国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

Ag2S/ZnS復(fù)合納米球的制備及可見(jiàn)光催化性能

2017-07-06 00:32劉山虎張曉丹侯亞彬
化學(xué)研究 2017年3期
關(guān)鍵詞:河南大學(xué)光催化劑復(fù)合物

劉山虎,李 瑞,張曉丹,劉 愷,侯亞彬*,周 慧*

(1.河南大學(xué) 化學(xué)化工學(xué)院,河南 開(kāi)封 475004; 2.河南大學(xué) 實(shí)驗(yàn)室與設(shè)備管理處,河南 開(kāi)封 475004)

?

Ag2S/ZnS復(fù)合納米球的制備及可見(jiàn)光催化性能

劉山虎1,李 瑞1,張曉丹1,劉 愷2,侯亞彬2*,周 慧1*

(1.河南大學(xué) 化學(xué)化工學(xué)院,河南 開(kāi)封 475004; 2.河南大學(xué) 實(shí)驗(yàn)室與設(shè)備管理處,河南 開(kāi)封 475004)

采用水熱反應(yīng)體系,結(jié)合離子交換法制備了多孔Ag2S/ZnS納米球,以甲基橙(MO)溶液為模擬污染物對(duì)其進(jìn)行了可見(jiàn)光光催化降解研究. 與ZnS相比,Ag2S的加入提高了材料催化降解甲基橙的能力,其中Ag0.4Zn0.8S催化降解效果最好. 光催化活性的增強(qiáng)主要?dú)w因于光誘導(dǎo)下ZnS和Ag2S之間有效的界面電荷轉(zhuǎn)移(IFCT).

光催化;可見(jiàn)光;Ag2S/ZnS;離子交換

現(xiàn)代工業(yè)的快速發(fā)展產(chǎn)生了大量的廢水,這些廢水中含有大量的有毒有害化合物,其中有機(jī)物是環(huán)境污染的重要來(lái)源,尋找有效治理有機(jī)污染物的方案已經(jīng)受到了廣泛的關(guān)注[1-2]. 在過(guò)去幾年里,許多能有效降解有機(jī)污染物的光催化材料相繼被研究[3-4]. 然而很多光催化劑,包括最常用的TiO2都具有比較寬的帶隙,需要紫外光(占太陽(yáng)光5%以下)照射才能用于降解有機(jī)物,這極大限制了光催化劑的實(shí)際應(yīng)用. 合成新型催化劑或改進(jìn)現(xiàn)有催化劑使其光響應(yīng)波長(zhǎng)范圍擴(kuò)展至可見(jiàn)光區(qū)是十分必要的.

最近,半導(dǎo)體復(fù)合材料包括多組分或多相異質(zhì)結(jié)被用于制備高活性的光催化劑[5]. ZnS是一種很好的半導(dǎo)體材料,納米結(jié)構(gòu)的ZnS由于具有較好的光學(xué)、電子、催化性能,被廣泛用于熒光、生物成像和傳感領(lǐng)域[6-8]. 然而,硫化鋅半導(dǎo)體具有較寬的帶隙(約3.6 eV),只能吸收光譜中能量較高的紫外光. 為了增加ZnS對(duì)可見(jiàn)光的利用率,研究者對(duì)ZnS進(jìn)行了各種修飾處理,主要包括:非金屬和金屬摻雜、貴金屬沉積以及使用其他窄帶隙半導(dǎo)體材料敏化ZnS[9].

Ag2S是一種典型的窄帶隙半導(dǎo)體[10],室溫下帶隙約1.0 eV,將Ag2S和ZnS結(jié)合可能降低復(fù)合材料的帶隙,有望開(kāi)發(fā)出一種可見(jiàn)光響應(yīng)的光催化劑. 本文制備了Ag2S/ZnS復(fù)合納米球,以甲基橙(MO)溶液為模擬污染物對(duì)其進(jìn)行了可見(jiàn)光催化降解研究,并推測(cè)了該復(fù)合材料用于催化降解甲基橙的機(jī)制.

1 實(shí)驗(yàn)部分

1.1 ZnS納米球樣品的制備

取ZnAc2·2H2O (1 mmol),PVP (1.5 g) 溶解在20 mL水中,再加入TAA (1 mmol)溶液,得到澄清的溶液. 將澄清溶液轉(zhuǎn)移至含聚四氟乙烯內(nèi)襯的反應(yīng)釜中180 ℃反應(yīng)6 h. 反應(yīng)結(jié)束后用蒸餾水和乙醇將沉淀物洗凈,烘干備用.

1.2 多孔Ag2S/ZnS復(fù)合材料的制備

為了研究元素配比對(duì)光催化活性的影響,制得了Ag/Zn不同物質(zhì)的量比的納米復(fù)合材料. 首先將ZnS分散于20 mL蒸餾水中,再將15 mL不同含量的AgNO3溶液逐滴加入,室溫下攪拌5 h. 最后的固體物經(jīng)蒸餾水和乙醇各洗滌三次,60 ℃下干燥6 h. 表1展示了不同比例Ag2S的材料編號(hào).

1.3 光催化性能測(cè)試

將0.02 g光催化劑分散在50 mL、1.5×10-6mol/L的甲基橙溶液中形成懸浮液,在黑暗中攪拌20 min,以確保甲基橙在催化劑表面達(dá)到吸附平衡. 使用配有濾光片(420 nm)的氙燈光源照射反應(yīng)液. 每隔一定照射時(shí)間,取少量樣品, 9 000 r/min離心后取上層清液測(cè)其吸光度.

表1 標(biāo)號(hào)及對(duì)應(yīng)復(fù)合物Ag2S/ZnS中Ag2S物質(zhì)的量分?jǐn)?shù)Table 1 Summary of the molar fraction of Ag2S added in the composite nanospheres

2 結(jié)果與討論

2.1 多孔Ag2S/ZnS復(fù)合材料的表征

通過(guò)透射電鏡表征(圖1),可以明顯看到制得Ag0.4Zn0.8S材料表面的孔狀結(jié)構(gòu). 晶格間距0.31 nm與立方系ZnS的(111)面相對(duì)應(yīng),晶格間距為0.26 nm與單斜晶系A(chǔ)g2S的(121)面相照應(yīng). 此外,還可以觀察到Ag2S和ZnS晶體之間密切的異質(zhì)結(jié)界面,正是這種界面,極大的促進(jìn)了光生載流子的有效轉(zhuǎn)移.

圖1 Ag0.4Zn0.8S復(fù)合物的TEM 圖Fig.1 TEM images of Ag0.4Zn0.8S composite

2.2 光催化實(shí)驗(yàn)

為了研究納米顆粒的可見(jiàn)光催化效果,我們做了可見(jiàn)光(λ≥ 420 nm)催化降解甲基橙的實(shí)驗(yàn),相應(yīng)的實(shí)驗(yàn)結(jié)果如圖2所示,純的ZnS樣品幾乎沒(méi)有降解效果. 與之相比,Ag2S/ZnS樣品光催化效果有極大的增強(qiáng),這可能由于催化劑吸收可見(jiàn)光,提高了對(duì)可見(jiàn)光利用率的結(jié)果. 不同銀鋅比例的樣品中,Ag0.4Zn0.8S的催化效果最好,光照15 min脫色降解率可以達(dá)到96%. 然而,過(guò)多的Ag2S阻擋了光的通過(guò),影響了光催化降解甲基橙活性的進(jìn)一步提高. 故當(dāng)Ag2S 物質(zhì)的量分?jǐn)?shù)繼續(xù)升高,催化劑活性反而降低. Ag0.4Zn0.8S納米復(fù)合物在甲基橙溶液中的可見(jiàn)光催化機(jī)制見(jiàn)圖3,ZnS與Ag2S之間的緊密結(jié)合形成的異質(zhì)結(jié)結(jié)構(gòu),有效促進(jìn)了ZnS價(jià)帶上的電子直接轉(zhuǎn)移到Ag2S,從而提高光催化效果.

圖2 不同含量Ag2S的Ag2S/ZnS納米球在可見(jiàn)光下(λ ≥ 420 nm)降解甲基橙水溶液效果Fig.2 Visible-light-induced (λ ≥ 420 nm) photocatalytic degradation of MO aqueous solution in the presence of porous Ag2S/ZnS nanospheres with different compositions as catalysts

圖3 Ag0.4Zn0.8S納米復(fù)合物在甲基橙溶液中的可見(jiàn)光催化機(jī)制Fig.3 Visible-light photocatalytic mechanism of Ag0.4Zn0.8S composite in the MO aqueous solution

3 結(jié)論

研究了Ag2S/ZnS復(fù)合材料的控制合成及光催化性能. 結(jié)果表明,復(fù)合材料的表面形貌和結(jié)構(gòu)與復(fù)合前的ZnS納米球基本一致,且呈現(xiàn)多孔結(jié)構(gòu). 不同比例的樣品中,Ag0.4Zn0.8S納米復(fù)合物催化活性最高. 此外,本實(shí)驗(yàn)還提出了復(fù)合材料的可見(jiàn)光催化機(jī)理的假設(shè),這些結(jié)論對(duì)我們研究硫化物復(fù)合光催化劑的光降解實(shí)驗(yàn)具有借鑒意義.

[1] GHOSH A, MONDAL A. Fabrication of stable, efficient and recyclable p-CuO/n-ZnO thin film heterojunction for visible light driven photocatalytic degradation of organic dyes [J]. Materials Letters, 2016, 164: 221-224.

[2] JAISWAL R, PATEL N, DASHORA A, et al. Efficient Co-B-codoped TiO2photocatalyst for degradation of organic water pollutant under visible light [J]. Applied Catalysis B: Environmental, 2016, 183: 242-253.

[3] ONG W L, LIM Y F, ONG J L T, et al. Room temperature sequential ionic deposition (SID) of Ag2S nanoparticles on TiO2hierarchical spheres for enhanced catalytic efficiency [J]. Journal of Materials Chemistry A, 2015, 3(12): 6509-6516.

[4] HU L, DONG S, LI Q, et al. Facile synthesis of BiOF/Bi2O3/reduced graphene oxide photocatalyst with highly efficient and stable natural sunlight photocatalytic performance [J]. Journal of Alloys and Compounds, 2015, 633: 256-264.

[5] REDDY D A, MA R, CHOI M Y, et al. Reduced graphene oxide wrapped ZnS-Ag2S ternary composites synthesized via hydrothermal method: Applications in photocatalyst degradation of organic pollutants [J]. Applied Surface Science, 2015, 324: 725-735.

[6] LIU C, MENG D, LI Y, et al. Hierarchical architectures of ZnS-In2S3solid solution onto TiO2nanofibers with high visible-light photocatalytic activity [J]. Journal of Alloys and Compounds, 2015, 624: 44-52.

[7] XING R, LIU S. Facile synthesis of fluorescent porous zinc sulfide nanospheres and their application for potential drug delivery and live cell imaging [J]. Nanoscale, 2012, 4(10): 3135-3140.

[8] XING R, XUE Y, LIU X, et al. Mesoporous ZnS hierarchical nanostructures: facile synthesis, growth mechanism and application in gas sensing [J]. CrystEngComm, 2012, 14(23): 8044-8048.

[9] YU Y, CHEN G, WANG Q, et al. Hierarchical architectures of porous ZnS-based microspheres by assembly of heterostructure nanoflakes: lateral oriented attachment mechanism and enhanced photocatalytic activity [J]. Energy & Environmental Science, 2011, 4(9): 3652-3660.

[10] YI X, SUNG H H, YONG N K, et al. Synthesis and visible-light-induced catalytic activity of Ag2S-coupled TiO2nanoparticles and nanowires [J]. Nanotechnology, 2010, 21(1): 015703.

[責(zé)任編輯:吳文鵬]

Fabrication and enhanced visible-light photocatalytic activities of Ag2S/ZnS nanospheres

LIU Shanhu1, LI Rui1, ZHANG Xiaodan1, LIU Kai2, HOU Yabin2*, ZHOU Hui1*

(1.CollegeofChemistryandChemicalEngineering,HenanUniversity,Kaifeng475004,Henan,China; 2.LaboratoryandEquipmentAdministration,HenanUniversity,Kaifeng475004,Henan,China)

The novel porous Ag2S/ZnS composite nanospheres were fabricated via a hydrothermal procedure followed by a cation exchange method. Its photocatalytic performance was also evaluated by the photocatalytic decolorization of methyl orange (MO) in aqueous solution under visible light irradiation. The results show that the composite nanospheres exhibited enhanced visible light photocatalytic activity compared with the initial porous ZnS nanospheres. Among them, sample of Ag0.4Zn0.8S gave the highest degradation rate. The enhanced photocatalytic activity was presumed to the result of the direct photoinduced interfacial charge transfer (IFCT) from the valence band (VB) of ZnS to Ag2S.

photocatalytic; visible-light; Ag2S/ZnS; ion-exchange

2017-03-14.

河南省科技攻關(guān)項(xiàng)目(172102410078), 河南省教育廳項(xiàng)目(17A150023).

劉山虎(1977-), 男, 副教授, 研究方向?yàn)楣怆姽δ懿牧?*

, E-mail:liushanhu@163.com.

O643.3

A

1008-1011(2017)03-0307-03

猜你喜歡
河南大學(xué)光催化劑復(fù)合物
水熱法原位合成β-AgVO3/BiVO4復(fù)合光催化劑及其催化性能
歸 去 兮
可見(jiàn)光響應(yīng)的ZnO/ZnFe2O4復(fù)合光催化劑的合成及磁性研究
詠 河 大
柚皮素磷脂復(fù)合物的制備和表征
黃芩苷-小檗堿復(fù)合物的形成規(guī)律
故 鄉(xiāng)
白楊素磷脂復(fù)合物的制備及其藥動(dòng)學(xué)行為
Pr3+/TiO2光催化劑的制備及性能研究
梁平县| 沛县| 大邑县| 河北区| 东海县| 五大连池市| 九龙坡区| 泸西县| 聊城市| 翼城县| 加查县| 大田县| 永清县| 双峰县| 伊宁市| 延吉市| 辰溪县| 永胜县| 旬邑县| 宾川县| 武定县| 普安县| 阿克陶县| 家居| 九寨沟县| 图木舒克市| 崇文区| 台东市| 柞水县| 陆川县| 二连浩特市| 卢龙县| 托里县| 山东省| 北京市| 凤凰县| 航空| 湘乡市| 大方县| 亚东县| 普兰县|