(shí)間的變化趨勢(shì))
(b)刻蝕速率隨酸濃的變化趨勢(shì)
圖2(a) ~ (f)分別是刻蝕量為0、-0.5、2.7、8.5、10.2、15.9 mg·cm-2的試樣. 圖2(a)為原板,表面基本光滑,無明顯的玻璃纖維裸露;圖2(b)試樣在刻蝕過程中受到乙醇的潤(rùn)脹作用而增重,故刻蝕量為負(fù)數(shù),刻蝕后試樣表面的部分玻纖裸露;圖2(c)顯示在30%酸濃下刻蝕后單根玻纖的形貌清晰可見;圖2(d)顯示刻蝕量達(dá)到8.5 mg·cm-2時(shí)玻纖出現(xiàn)互相搭接的現(xiàn)象,說明表層玻纖可以實(shí)現(xiàn)完全裸露;圖2(e)顯示隨著刻蝕量進(jìn)一步增大至10.2 mg·cm-2時(shí)玻纖之間互相交錯(cuò)且密集度增加;圖2(f)顯示刻蝕量增大至15.9 mg·cm-2時(shí)由于聚酰胺成分進(jìn)一步被刻蝕導(dǎo)致試樣表面玻纖翹起,玻纖與基體平面的夾角增大. 不同刻蝕量的試樣金屬化后表面形貌見圖2(g) ~ (i),經(jīng)膠帶粘拉法測(cè)試發(fā)現(xiàn)其鍍層均無明顯脫落.
2.2 粗化對(duì)活化作用的影響
粗化過程本質(zhì)是硫酸的強(qiáng)氧化性對(duì)PA10T分子鏈的破壞,了解粗化的機(jī)理對(duì)于設(shè)計(jì)合理的活化方案十分重要,本文首先通過傅里葉紅外光譜研究了粗化產(chǎn)物與原試樣基體表面官能團(tuán)的區(qū)別,結(jié)果如圖3所示. 基體的光譜中觀察到N-H的伸縮振動(dòng)(3 306 cm-1)、-CH2的伸縮振動(dòng)(2 928 cm-1和 2 856 cm-1)、酰胺中C=O的伸縮振動(dòng)(1 639 cm-1)、酰胺中N-H彎曲振動(dòng)及C-N的伸展振動(dòng)(1 543 cm-1)[36]. 產(chǎn)物的光譜中3 378 cm-1處吸收峰為-NH2伸展振動(dòng),2 606 cm-1、1 682 cm-1可能為芳香酸羧基的伸縮振動(dòng),2 500~3 100 cm-1為羥基的伸縮振動(dòng)[37-38],此外還出現(xiàn)與基體圖譜中類似的一些吸收峰. 基體中的C=O、C-N的吸收峰對(duì)應(yīng)的透過率值低于產(chǎn)物,這可能意味著基體中這兩種價(jià)鍵的含量更高. 而產(chǎn)物中N-H峰(3 378 cm-1)對(duì)應(yīng)的透光率更低,則是因?yàn)榘被某霈F(xiàn)導(dǎo)致N-H鍵含量增加. 產(chǎn)物中羧基和氨基的出現(xiàn)以及酰胺鍵的C-N含量減少可以推測(cè)粗化會(huì)對(duì)PA10T中酰胺鍵產(chǎn)生破壞并生成帶有氨基和羧基的產(chǎn)物.
圖2 各條件下試樣的USB電子顯微鏡圖
Fig.2 The USB electronic microscope images of sample under different roughening conditions
圖3 粗化產(chǎn)物及基體的紅外譜
圖4 粗化前后試樣的XPS窄譜圖
Fig.4 Narrow acanning spectra of XPS for the sample before and after coarsening
表1 不同狀態(tài)下原子的含量
通過上述討論得知粗化后試樣表面含有大量的氨基和羧基,氮原子的孤對(duì)電子使其有很強(qiáng)的給電子能力,故氨基對(duì)金屬離子有很強(qiáng)的配位能力. 羧基中的羰基氧和羥基氧最外層有孤對(duì)電子,羰基氧本身有配位能力而羥基氧失去氫質(zhì)子也有較強(qiáng)的配位能力,很容易與金屬離子形成配位鍵. 以Cu2+為例,Cu2+的雜化軌道容易接受電子,所以粗化后的PA10T浸在含Cu2+的溶液中時(shí),Cu2+容易與N、O原子形成配位鍵. 表面吸附Cu2+的試樣浸在含NaBH4的溶液中時(shí),Cu2+被NaBH4還原成銅從而完成活化. 基于上述理論,可以設(shè)計(jì)活化和還原步驟實(shí)現(xiàn)試樣表面的銅粒子的沉積,銅粒子為化學(xué)鍍提供催化中心. 鑒于化學(xué)鍍銅液中主鹽為CuSO4,以CuSO4作為活化液中Cu2+的供應(yīng)者可以避免雜質(zhì)被帶入到化學(xué)鍍液中. 在還原液NaBH4溶液中添加NaOH可以使其更穩(wěn)定,同時(shí)質(zhì)子氫可以被中和,提高了羧基的配位能力.
圖5為粗化前后以及通過膠體鈀活化、離子鈀活化、離子銅活化后試樣的XPS全譜圖. 從圖5可以發(fā)現(xiàn):試樣1、2中檢測(cè)出主要有C1s、N1s、O1s和Si2p四種元素的吸收峰,其中C、N、O為PA10T的組成元素,Si為試樣中玻璃纖維的組成元素. 試樣3中檢測(cè)出了Cu2p吸收峰,試樣4、5中檢測(cè)到Pd3d吸收峰,說明試樣3~5表面實(shí)現(xiàn)活性金屬粒子的沉積,即達(dá)到了活化效果. 因?yàn)樵嚇?經(jīng)過了膠體鈀活化,而Pd和Sn是膠體鈀的主要成分,因此試樣5中還檢測(cè)出了Sn3d元素吸收峰. 多種活化效果的實(shí)現(xiàn)說明表面活性官能團(tuán)的存在并且對(duì)金屬離子存在絡(luò)合作用.
圖6為離子銅活化還原后試樣的N1s、O1s、Cu2p元素的窄譜圖. 圖6(a)中出現(xiàn)Cu與N配位鍵的吸收峰在399.37 eV[12];圖6(b)中出現(xiàn)Cu與O配位鍵的吸收峰在530.04 eV[8];圖6(c)中出現(xiàn)Cu0的Cu 2p3/2和Cu 2p1/2的吸收峰分別在931.67 eV和951.48 eV,Cu與O配位鍵中Cu 2p3/2和Cu 2p1/2的吸收峰分別在933.65 eV和953.58 eV. 明顯的Cu與N配位鍵吸收峰說明基體表面的氨基與Cu實(shí)現(xiàn)共價(jià)鍵絡(luò)合,Cu與O配位鍵吸收峰也說明Cu與O實(shí)現(xiàn)共價(jià)鍵絡(luò)合. 通過上述分析驗(yàn)證了氨基、羧基這兩種活性官能團(tuán)對(duì)金屬離子的絡(luò)合作用,達(dá)到了預(yù)期活化和還原步驟的設(shè)計(jì)要求.
A—原板,B—粗化后試樣,C—離子銅活化還原后試樣,D—離子鈀活化還原后試樣,E—膠體鈀活化解膠后試樣
圖5 各試樣的XPS全譜
Fig.5 XPS survey spectra of all kinds of sample
圖6 離子銅活化還原后試樣的XPS窄譜
2.3 金屬化過程模型
為了進(jìn)一步闡述活化過程,提出一個(gè)可能的模型如圖7所示. 首先,粗化過程中酰胺鍵斷裂并生成氨基和羧基,表面形成不規(guī)則形狀的缺口,同時(shí)有大量的玻璃纖維裸露出來. 完成粗化后,將試樣浸入CuSO4溶液中,氨基和Cu2+會(huì)首先配位,試樣取出后不水洗直接吹干使表面殘留CuSO4. 再浸入NaBH4和NaOH混合溶液中,羧基中質(zhì)子氫被中和,殘留的CuSO4與羧酸鈉鹽發(fā)生離子交換生成羧酸銅鹽[22, 40],羧基與氨基絡(luò)合的Cu2+共同被NaBH4還原為銅原子,且銅原子與基體通過共價(jià)鍵絡(luò)合. 試樣表面均勻覆蓋具有催化活性的銅粒子后,在化學(xué)鍍銅液中可以催化銅的化學(xué)沉積,最終試樣表面完成金屬化.
圖7 PA10T金屬化過程示意
2.4 鍍層性能表征
圖8 50 ℃下在50%的硫酸乙醇溶液中粗化6 min后,經(jīng)離子銅活化并金屬化后的試樣形貌Fig.8 Surface morphologies of sample etched for 6 min under the acid concentration of 50% and via ionic copper activation, electroless copper plating, copper electroplating
鍍層結(jié)合力是衡量金屬化性能好壞的重要標(biāo)志,是決定產(chǎn)品的使用范圍和壽命的首要因素. 因此,對(duì)鍍層結(jié)合力的測(cè)試顯得尤為重要. 斷面觀察法是通過打磨將試樣截面磨出,從截面觀察鍍層與基體之間有無不良接觸,如起泡、斷裂等. 經(jīng)觀察采用硫酸-乙醇體系粗化、離子銅活化的前處理工藝金屬化后鍍層均沒有出現(xiàn)起泡、斷裂等現(xiàn)象,見圖8. 熱震試驗(yàn)后劃痕處鍍層也沒有翹起,顯示鍍層結(jié)合力良好.
將兩試樣保持一定的接觸面積并粘結(jié),與接觸平面呈水平方向上利用電子萬能材料試驗(yàn)機(jī)分別拉伸兩試樣至鍍層脫落并記錄結(jié)合力值為537 N·cm-2. 對(duì)鉻酐粗化的ABS表面單位面積的金屬?gòu)?fù)合材料層結(jié)合力進(jìn)行測(cè)試[41-42],在平面垂直方向上使用拉伸附著力測(cè)試儀測(cè)得其值約為2 800~3 000 N·cm-2. ABS經(jīng)化學(xué)濕法無鉻粗化后化學(xué)鍍銅,將試樣表面鍍層切割成10 mm×50 mm形狀,用90°剝離實(shí)驗(yàn)儀以25 mm·min-1的速度測(cè)試其剝離強(qiáng)度約1.2 ~1.4 kN·m-1[5]. 利用超臨界CO2處理PA6并化學(xué)鍍鎳磷合金后測(cè)試其剝離強(qiáng)度可達(dá)到1 kN·m-1[43].
鑒于材料本身特性不同且測(cè)試方法有一定差異,PA10T鍍層結(jié)合力測(cè)試值雖然低于ABS,但可以通過膠帶粘拉法、熱震試驗(yàn)等測(cè)試,證明其仍然可以有廣泛的用途.
1) 采用硫酸-乙醇的無鉻粗化體系可以對(duì)含玻纖增強(qiáng)的PA10T產(chǎn)生有效的粗化效果.
2) PA10T粗化后酰胺鍵會(huì)斷裂并生成氨基和羧基,這兩種基團(tuán)在活化時(shí)會(huì)與金屬離子配位.
3) 采用CuSO4溶液作為活化液、NaBH4和NaOH混合溶液作還原液可以實(shí)現(xiàn)Cu與氨基、羧基的有效配位,進(jìn)而實(shí)現(xiàn)PA10T的無鈀活化.
[1] 張凱, 趙建青, 劉述梅, 等. 半芳香族尼龍的結(jié)構(gòu)性能及其應(yīng)用[J]. 石油化工, 2015, 44(5): 536-42.
ZHANG Kai, ZHAO Jianqing,Liu Shumei, et al. Structure, properties and applications of semi-aromatic nylons[J]. Petrochemical Technology, 2015, 44(5): 536-542.
[2] MIN H, LEE B, JEONG S, et al. Laser-direct process of Cu nano-ink to coat highly conductive and adhesive metallization patterns on plastic substrate[J]. Optics and Lasers in Engineering, 2016, 80: 12-16. DOI: 10.1016/j.optlaseng.2015.12.007.
[3] STRUPPERT T, HEFT A, GR NLER B. Thin functional films by combustion chemical vapour deposition (C-CVD)[J]. Thin Solid Films, 2012, 520(12): 4106-9. DOI: 10.1016/j.tsf.2011.06.048.
[4] DE BRUYN K, VAN STAPPEN M, DE DEURWAERDER H, et al. Study of pretreatment methods for vacuum metallization of plastics[J]. Surface & Coatings Technology, 2003, 163: 710-715. DOI: 10.1016/s0257-8972(02)00684-9.
[5] OLIVERA S, MURALIDHARA H B, VENKATESH K, et al. Plating on acrylonitrile-butadiene-styrene (ABS) plastic: a review[J]. Journal of Materials Science, 2016, 51(8): 3657-3674. DOI: 10.1007/s10853-015-9668-7.
[6] ZHAO W X, WANG Z L. Adhesion improvement of electroless copper to ABS resin by low environmental pollution surface etching system[J]. Transactions of the IMF, 2013, 91(3): 149-155. DOI: 10.1179/0020296713z.00000000099.
[7] LI Libo, MA Yue, XIE Jingchen, et al. Metallization process of a polyimide surface with palladium-free activation for electronic field applications[J]. Journal of Electronic Materials, 2015, 44(10): 4042-4051. DOI: 10.1007/s11664-015-3874-6.
[8] YOON S S, KIM D O, PARK S C, et al. Direct metallization of gold patterns on polyimide substrate by microcontact printing and selective surface modification[J]. Microelectronic Engineering, 2008, 85(1): 136-142. DOI: 10.1016/j.mee.2007.04.142.
[9] SARITHA CHANDRAN A, NARAYANANKUTTY S K. Preparation and characterization of conducting nylon 6 fibers[J]. Journal of Materials Research, 2011, 24(8): 2728-2735. DOI: 10.1557/jmr.2009.0329.
[10]ANDRI E E. Chrome-free method of conditioning and etching of a thermoplastic substrate for metal plating: UNITED STATES, US 2010/0159260 A1 [P]. 20100624.
[11]LU Yinxiang, XUE Longlong, LI Feng. Silver nanoparticle catalyst for electroless Ni deposition and the promotion of its adsorption onto PET substrate[J]. Surface and Coatings Technology, 2010, 205(2): 519-524. DOI: 10.1016/j.surfcoat.2010.07.020.
[12]WANG Mingqiu, YAN Jun, DU Shiguo, et al. Adsorption characteristic of copper ions and its application in electroless nickel plating on a hydrogel-functionalized poly(vinyl chloride) plastic[J]. Journal of Materials Science, 2013, 48(20): 7224-7237. DOI: 10.1007/s10853-013-7539-7.
[13]WANG Mingqiu, YAN Jun, DU Shiguo, et al. Electroless plating of PVC plastic through new surface modification method applying a semi-IPN hydrogel film[J]. Applied Surface Science, 2013, 277: 249-256. DOI: 10.1016/j.apsusc.2013.04.035.
[14]ZHAO Wenxia, WANG Zenglin. Adhesion improvement of electroless copper to PC substrate by a low environmental pollution MnO2-H3PO4-H2SO4-H2O system[J]. International Journal of Adhesion and Adhesives, 2013, 41: 50-56. DOI: 10.1016/j.ijadhadh.2012.10.002.
[15]ZHAO Wenxia, LI Zhixin, WANG Zenglin. A study of the environmentally friendly polycarbonate surface etching system containing H2SO4-MnO2 colloid[J]. Journal of Adhesion Science and Technology, 2013, 27(13): 1455-1463. DOI: 10.1080/01694243.2012.745052.
[16]ZHAO Wenxia, DING Jie, WANG Zenglin. Improvement in the etching performance of the acrylonitrile-butadiene-styrene resin by MnO2-H3PO4-H2SO4 colloid[J]. Langmuir, 2013, 29(20): 5968-5973. DOI: 10.1021/la400321k.
[17]YUAN X L, YANG Z F, HE Y, et al. Pd-free surface activation technique for ABS surface metallisation[J]. Transactions of the IMF, 2013, 89(4): 202-205. DOI: 10.1179/174591911x13077162687419.[18]MA Qian, ZHAO Wenxia, LI Xirong, et al. Study of an environment-friendly surface pretreatment of ABS-polycarbonate surface for adhesion improvement[J]. International Journal of Adhesion and Adhesives, 2013, 44: 243-249. DOI: 10.1016/j.ijadhadh.2013.03.010.
[19]LI Dapeng, YANG Chenlu. Acidic electroless copper deposition on aluminum-seeded ABS plastics[J]. Surface and Coatings Technology, 2009, 203(23): 3559-3568. DOI:10.1016/j.surfcoat.2009.05.026.
[20]TEIXEIRA L A C, SANTINI M C. Surface conditioning of ABS for metallization without the use of chromium baths[J]. Journal of Materials Processing Technology, 2005, 170: 37-41. DOI: 10.1016/j.jmatprotec.2005.04.075.
[21]INAGAKI N, KIMURA H. Electroless copper plating on acrylonitrile butadiene styrene material surfaces without chromic acid etching and a palladium catalyst[J]. Journal of Applied Polymer Science, 2008, 111: 1034-1044. DOI: 10.1002/app.29144.
[22]WANG Yanqing, LI Ning, WANG Xianliang, et al. High-definition conductive silver patterns on polyimide film via an ion exchange plating method[J]. RSC Adv, 2016, 6(9): 7582-7590. DOI: 10.1039/c5ra23694k.
[23]TANG Xuejiao, WANG Jingang, SHEN Boxiong. The Preparation and Application of Chitosan Derivatives for Ni Coating on ABS[J]. Advanced Materials Research, 2011, 199-200: 1999-2004. DOI: 10.4028/www.scientific.net/AMR.199-200.1999.
[24]TANG Xuejiao, WANG Jingang, WANG Chengjun, et al. A novel surface activation method for Ni/Au electroless plating of acrylonitrile-butadiene-styrene[J]. Surface and Coatings Technology, 2011, 206(6): 1382-1388. DOI: 10.1016/j.surfcoat.2011.08.064.
[25]GARCIA A, BERTHELOT T, VIEL P, et al. ABS polymer electroless plating through a one-step poly(acrylic acid) covalent grafting [J]. ACS applied materials & interfaces, 2010, 2(4): 1177-1183. DOI: 10.1021/am1000163.
[26]BAZZAOUI M, MARTINS J I, BAZZAOUI E A, et al. A simple method for acrylonitrile butadiene styrene metallization[J]. Surface and Coatings Technology, 2013, 224: 71-76. DOI: 10.1016/j.surfcoat.2013.02.050.
[27]BAZZAOUI M, MARTINS J I, BAZZAOUI E A, et al. Environmentally friendly process for nickel electroplating of ABS[J]. Applied Surface Science, 2012, 258(20): 7968-7795. DOI: 10.1016/j.apsusc.2012.04.146.
[28]SUN Zhiping, HUANG Junun, LIU Qi, et al. Effects of temperature on Ni coating on poly(ethylene terephthalate) substrate modified with primer[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(6): 5892-5898. DOI: 10.1007/s10854-016-4507-4.
[29]SUN Zhiping, HUANG Junun, WANG Libao, et al. Method for electroless nickel plating on poly(ethylene terephthalate) substrate modified with primer and self-assembled monolayer[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(12): 10132-10137. DOI: 10.1007/s10854-015-3698-4.
[30]KIM J, KIM H S, PARK C H. Contribution of surface energy and roughness to the wettability of polyamide 6 and polypropylene film in the plasma-induced process [J]. Textile Research Journal, 2015, 86(5): 461-471. DOI: 10.1177/0040517515580511.
[31]RYTLEWSKI P, ZENKIEWICZ M, TRACZ A, et al. Surface morphology studies of laser irradiated and chemically metalized polyamide composites[J]. Surface and Coatings Technology, 2011, 205(23/24): 5248-5253. DOI: 10.1016/j.surfcoat.2011.04.105.
[32]TAO Dan, WEI Qufu, CAI Yibing, et al. Functionalization of polyamide 6 nanofibers by electroless deposition of copper[J]. Journal of Coatings Technology and Research, 2008, 5(3): 399-403. DOI: 10.1007/s11998-008-9118-4.
[33] 連華景, 吳子豹, 顏文藝, 等. 一種尼龍材料的粗化液及粗化方法: 201310302127.4[P]. 2013-07-18.
LIAN Huajing, WU Zibao, YAN Wenyi, et al. An roughening liquid and method for nylon material: 201310302127.4[P]. 2013-07-18.
[34]GARCIA A, BERTHELOT T, VIEL P, et al. Microscopic study of a ligand induced electroless plating process onto polymers[J]. ACS applied materials & interfaces, 2010, 2(11): 3043-3051. DOI: 10.1021/am100907j.
[35]ALONSO M H, MCCARTHY T J, JIA X. Nylon surface modification: 2. nylon-supported composite films[J]. Langmuir, 2006, 22:1646-1651. DOI: 10.1021/la0526737.
[36]WANG Wenzhi, WANG Xianwen, LI Ruixue, et al. Environment-friendly synthesis of long chain semiaromatic polyamides with high heat resistance[J]. Journal of Applied Polymer Science, 2009, 114(4): 2036-2042. DOI: 10.1002/app.30774.
[37] 金盈, 曾廣賦, 朱丹陽, 等. 聚酰胺酸結(jié)構(gòu)及其亞胺化的紅外光譜分析[J]. 應(yīng)用化學(xué), 2011, 28(3): 258-262.
JIN Ying, ZENG Guangfu, ZHU Danyang, et al. Analysis of structure and imidization of poly(amic acid) using FTIR spectroscopy[J]. Chinese Journal of Applied Chemistry, 2011, 28(3): 258-262.
[38]KARIUKI V M, ZHANG J, PARLINSKA M, et al. 3D π-conjugated poly(amic) acid polymer as support matrices for ethanol electro-oxidation on palladium and platinum catalysts[J]. Electrocatalysis, 2016, 7(4): 317-325. DOI: 10.1007/s12678-016-0307-0.
[39]ZHAO Wenxia, MA Qian, LI Lisha, et al. Surface modification of ABS by photocatalytic treatment for electroless copper plating[J]. Journal of Adhesion Science and Technology, 2013, 28(5): 499-511. DOI: 10.1080/01694243.2013.845356.
[40]HSIAO Y S, CHEN C P, CHAO C H, et al. All-solution-processed inverted polymer solar cells on granular surface-nickelized polyimide[J]. Organic Electronics, 2009, 10(4): 551-61. DOI: 10.1016/j.orgel.2009.01.012.
[41]ARAI S, KANAZAWA T. Electroless deposition and evaluation of Cu/multiwalled carbon nanotube composite films on acrylonitrile butadiene styrene resin[J]. Surface and Coatings Technology, 2014, 25: 224-229. DOI:10.1016/j.surfcoat.2014.06.017.
[42]ARAI S, SATO T, ENDO M. Fabrication of various electroless Ni-P alloy/multiwalled carbon nanotube composite films on an acrylonitrile butadiene styrene resin [J]. Surface and Coatings Technology, 2011, 205(10): 3175-81.DOI:10.1016/j.surfcoat.2010.11.030.
[43]TENGSUWAN S, OHSHIMA M. Environmentally benign electroless nickel plating using supercritical carbon-dioxide on hydrophilically modified acrylonitrile-butadiene-styrene[J]. Applied Surface Science, 2014, 311: 189-200.DOI:10.1016/j.apsusc.2014.05.040.
(編輯 王小唯, 苗秀芝)
Metallization process of PA10T with chrome-free roughening and palladium-free activation
JIA Zhigang, KONG Delong, WANG Minghao, LI Deyu, LI Ning
(School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China)
In order to replace the traditional pretreatment process for electroless plating of chromic acid roughening and colloid palladium activation, the metal layer was prepared on the surface of nylon (PA10T) through a green method. The distribution of functional groups and the change of valence bonds on the nylon surface were characterized by Fourier transform infrared spectrometry and X ray photoelectron spectrometry, and then a model was established to illustrate the metallization process. The results show that the roughening system of sulphuric acid-ethanol can be used to achieve the effect of roughening, make the amide bond rupture and generate amino and carboxyl in PA10T. When the palladium-free activation process is adopted, the surface activation of nylon could be achieved by the coordination of Cu2+with amino groups and carboxyl groups. The simple and environmentally friendly method mentioned above could get a good adhesion of the metal coating on the PA10T surface, the coating binding force reaches 537 N·cm-2which is tested by electronic universal material testing machine.
nylon; chrome-free roughening; palladium-free activation; electroless plating; coating binding force
10.11918/j.issn.0367-6234.201611017
2016-11-03
賈志剛(1993—),男,碩士研究生; 李 寧(1953—),女,教授,博士生導(dǎo)師
李 寧,lininghit@263.net
TQ153.3
A
0367-6234(2017)05-0042-07