馮 娜,胡祥正,2*
(1.天津科技大學(xué) 食品工程與生物技術(shù)學(xué)院,天津 300457; 2.天津科技大學(xué) 化工與材料學(xué)院,天津 300457)
?
奧貝膽酸的合成方法與藥學(xué)性能的研究進(jìn)展
馮 娜1,胡祥正1,2*
(1.天津科技大學(xué) 食品工程與生物技術(shù)學(xué)院,天津 300457; 2.天津科技大學(xué) 化工與材料學(xué)院,天津 300457)
奧貝膽酸是鵝去氧膽酸6位乙基衍生物,是一種有效的法尼酯衍生物X(FX)核受體激動劑,對非酒精性脂肪性肝炎和原發(fā)性膽汁性肝硬化有很好的治療效果,臨床應(yīng)用前景廣闊. 鑒于奧貝膽酸在臨床應(yīng)用方面的優(yōu)越性能,奧貝膽酸的臨床應(yīng)用與合成是目前生物醫(yī)藥領(lǐng)域研究的熱點(diǎn). 盡管近些年,奧貝膽酸的合成方法和工藝研究方面取得長足進(jìn)步,但要實(shí)現(xiàn)規(guī)?;a(chǎn),仍有一些問題需要解決. 本文就奧貝膽酸的合成方法和臨床應(yīng)用的研究進(jìn)展做一綜述.
奧貝膽酸;肝膽疾??;藥學(xué)性能;合成方法
奧貝膽酸(6-乙基-3α,7α-二羥基-5β-膽烷-24-酸,簡寫為OCA;6-ECDCA,亦稱為INT-747. 結(jié)構(gòu)式如圖1所示)是人體初級膽汁酸鵝去氧膽酸(CDCA)的半合成衍生物. 它是一種具有選擇性的法尼酯衍生物X受體(FXR)激動劑,其活性要比CDCA高出100倍[1],具有抗膽汁淤積性和保護(hù)肝臟的特性[2]. 研究表明,FXR是主要的核膽汁酸受體,具有促進(jìn)肝臟再生、保持腸屏障功能的完整性等生物功能. FXR通過調(diào)節(jié)肝臟中的糖質(zhì)新生和肝糖循環(huán)來調(diào)控葡萄糖代謝,并且能夠調(diào)節(jié)橫紋肌對脂肪組織中的外周胰島素敏感性[3-6]. FXR的抗炎作用可以增加腸和肝臟免疫系統(tǒng)的抗病毒功能[7-10]. 因此,作為FXR的激動劑,OCA擁有著巨大的應(yīng)用價值和市場潛力. 前期的臨床研究表明,OCA可以改善肝脂肪變性、纖維變性與門靜脈血壓過高等問題[11-13],還可以增加胰島素敏感性,調(diào)節(jié)葡萄糖動態(tài)平衡,調(diào)整脂質(zhì)代謝. 在肝臟、腎臟、腸等FXR表達(dá)器官中,OCA還表現(xiàn)出了抗炎性和抗纖維變性等活性[14]. 在動物模型試驗中,OCA可以降低胰島素抗性、肝脂肪變性和纖維變性[15]. 大量臨床試驗證明,它對于治療膽汁淤積性肝病有著顯著地效果.
圖1 OCA的分子結(jié)構(gòu)式Fig.1 Molecule structure of OCA
目前,用OCA治療膽汁淤積性肝病的研究已經(jīng)越來越多受到科學(xué)家們的重視,相關(guān)臨床試驗正在逐步開展,人們希望臨床試驗加深對OCA的長期治療效果和治療安全性的了解. 在這一背景下,如何用快速高效的方法合成OCA也逐漸成為了人們關(guān)注的熱點(diǎn).
ROBERTO等對OCA的合成方法進(jìn)行了闡述[2],反應(yīng)步驟如圖2. 此方法以7-氧代-石膽酸(2)為原料,經(jīng)過四步反應(yīng)合成OCA:第一步是2在25 ℃、p-TsOH為催化劑的條件下,與3,4-二氫吡喃反應(yīng),生成3位保護(hù)的衍生物3. 第二步是在-78 ℃的THF溶液中,用LDA作催化劑,用R-Br作烷基化劑,在6位進(jìn)行烷基化反應(yīng),同時脫去3位的保護(hù)基,生成6-烷基取代的衍生物(4a-4d). 第三步是用NaBH4作還原劑,將7位羰基還原為羥基,得到3α,7α-二羥基-6α-烷基-5β-膽烷酸甲酯(5). 第四步是在MeOH溶液中,用10%NaOH溶液作催化劑進(jìn)行堿性水解,5脫去24位保護(hù)甲基,得到6(當(dāng)R=CH2CH3時,產(chǎn)物為目標(biāo)產(chǎn)物1).
a. R=Me; b. R=Et; c. R=Pr; d. R=Bn.1. p-TsOH,C5H8O,C4H8O2,25 ℃; 2. (a)LDA,R-Br,THF,-78 ℃(b)10% HCL,MeOH; 3. NaBH4; 4. 10% NaOH,MeOH.圖2 以7-氧-石膽酸為原料合成OCAFig.2 Synthesis route of OCA with 7-O-LiCA as raw material
此種OCA合成方法,最終得到的OCA總收率僅有2%~3%. 由于反應(yīng)原料昂貴,在反應(yīng)步驟中,各步反應(yīng)產(chǎn)物都需要用色譜進(jìn)行純化,因此此種方法不適用于工業(yè)化規(guī)模生產(chǎn). 另外,此合成方法中應(yīng)用的六亞甲基磷酰胺有致癌作用,也限制了其應(yīng)用價值.
YU等[16]對ROBERTO等提出的OCA的合成方做出了改進(jìn),他們以價格便宜、獲取容易的CDCA(7)作為原料,經(jīng)過四步反應(yīng)合成OCA,具體步驟如圖3所示. 第一步是用PCC作氧化劑,選擇性氧化CDCA的7位羥基,得到2. 第二步以p-TsOH為催化劑,與3,4-二氫吡喃反應(yīng),生成3-四氫吡喃氧基衍生物8,通過形成醚氧鍵保護(hù)3位羥基. 第三步是用n-BuLi作還原劑,LDA/HMPA作催化劑,形成烯醇化物后,用Et-I進(jìn)行烷基化反應(yīng),用PPTS脫出3位保護(hù)基,得到烷基取代的中間產(chǎn)物9. 第四步是用NaBH4作還原劑,最終得到OCA(1).
與ROBERTO提出的方法相比,該方法的改進(jìn)之處在于,在氧化步驟使用了PCC和在立體選擇性烷基化步驟中使用了HMPA或乙基碘化物. 這種改進(jìn)后的合成方法經(jīng)濟(jì)有效,將產(chǎn)物收率提升到20%,并且原料便宜易得,相對來說是一種簡單方便的方法.
1. PCC; 2. C5H8O, p-TsOH; 3. (a)LDA/HMPA, n-BuLi/Et-I (b)PPTS; 4. NaBH4.圖3 以CDCA為原料合成OCAFig.3 Synthesis route of OCA with CDCA as raw material
2013年,STEINER等[17]提出了合成OCA的新方法,此方法以7-氧代-石膽酸(2)為原料,經(jīng)過七步反應(yīng)合成OCA,具體步驟如圖4所示. 第一步是2與MeOH反應(yīng)后得到10. 第二步是10在THF中,用LDA作催化劑,與Si(CH3)3Cl反應(yīng),制得硅烯醇醚11和12. 第三步是硅烯醇醚11和12與CH3CHO在CH2Cl2溶液中發(fā)生羥醛縮合反應(yīng),然后在BF3·CH3CN作用下,堿性水解,得到6-乙烯基取代的7-酮石膽酸甲酯13. 第四步,13在MeOH溶液中堿性水解,得到6-乙烯基取代的7-酮石膽酸14. 第五步是14在堿性條件下,用Pd/C與H2還原得6-烷基取代的7-氧代-石膽酸15. 第六步是6-烷基取代的7-酮石膽酸15用NaBH4作還原劑,得到C型OCA16. 第七步,C型OCA先與NaOH反應(yīng)生成鹽,后用HCl酸化,再結(jié)晶可得Ⅰ型OCA1,即最終產(chǎn)物OCA.
此方法在規(guī)模優(yōu)化、安全性以及提升純度方面有了比較好的改進(jìn),生產(chǎn)過程較之前更加安全,最終產(chǎn)物純度提升至96%以上,但產(chǎn)物收率仍只有20%.
1. MeOH, H2SO4, (62 ℃); NaOH, AC; H2O(10~15 ℃); 2. THF/LDA, -25 ℃; Si(CH3)3Cl; C6H8O7(aq); 3. CH2Cl2, CH3CHO, -60 ℃; BF3·CH3CN, -60 ℃; NaOH/H2O; 4. MeOH, NaOH, H2O, 50 ℃; C6H8O7, AcOEt; AcOEt; EtOH; 5. 50% NaOH, H2O, Pd/C, H2, 25 ℃; HCl(conc.)/nBuOAc, 40 ℃; Act, Carbon, 40 ℃; nBuOAc; 6. H2O, NaOH, 90 ℃; NaBH4, 90 ℃; C6H8O7, nBuOAc, 40 ℃; nBuOAc; nBuOAc; nBuOAc; 7. H2O,NaOH,30 ℃; HCl,H2O.圖4 以7-氧-石膽酸為原料OCA的新合成路線Fig.4 New synthesis route of OCA with 7-O-LiCA as raw material
近期,邱玥珩等[18]對合成路線在此基礎(chǔ)上進(jìn)行了優(yōu)化,以2為原料,經(jīng)五步反應(yīng)合成OCA. 此方法中,中間體15無需純化,可以直接投入下步反應(yīng),適合工業(yè)化生產(chǎn);并且操作方便成本低廉,總收率為31.9%. 此方法與之前方法相比確有優(yōu)化之處,但與真正的工業(yè)化大規(guī)模生產(chǎn)還有段距離.
2.1 OCA治療PBC的研究進(jìn)展
原發(fā)性膽汁性肝硬化(PBC)是一種慢性,進(jìn)行性自身免疫性膽汁淤積性肝病,它的癥狀是炎癥和肝內(nèi)小導(dǎo)管的損傷,這些會導(dǎo)致肝硬化、纖維變性以及肝壞死,最終引起人的死亡[19]. 目前唯一被認(rèn)可且被廣泛應(yīng)用,用于治療PBC的藥物是熊去氧膽酸(UDCA),它是一種雙親性、非細(xì)胞毒性膽汁酸[20-22]. 在UDCA治療的患者中,40%以上的患者會產(chǎn)生不適反應(yīng)[23-25]. 臨床研究結(jié)果表明,PBC患者單獨(dú)服用OCA或是UDCA與OCA一并服用,都會使膽汁淤積或炎癥情況得到改善[26-27]. 因此,OCA可能是一種更加有效的治療PBC的藥物. HIRSCHFIELD 等[28]以那些對UDCA產(chǎn)生不適反應(yīng)的PBC患者,用安慰劑做對照進(jìn)行試驗,采用OCA進(jìn)行治療. 最終顯示,對于服用UDCA治療PBC而產(chǎn)生不適反應(yīng)的患者,用OCA對其治療后效果較佳. OCA會明顯的降低堿性磷酸酶(ALP)和膽紅素的水平,并且伴隨著C-反應(yīng)蛋白和免疫球蛋白M (患有PBC時會明顯增多的免疫球蛋白)的明顯減少,也說明OCA可能會改善基礎(chǔ)免疫和炎癥反應(yīng). 對于PBC所引發(fā)的并發(fā)癥也在一定程度上有所改善. 瘙癢癥是慢性肝病發(fā)生時的一種較為棘手的并發(fā)癥[29],瘙癢癥是最常見的不良反應(yīng),并與OCA有明顯的劑量關(guān)系. 盡管膽汁淤積性瘙癢的確切介質(zhì)仍有待確定,但其中可能存在兩種OCA作用機(jī)制:激活自體毒素途徑[30]和激活TGR5[31-33]. 目前的研究數(shù)據(jù)并不能證明TGR5可以誘發(fā)瘙癢癥;OCA是一種弱的TGR5激動劑,并且會降低人體內(nèi)源性TGR5激動劑-DCA(去氧膽酸)的水平;OCA激活自體毒素途徑也有待確定. 在治療過程中隨著OCA劑量的增加,瘙癢癥的現(xiàn)象會隨之加重,但與安慰劑組相比,癥狀較輕. 通過所有的劑量測試,OCA表現(xiàn)出了明顯的生物化學(xué)效應(yīng);權(quán)衡其功效和耐受性,PBC患者每天服用10 mg的OCA效果最佳. 目前對于OCA治療PBC的二期臨床研究已經(jīng)結(jié)束,美國、加拿大等國正在對其開展三期臨床研究,以期對其長期治療過程中的安全性與可靠性做出更加確切的結(jié)論[34].
2.2 OCA治療NASH的研究進(jìn)展
目前,非酒精性脂肪性肝炎(NASH)是全世界引發(fā)慢性肝病的一個越來越普遍的原因,它與肝病導(dǎo)致的死亡率的增加和肝細(xì)胞癌患者的增加有關(guān)[35-37]. NASH患者中會有15%~20%發(fā)展成為肝硬化,這也使得肝移植呈現(xiàn)上升趨勢[38],但目前為止還沒有正式獲批的治療方法. 在患有脂肪肝的動物模型試驗中,OCA可以減少肝脂肪和纖維變性,因此BRENT等[39]對NASH患者用OCA加以治療,來評估其治療效果. 在美國的醫(yī)療中心,以非肝硬化、非酒精性脂肪性肝炎患者為對象,做了一個為期72 w,涉及多領(lǐng)域、雙盲、安慰劑對照的平行隨機(jī)臨床試驗,來評估OCA的治療效果. 患者由電腦按1∶1隨機(jī)分配,集中管理,按臨床中心和糖尿病狀態(tài)分層. 主要的觀察指標(biāo)是肝組織學(xué)集中性評分的改善,即從開始治療到結(jié)束無惡化纖維化,在非酒精性脂肪性肝病中的活性分?jǐn)?shù)至少下降百分之二.
這次的試驗表明,F(xiàn)X核受體激動劑OCA,與安慰劑相比,改善了NASH的生化和組織學(xué)特性,更重要的是所有NASH 的活性分子都有所改善,包括脂肪變性、肝細(xì)胞氣球樣變性、小葉炎癥以及纖維變性[40]. 對纖維變性的改善雖然不明顯,但是仍可以表明其對于預(yù)防肝硬化的形成可能會起到一定的作用. FXR活化通過下調(diào)SREBP1c 和增加SIRT1[41-42]從而減少肝脂肪生成,這些作用在OCA治療NASH時也起到了一定的效果. 然而,F(xiàn)XR活化的一個重要作用是抑制膽固醇轉(zhuǎn)化為膽汁酸這一生物過程,這一過程,會導(dǎo)致血清膽固醇含量增加. 因此OCA治療過程中血清膽固醇含量會增加. FXR激動劑對于膽固醇代謝的作用是比較復(fù)雜的,因為它們可能會促進(jìn)膽固醇逆向轉(zhuǎn)運(yùn)出組織. 鑒于這些復(fù)雜性,在以后OCA治療肝病中需要前瞻性的監(jiān)測和分析[43-44].
對于NASH患者,OCA具有很好的耐受性,唯一的不良反應(yīng)就是瘙癢癥,與安慰劑組相比,出現(xiàn)的會更加頻繁. 在用OCA治療PBC時,瘙癢癥也會在PBC患者中出現(xiàn)[45]. 用OCA進(jìn)行治療后,它會使血漿膽固醇池和胰島素耐受性發(fā)生改變,這可能會增加機(jī)體患動脈粥樣硬化的風(fēng)險. 因此,OCA可改善NASH的組織學(xué)特性,對于NASH有一定治愈效果,但它長期治療過程中的安全性還有待進(jìn)一步考證.
2.3 OCA治療二型糖尿病和NAFLD的研究進(jìn)展
二型糖尿病和非酒精性脂肪肝(NAFLD)均屬于代謝綜合癥的范圍,具有很多相關(guān)的臨床特征,包括胰島素抗性、血脂異常、高血壓和腹部肥胖等[46]. 二型糖尿病在全球范圍內(nèi)變得越來越普遍,預(yù)計到2030年,大概會有8%的人口患此疾病[47]. NAFLD是到目前為止最普遍的慢性肝病,全球大概有20%~40%的人口會患此疾病,其中,30%的NAFLD患者會發(fā)展成為NASH患者[48]. 二型糖尿病和NAFLD與肥胖癥相關(guān),這種疾病在全球范圍內(nèi)越來越廣泛,是影響人們健康的一個重要問題[49]. 前期的臨床研究顯示,OCA表現(xiàn)出了調(diào)節(jié)葡萄糖和脂質(zhì)代謝的功效. 研究人員依此,對OCA開展了二期臨床研究,來評估OCA對于二型糖尿病和MAFLD的治療效果[50].
在這個研究中,研究人員用OCA對糖尿病和NAFLD患者進(jìn)行了為期6 w的治療,最終改善了胰島素敏感性,有輕微體重減輕現(xiàn)象的發(fā)生,提升了血漿中低密度脂蛋白膽固醇和纖維母細(xì)胞生長因子19(FGF19)濃度,從而使7-羥基-4-膽甾烯-3-酮(C4)和內(nèi)生性膽汁酸水平降低,證明了OCA在治療肝病和代謝疾病方面具備一定的潛力. OCA的治療會使γ-谷氨酰轉(zhuǎn)移酶的水平明顯降低,它是脂肪肝疾病的一種標(biāo)記物,與前驅(qū)糖尿病和糖尿病有關(guān)[51],并且是NAFLD患者患有糖尿病的一個已知危險因素[52]. OCA對腸內(nèi)穩(wěn)態(tài)的調(diào)節(jié)作用可能超過了對FGF19的誘導(dǎo)作用. 臨床模型的測試結(jié)果表明,OCA激活FXR可以保護(hù)體內(nèi)腸上皮屏障的完整性,可能是通過抗炎作用使連接緊密性得到加強(qiáng). 其中,OCA還會增加抗菌肽在結(jié)腸中的表達(dá),抗菌肽是一種具有殺菌作用的天然抗菌素,表明了OCA具有調(diào)節(jié)腸道菌群的作用[53]. 近來研究表明腸道菌群通過FXR依賴性機(jī)制影響整個肝腸系統(tǒng)膽汁酸池的大小和組成[54]. 無菌鼠試驗中,OCA會增強(qiáng)回腸中FGF15的表達(dá)、抑制肝中CYP7A1的表達(dá),表明它會增強(qiáng)FXR信號,并進(jìn)一步支持OCA與腸道菌群的潛在交聯(lián)作用. FXR的活化通過增加反向膽固醇運(yùn)輸和減少腸膽固醇吸收來降低血漿高密度脂蛋白膽固醇含量(HDL)[55]. 與此同時,F(xiàn)XR激動劑對于高脂血癥低密度脂蛋白受體缺乏或是載脂蛋白E缺乏的小鼠會減少動脈粥樣硬化病變[56-57].
其中,臨床試驗表明,F(xiàn)GF19在人類回腸中分泌較多,同時C4和FGF19是膽汁酸型腹瀉的診斷標(biāo)準(zhǔn)[58],OCA可刺激FGF19的分泌,減少膽汁酸的合成,因此對膽汁酸型腹瀉有很好的臨床治療效果[59-60]. 由此推測,OCA有可能對治療慢性腹瀉,特別是膽汁酸型慢性腹瀉是有效的. 作為FXR激動劑,OCA對治療NAFLD有較好的效果. 由于FXR能促使葡萄糖和脂質(zhì)體內(nèi)平衡的基因發(fā)生改變[61],但對于葡萄糖和脂質(zhì)的體內(nèi)平衡的影響效果還不是很顯著,所以在這一方面的應(yīng)用價值仍需要進(jìn)一步研究[62].
目前,膽汁淤積性肝病在全球范圍內(nèi)廣泛存在,人們也一直在研究如何有效的改善患者的膽汁淤積狀況,并尋找治療此病的有效藥物. 作為高效且具有選擇性的FXR激動劑,OCA的臨床研究仍在繼續(xù). 之前的臨床應(yīng)用研究結(jié)果顯示,OCA能夠改善膽汁淤積性肝病患者的膽汁淤積狀況,減少并發(fā)癥的發(fā)生. 有文獻(xiàn)顯示膽酸衍生物有一定的抗腫瘤活性[63],具有類似結(jié)構(gòu)的OCA是否也具有相同的作用,仍需進(jìn)一步驗證. 基于OCA顯著的臨床應(yīng)用價值,如何大量獲得OCA也變得尤其重要. 由于化學(xué)合成是OCA的唯一來源,因此OCA合成方法的研究也成為近幾年藥物合成的熱點(diǎn). 盡管OCA的合成方法研究取得了較大進(jìn)步,但到目前為止,所有的方法都存在步驟多、產(chǎn)率低、成本高、無法規(guī)?;瘜?shí)施等問題. 如何減少合成步驟、提高各步反應(yīng)收率、降低生產(chǎn)成本、并適應(yīng)于規(guī)?;a(chǎn)應(yīng)用依舊是OCA合成研究的重點(diǎn).
[1] PELLICCIARI R, COSTANTINO G, CAMAIONI E, et al. Bile acid derivatives as ligands of the farnesoid X receptor. Synthesis, evaluation, and structure-activity relationship of a series of body and side chain modified analogues of chenodeoxycholic acid [J]. Journal of Medicinal Chemistry, 2004, 47(18): 4559-4569.
[2] PELLICCIARI R, FIORUCCI S, CAMAIONI E, et al.α-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity [J]. Journal of Medicinal Chemistry, 2002, 45(17): 3569-3572.
[3] CARIOU B, VAN H K, DURANSANDOVAL D, et al. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice [J]. Journal of Biological Chemistry, 2006, 281(16): 11039-11049.
[4] MA K, SAHA P K, CHAN L, et al. Farnesoid X receptor is essential for normal glucose homeostasis [J]. Journal of Clinical Investigation, 2006, 116(4): 1102-1109.
[5] ZHANG Y Q, LEE F Y, BARRERA G, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(4): 1006-1011.
[6] RIZZO G, DISANTE M, MENCARELLI A, et al. The farnesoid X receptor promotes adipocyte differentiation and regulates adipose cell function in vivo [J]. Molecular Pharmacology, 2006, 70(4): 1164-1173.
[7] CHEN W D, WANG Y D, MENG Z, et al. Nuclear bile acid receptor FXR in the hepatic regeneration [J]. Biochimica et Biophysica Acta, 2011, 1812(8): 888-892.
[8] INAGAKI T, MOSCHETTA A, LEE Y K, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(10): 3920-3925.
[9] GADALETA R M, VAN ERPECUM K J, OLDENBURG B, et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease [J]. Gut, 2011, 60(4): 463-472.
[10] MODICA S, GADALETA R M, MOSCHETTA A. Deciphering the nuclear bile acid receptor FXR paradigm [J]. Nuclear Receptor Signal, 2010(8): e005.
[11] VERBEKE L, FARRE R, TREBICKA J, et al. Obeticholic acid, a farnesoid X receptor agonist, improves portal hypertension by two distinct pathways in hotic rats [J]. Hepatology, 2014, 59(6): 2286-2298.
[12] CIPRIANI S, MENCARELLI A, PALLADINO G, et al. FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats [J]. Journal of Lipid Research, 2010, 51(4): 771-784.
[13] FICKERT P, FUCHSBICHLER A, MOUSTAFA T, et al. Farnesoid X receptor critically determines the fibrotic response in mice but is expressed to a low extent in uman hepatic stellate cells and periductal myofibroblasts [J]. American Journal of Pathology, 2009, 175(6): 2392-2405.
[14] ADORINI L, PRUZANSKI M, SHAPIRO D. Farnesoid X receptor targeting to treat nonalcoholic steatohepatitis [J]. Drug Discovery Today, 2012, 17(17/18): 988-997.
[15] VERBEKE L D, MANNAERTS I, SCHIERWAGEN R, et al. Obeticholic acid, an FXR agonist, reduces hepatic fibrosis in a rat model of toxic cirrhosis [J]. Journal of Hepatology, 2015, 62(51): S479.
[16] YU D, MATTERN D L, FORMAN B M . An improved synthesis of 6α-ethylchenodeoxycholic acid (6ECDCA), a potent and selective agonist for the Farnesoid X Receptor (FXR) [J]. Steroids, 2012, 77(13): 1335-1338.
[17] STEINER A, POULSEN H W, JOLIBIS E, et al. Preparation and uses of obeticholic acid: US, 20130345188 [P/OL]. 2013-12-26. Http://www.freepatentsonline.com/y2013/0345188.html.
[18] 邱玥珩, 曹忠誠, 強(qiáng)曉明, 等. 奧貝膽酸及其有關(guān)物質(zhì)的合成[J]. 中國醫(yī)藥工業(yè)雜志, 2016, 47(4): 376-379.
QIU Y H, CAO Z C, QIANG X M, et al. Synthesis of obeticholic acid and its related substances [J]. Chinese Journal of Pharmaceuticals, 2016, 47(4): 376-379.
[19] CORRIGAN M, HIRSCHFIELD G M. Primary biliary cirrhosis [J]. Medicine, 2015, 43(11): 645-647.
[20] PARéS A. Old and novel therapies for primary biliary cirrhosis [J]. Seminars in Liver Disease, 2014, 34(3): 341-351.
[21] HIRSCHFIELD G M, GERSHWIN M E. The immunobiology and pathophysiology of primary biliary cirrhosis [J]. Annual Review of Pathology, 2013, 8(8): 303-330.
[22] SHI J, WU C, LIN Y, et al. Long-term effects of mid-dose ursodeoxycholic acid in primary biliary cirrhosis: a metaanalysis of randomized controlled trais [J]. American Journal of Gastroenterology, 2006, 101(7): 1529-1538.
[23] CORPECHOT C, ABENAVOLI L, RABAHI N, et al. Biochemical response to ursodeoxycholic acid and long-term prognosis in primary biliary cirrhosis [J]. Hepatology, 2008, 48(3): 871-877.
[24] CORPECHOT C, CHAZOUILLERES O, POUPON R. Early primary biliary cirrhosis: biochemical response to treatment and prediction of long-term outcome [J]. Journal of Hepatology, 2011, 55(6): 1361-1367.
[25] CARBONE M, MELLS G F, PELLS G, et al. Sex and age are determinants of the clinical phenotype of primary biliary cirrhosis and reponse to ursodeoxycholic acid [J]. Gastroenterology, 2013, 144(3): 560-569.
[26] SILVEIRA M G, LINDOR K D. Obeticholic acid and budesonide for the treatment of primary biliary cirrhosis [J]. Expert Opinion on Pharmacotherapy, 2014, 15(3): 365-372.
[27] INVERNIZZI P, PENCEK R, MARMON T, et al. Integrated efficacy summary for obeticholic acid in subjects with primary biliary cirrhosis [J]. Journal of Hepatology, 2015, 62: S778.
[28] HIRSCHFIELD G M, MASON A, LUKETIC V, et al. Efficacy of obeticholic acid in patients with primary bbiliary cirrhosis and inadequate response to ursodeoxycholic acid [J]. Gastroenterology, 2014, 148(4): 751-761.
[29] BUNCHORNTAVAKUL C, REDDY K R. Pruritus in chronic cholestatic liver disease [J]. Clinics in Liver Disease, 2012, 16(2): 331-346.
[30] KREMER A E, DIJK R V, LECKIE P, et al. Serum autotaxin is increased in pruritus of cholestasis, but not of other origin, and responds to therapeutic interventions [J]. Hepatology, 2012, 56:1391-1400.
[31] ALEMI F, KWON E, POOLE D P, et al. The TGR5 receptor mediates bile acid-induced itch and analgesia [J]. Journal of Clinical Investigation, 2013, 123(4): 1513-1530.
[32] DAWSON P A, KARPEN S J. Bile acids reach out to the spinal cord:new insights to the pathogenesis of itch and analgesia in cholestatic liver disease [J]. Hepatology, 2014, 59(4): 1638-1641.
[33] RIZZO G, PASSERI D, De FRANCO F, et al. Functional characterization of the semisynthetic bile acid derivative INT-767, a dual farnesoid X receptor and TGR5 agonist [J]. Molecular Pharmacology, 2010, 78(4): 617-630.
[34] LINDOR K, HANSEN B, PENCEK R, et al. A phase 3B, double blind, placebo controlled study evaluating the effect of obeticholic acid on clinical outcomes in subjects with primary biliary cirrhosis at elevated risk of pro-gression to liver transplant or death [J]. Journal of Hepatology, 2015, 62(Supplement 2): S850-S851.
[35] MARRERO J A, FONTANA R J, SU G L, et al. NAFLD may be a common underlying liver disease in patients with hepatocellular carcinoma in the United States [J]. Hepatology, 2002, 36(6): 1349-1354.
[36] PAGE J M, HARRISON S A. NASH and HCC [J]. Clinics in Liver Disease, 2009, 13(4): 631-647.
[37] SANYAL A, POKLEPOVIC A, MOYNEUR E, et al. Population-based risk factors and resource utilization for HCC: US perspective [J]. Medical Research and Opinion, 2010, 26(9): 2183-2191.
[38] AGOPIAN V G, KALDAS F M, HONG J C, et al. Liver transplantation for nonalcoholic steatohepatitis: the new epidemic [J]. Annals of Surgery, 2012, 256(4): 624-633.
[39] NEUSCHWANDER-TETRI B A, LOOMBA R, SANYAL A J, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial [J]. The Lancet, 2015, 385(9972): 956-965.
[40] NEUSCHWANDER-TETRI B, SANYAL A, LOOMBA R, et al. Obeticholic acid for NASH: benefits in a high risk subgroup and the effects of concomitant tatin use [J]. Journal of Hepatology, 2015, 62(1): S272.
[41] CALKIN A C, TONTONOZ P. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR [J]. Nature Reviews Molecular Cell Biology, 2012, 13(4): 213-224.
[42] DEAGUIARVALLIM T, TARLING E, EDWARDS P. Pleiotropic roles of bile acids in metabolism [J]. Cell Metabolism, 2013, 17(5): 657-669.
[43] POREZ G, PRAWITT J, GROSS B, et al. Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease [J]. Journal of Lipid Research, 2012, 53(9): 1723-1737.
[44] HAGEMAN J, HERREMA H, GROEN A K, et al. A role of the bile salt receptor FXR in atherosclerosis [J]. Arteriosclerosis Thrombosis & Vascular Biology, 2010, 30(8): 1519-1528.
[45] KOWDLEY K V, JONES D, LUKETIC V, et al. An international study evaluating the farnesoid X receptor agonist obeticholic acid as monotherapy in PBC [J]. Journal of Hepatology, 2011, 54(9): S13.
[46] FARRELL G C. The liver and the waistline: fifty years of growth [J]. Journal of Gastroenterology & Hepatology, 2009, 24(Supplement 3): S105-S118.
[47] LAM D W, LEROITH D. The worldwide diabetes epidemic [J]. Current Opinion in Endocrinology Diabetes & Obesity, 2012, 19(2): 93-96.
[48] SANYAL A J. NASH: a global health problem [J]. Hepatology Research, 2011, 41(7): 670-674.
[49] FENEBERG A, MALFERTHEINER P. Epidemic trends of obesity with impact on metabolism and digestive diseases [J]. Digestive Diseases, 2012, 30(2): 143-147.
[50] MUDALIAR S. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease [J]. Gastroenterology, 2013, 145(3): 574-582.
[51] RUCKERT I M, HEIER M, RATHMANN W, et al. Association between markers of fatty liver disease and impaired glucose regulation in men and women from the general population:the KORA-F4-Study [J]. PLoS ONE, 2011, 6(8): e22932.
[52] ARASE Y, SUZUKI F, IKEDA K, et al. Multivariate analysis of risk factors for the development of type 2 diabetes in nonalcoholic fatty liver disease [J]. Journal of Gastroenterology, 2009, 44(10): 1064-1070.
[53] GADALETA R M, VAN ERPECUM K J, OLDENBURG B, et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease [J]. Gut, 2011, 60(4): 463-472.
[54] SAYIN S L, WAHLSTROM A, FELIN J, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist [J]. Cell Metabolism, 2013, 17(2): 225-235.
[55] ZHANG Y Q, YIN L Y, ANDERSON J, et al. Identification of novel pathways that control farnesoid X receptor-mediated hypocholesterolemia [J]. Journal of Biological Chemistry, 2010, 285(5): 3035-3043.
[56] FLATT B, MARTIN R, WANG T L, et al. Discovery of XL 35(WAY-362450), a highly potent, selective and orally active agonist of the farnesoid X receptor(FXR) [J]. Journal of Medicinal Chemistry, 2009, 52(4): 904-907.
[57] HARTMAN H B, GARDELL S J, PETUCCI C J, et al. Activation of farnesoid X receptor prevents atherosclerotic lesion formation in LDLR-/- and apoE(-/-) mice [J]. Journal of Lipid Research, 2009, 50(6): 1090-1100.
[58] SERFATY L, POUPON R. Therapeutic approaches for hepatobiliary disorders with ursodeoxycholic acid and bile-acid derivatives [J]. Clinics and Research in Hepatology and Gastroenterology, 2012, 36(Supplement 1): S1.
[59] ZHANG J H, NOLAN J D, KENNIE S L, et al. Potent stimulation of fibroblast growth factor 19 expression in the human ileum by bile acids [J]. American Journal of Physiology Gastrointestinal & Liver Physiology, 2013,304(10): G940-G948.
[60] WALTERS J R F, JOHNSTON I M, NOLAN J D, et al. The response of patients with bile acid diarrhoea to the farnesoid X receptor agonist obeticholic acid [J]. Alimentary Pharmacology & Therapeutics, 2015, 41(1): 54-64.
[61] NEUSCHWANDER-TETRI B A. Farnesoid X receptor agonists: what they are and how they might be used in treating liver disease [J]. Current Gastroenterology Reports, 2012, 14(1): 55-62.
[62] CARR R M, REID A E. FXR Agonists as therapeutic agents for non-alcoholic fatty liver disease [J]. Current Atherosclerosis Reports, 2015, 17(4): 500.
[63] 郭深深, 代本才, 陳瑨, 等. 膽酸酰氧基膦酸酯衍生物的合成及抗腫瘤活性[J]. 化學(xué)研究, 2016, 27(2): 183-188.
GUO S S, DAI B C, CHEN J, et al. Synthesis and antitumor activity of cholic acid-phosphonate derivatives [J]. Chemical Research, 2016, 27(2): 183-188.
[責(zé)任編輯:張普玉]
Synthetic methods and pharmaceutical properties of obeticholic acid
FENG Na1, HU Xiangzheng1,2*
(1.CollegeofFoodEngineeringandBiotechnology,TianjinUniversityofScienceandTechnology,Tianjin300457,Tianjin,China;2.CollegeofChemicalEngineeringandMaterialsScience,TianjinUniversityofScienceandTechnology,Tianjin300457,Tianjin,China)
Obeticholic acid (OCA), a 6-ethyl derivative of chenodeoxycholic acid, is an effective farnesoid X(FX) nuclear receptor agonist. OCA has a good therapeutic effect on nonalcoholic fatty liver and primary biliary cirrhosis to result in broad application prospects in clinical practice. Due to it has superior performance in clinical practice, the clinical application and synthesis of OCA are the focus of biological medicine. In recent years, a great progress has been got in OCA’s synthetic methods and technology research, however, there is no method can be applied to large-scale production. This paper reviews the current status of clinical research and synthesis methods of OCA.
obeticholic acid; liver and gallbladder diseases; pharmaceutical properties; synthetic method
2017-01-17.
天津市科技計劃項目 (14ZXCXSY00109,14RCHZSY 00159).
馮 娜 (1991-), 女, 碩士生, 研究方向為天然產(chǎn)物的提取與開發(fā).*
, E-mail:huxzh@tust.edu.cn.
O629
A
1008-1011(2017)03-0395-08