陳 汀,陳重華,吳遠(yuǎn)波
(上海衛(wèi)星工程研究所,上海 201109)
?
一種滑動摩擦彈性非相似接觸問題直接求解方法研究
陳 汀,陳重華,吳遠(yuǎn)波
(上海衛(wèi)星工程研究所,上海 201109)
針對傳統(tǒng)方法在求解滑動摩擦條件下彈性非相似接觸問題時存在多項(xiàng)式積分過多的問題,提出了一種直接求解方法。建立了彈性非相似體接觸問題的模型,用修正的高斯-雅可比積分公式求解奇異積分方程,可求得接觸表面上的接觸應(yīng)力和與疲勞相關(guān)的平面應(yīng)力。因計(jì)算中不含積分過程,所提方法能更有效、更直接地求解滑動摩擦條件下彈性非相似接觸問題,且計(jì)算過程可用于其他類型的接觸問題。用一個算例,通過與精確解的比較驗(yàn)證了方法的有效性。計(jì)算了圓柱型壓頭與彈性半平面在滑動摩擦條件下的接觸應(yīng)力分布實(shí)例,分析了摩擦因數(shù)對接觸表面應(yīng)力分布的影響規(guī)律,探討了接觸表面產(chǎn)生裂紋的可能原因。結(jié)果發(fā)現(xiàn):接觸面的摩擦效應(yīng)導(dǎo)致接觸區(qū)質(zhì)心向接觸區(qū)尾翼偏移,偏移量隨摩擦因數(shù)增大而變大,這會產(chǎn)生偏移力矩,而法向接觸力與接觸區(qū)長度近似呈拋物線型的變化關(guān)系。研究對設(shè)計(jì)實(shí)際工程中具抗疲勞性能的零部件有理論價值和指導(dǎo)意義。
接觸剛度; 非相似接觸問題; 滑動摩擦; 接觸應(yīng)力; 平面應(yīng)力; 多項(xiàng)式積分; 修正的高斯-雅可比積分公式; 圓柱型壓頭
對摩擦接觸問題,當(dāng)作用于接觸體表面切向力Q滿足Q 通常,用于求解摩擦非相似材料接觸問題的方法主要有有限元法和邊界積分方程法兩種。有研究用通用有限元求解器計(jì)算了無摩擦和有摩擦的接觸問題[3-5]。雖然有限元法可有效用于求解任意復(fù)雜幾何的接觸問題,但它需對數(shù)據(jù)進(jìn)行大量且繁瑣的前后處理,處理方式的不同對分析結(jié)果有較大的影響。邊界積分方程同樣廣泛用于求解此類接觸問題[6-10]。與有限元方法不同,邊界積分方程法能更方便、更有效且更直接地求解問題。雖然邊界積分方程法已用于求解一些特別簡化的模型,但仍缺乏一個完備且系統(tǒng)的求解非相似彈性體接觸問題的理論框架[11-13]。為此,本文提出了一種基于修正的高斯-雅可比積分公式求解非相似彈性體接觸問題的方法,研究了摩擦力對接觸應(yīng)力分布的影響規(guī)律。本文提出的方法能有效體現(xiàn)滑動摩擦接觸條件下接觸應(yīng)力的漸進(jìn)行為特征,并基于計(jì)算得到的接觸應(yīng)力,可推斷產(chǎn)生疲勞和斷裂問題的接觸部件的表面裂紋產(chǎn)生的可能原因。 彈性壓頭與非相似的彈性半空間的摩擦滑動接觸問題如圖1所示。 圖1 一般接觸問題的幾何描述Fig.1 Geometry of general contact problem 壓頭輪廓的幾何形狀表示為y=h(x)。因載荷與坐標(biāo)z無關(guān),故該接觸問題可簡化為一個二維平面接觸問題。外加切向載荷Q和法向載荷P使壓頭處于一種極限平衡狀態(tài),或以恒定速度運(yùn)動。由于該運(yùn)動很慢,可忽略動態(tài)效應(yīng)的影響。 設(shè)在切向應(yīng)力p(x)和法向應(yīng)力q(x)的共同作用下,接觸表面上任一點(diǎn)在x、y向的位移分別為uxi,uyi(其中:i=1表示半平面;i=2表示壓頭),則由文獻(xiàn)[6],在接觸表面上的任一點(diǎn),接觸表面的位移和表面上的法向與切向接觸應(yīng)力的關(guān)系可表示為 (1) (2) 式中:υi為泊松比。 在與彈性壓頭相連的運(yùn)動坐標(biāo)系中,存在以下邊界條件 (3) (4) 式中:uy為半空間表面上任意一點(diǎn)的法向位移;D為兩接觸彈性體的相互趨近量。 在接觸區(qū)域(-a,b)內(nèi)存在摩擦法則 (5) (6) 式(5)、(6)構(gòu)成了一對關(guān)于未知接觸應(yīng)力σ,τ的積分方程。對本文討論的問題,法向接觸力p(x),-a (7) 式中: 此處:χ*為常數(shù),表征兩接觸體材料彈性非相似性的程度;Ei,υi,μi分別為彈性模量、泊松比和接觸體的剪切模量;i=1,2。 為獲取該接觸問題的完備解,需要其他附加條件。首先,p(x)必須滿足 (8) 式中:P為外加法向力。外加力的幅值可通過外加力P或沿y軸的壓頭位移表征;在接觸區(qū)的端點(diǎn)-a,b處,不論接觸光滑與否,切向接觸應(yīng)力p(x)的解須滿足某種協(xié)調(diào)條件。 (9) 正規(guī)化后,外力與接觸應(yīng)力分布的平衡方程變?yōu)?/p> (10) 基于多項(xiàng)式的正交特性,奇異積分方程可轉(zhuǎn)化為一系列關(guān)于未知系數(shù)的代數(shù)方程。此方法可有效保證解的收斂性和穩(wěn)定性。但由于所含的積分計(jì)算過多,導(dǎo)致求解時間很長。為改善這一缺陷,一種更實(shí)用的方法是利用基于修正的高斯-雅可比積分公式[7-8]。與多項(xiàng)式序列法不同,修正的高斯-雅可比積分公式不含積分計(jì)算,因而可更直接地求解。 本文用修正的高斯-雅可比積分公式求解奇異積分方程。首先,由文獻(xiàn)[2],定義復(fù)勢函數(shù) (11) 此勢函數(shù)的基本解可定義為 (12) 式中:常數(shù)κ=-(α+β)為基本解ω(s)的指數(shù)。 式(11)的通解可表示為 (13) 式中:g(s)為區(qū)間[-1,1]中的一個連續(xù)的有界函數(shù)。 對式(13)應(yīng)用修正的高斯-雅可比積分公式,有柯西核的奇異積分方程可表示為 (14) 將式(14)代入式(9),常規(guī)運(yùn)算后可得 (15) 用配點(diǎn)法并令配點(diǎn)中僅有有限個積分點(diǎn),即s=si。此處:si為以下雅可比多項(xiàng)式的根 (16) 式(10)可化為代數(shù)方程 (17) (18) 式中: (19) 以上基于修正的高斯-雅可比積分公式的非相似彈性體的摩擦滑動接觸問題的求解過程同樣適于求解其他類型的接觸問題,包括在接觸區(qū)域端點(diǎn)處未知函數(shù)為有限值或無窮的情形[14]。 在求解式(15)獲取法向接觸應(yīng)力p(x)后,其余的場變量可由p(x)及合適的格林函數(shù),用以下方程確定 (20) 影響函數(shù)對所有不存在于邊界上的點(diǎn)都是正規(guī)的[6]。 通過p(x)不僅可直接計(jì)算接觸表面上的接觸應(yīng)力σyy(x,0),σxy(x,0),而且能求得因與疲勞相關(guān)而引起廣泛關(guān)注的接觸表面上的平面應(yīng)力σxx(x,0),它與接觸表面的表面裂紋產(chǎn)生密切相關(guān)[15-16]。獲取接觸表面的接觸應(yīng)力σyy(x,0),σxy(x,0),接觸表面的σxx(x,0)可用應(yīng)力-位移關(guān)系求得,有 (21) 用本文方法計(jì)算一個算例,并與解析解進(jìn)行對比,以驗(yàn)證本文算法的有效性。算例取自文獻(xiàn)[17],并做了微小的改動。算例的物理問題描述為:具尖角的粗糙壓頭在彈性非相似半空間表面有摩擦地滑動??紤]此問題的物理特性,它對應(yīng)于κ=1的彎曲接觸問題,分量α,β滿足 (22) 積分方程變?yōu)?/p> (23) 并滿足條件 (24) 式中:L與外載荷相關(guān)的參數(shù)。 該有界未知方程的解析解為 (25) 設(shè)數(shù)值計(jì)算的參數(shù)條件為:α=-0.34,β=-0.66,L=π/sin(απ)。在MATAB 7.0軟件中對本文算法編程,本文方法的計(jì)算結(jié)果與精確解的對比見表1。 表1 本文方法的計(jì)算結(jié)果法與精確解對比(n=9) 由表1可知:本文方法的計(jì)算精度非常高,與精確值的誤差小于1×10-7,表明本文算法可有效且準(zhǔn)確地計(jì)算所討論的接觸問題。為進(jìn)一步驗(yàn)證本文方法的有效性,以下對具體的接觸算例進(jìn)行計(jì)算。 4.1 問題描述 對工程設(shè)計(jì)中常用的圓柱型壓頭與彈性非相似半平面的接觸問題進(jìn)行計(jì)算。相關(guān)接觸問題如圖2所示。 圖2 圓柱型壓頭與非相似彈性半空間摩擦滑動接觸問題的幾何描述Fig.2 Geometry of contact problem for a cylindrical stamp sliding on half-plane 壓頭的輪廓可表示為 (26) 故有 (27) 根據(jù)圖3和式(7),積分方程式(9)可表示為 (28) 外力和接觸應(yīng)力的平衡條件可表示為 (29) (30) 由于在接觸區(qū)端點(diǎn)x=-a,x=b處均為光滑接觸,根據(jù)上述物理?xiàng)l件可知:α,β均為正實(shí)數(shù),系統(tǒng)指數(shù)κ=-1,故有 f>0時 (31) α=0.5,β=0.5,f=0時 (32) f<0時 (33) 對此類接觸問題,在外加法向力P作用下,接觸長度a,b均未知。但對給定接觸長度值,式(30)是關(guān)于n個未知參數(shù)g(tj)的n個方程組,即 a*(si-1)],i=1,2,…,n+1 (34) (35) 由此,可確定a*,b*的關(guān)系。 4.2 計(jì)算結(jié)果與討論 本文提出的方法主要計(jì)算接觸應(yīng)力,接觸表面的平面內(nèi)應(yīng)力σxx(x,0)及載荷-接觸長度關(guān)系。 對如圖2所示的圓柱型壓頭與非相似彈性半空間接觸問題,設(shè)(a+b)/R分別為0.010,0.025,0.050;f分別為0.1,0.3,0.5;υ=0.3。與拋物線型壓頭不同,圓柱型壓頭與非相似彈性半平面在接觸區(qū)域兩端均光滑接觸,因此法向接觸壓力在接觸邊界自然趨于零值。用本文方法計(jì)算的f對接觸區(qū)域內(nèi)接觸表面應(yīng)力的影響分別如圖3~5所示。 圖3 圓柱型壓頭與非相似彈性半平面接觸時的接觸應(yīng)力分布(f=0.1,0.3,0.5;(b+a)/R=0.010)Fig.3 Contact stresses on surface of half-plane loaded by a cylindrical stamp (f=0.1,0.3, 0.5, (b+a)/R=0.010) 圖4 圓柱型壓頭與非相似彈性半平面接觸時的接觸應(yīng)力分布(f=0.1,0.3,0.5;(b+a)/R=0.025)Fig.4 Contact stresses on surface of half-plane loaded by a cylindrical stamp (f=0.1,0.3, 0.5, (b+a)/R=0.025) 圖5 圓柱型壓頭與非相似彈性半平面接觸時的接觸應(yīng)力分布(f=0.1,0.3,0.5;(b+a)/R=0.025)Fig.5 Contact stresses on surface of half-plane loaded by a cylindrical stamp (f=0.1,0.3, 0.5, (b+a)/R=0.050) 由圖3~5可知:當(dāng)x<-a時,σxx(x,0)為壓應(yīng)力;當(dāng)x>b時,σxx(x,0)為拉應(yīng)力。描述接觸區(qū)位置的接觸長度a,b事先未知,是隨外加法向載荷P增大而單調(diào)遞增的強(qiáng)非線性函數(shù)。在求解該接觸問題時,首先假設(shè)初值a,b,然后根據(jù)壓頭的平衡條件計(jì)算外加法向載荷P,重復(fù)此過程即可求得外加載荷P與接觸長度a+b的關(guān)系。有趣的是,法向接觸力與接觸長度a+b的關(guān)系曲線近似為拋物線,觀察接觸應(yīng)力分布,可發(fā)現(xiàn)接觸區(qū)的質(zhì)心向接觸區(qū)域的尾翼偏移。此偏移量隨摩擦因數(shù)增大而變大。該現(xiàn)象使法向接觸應(yīng)力不再關(guān)于y軸對稱,從而形成一個傾斜力矩。與拋物線型壓頭相似的是,摩擦因數(shù)變化對法向接觸應(yīng)力幅值σyy(x,0)的影響很小,但對平面內(nèi)應(yīng)力的影響顯著。隨著摩擦因數(shù)的增大,拉應(yīng)力σxx(x,0)的峰值顯著增大。在接觸區(qū)前翼處的壓應(yīng)力和在尾翼處的拉應(yīng)力均隨摩擦因數(shù)增大而增大。 本文提出了一種求解滑動摩擦條件下的彈性非相似接觸問題的有效方法。該法的優(yōu)點(diǎn)是對不同類型的接觸問題,都能有效而正確地獲取接觸應(yīng)力的漸進(jìn)行為特征。通過求解一個有尖角的粗糙壓頭與彈性非相似半平面的滑動摩擦接觸問題并與精確解進(jìn)行對比,驗(yàn)證了該方法的有效性,并討論了一類典型的圓柱型壓頭與非相似彈性半平面的接觸問題。研究結(jié)果表明:接觸面的摩擦效應(yīng)將導(dǎo)致接觸區(qū)質(zhì)心向接觸區(qū)尾翼偏移,隨著摩擦因數(shù)的增大,偏移量也逐漸增大,這將不可避免地產(chǎn)生偏移力矩,而法向接觸力與接觸區(qū)長度近似呈拋物線型的變化關(guān)系。本文研究可用于分析接觸表面裂紋發(fā)生的可能原因,對設(shè)計(jì)實(shí)際工程中具抗疲勞性的零部件有重要的理論價值和指導(dǎo)意義。本文提出的方法的一個潛在應(yīng)用是可用于求解部分滑動接觸問題,后續(xù)將進(jìn)一步研究。 [1] MINDLIN R D. Compliance of elastic bodies in contact[J]. Journal of Applied Mechanics, 1949, 16: 259-268. [2] GLADWELL G M L. Contact problems in the classical theory of elasticity[M]. Rockville: Sijthoff and Noordhoff, 1980. [3] AMBRICO J M, BEGLEY M R. Plasticity in fretting contact[J]. Journal of the Mechanics and Physics of Solids, 2000, 48: 2391-2417. [4] IYER K. Solutions for contact in pinned connections[J]. International Journal of Solids and Structures, 2001, 38: 9133-9148. [5] PORTER M I, HILLS D A. Note on the complete contact between a flat rigid punch and an elastic layer attached to a dissimilar substrate[J]. International Journal of Mechanical Science, 2002, 44: 509-520. [6] JOHNSON K L. Contact mechanics[M]. Cambridge: Cambridge University Press, 1985. [7] ERDOGAN F, GUPTA G D, COOK T S. Numerical solution of singular integral equations[M]// SIH G C. Method of Analysis and Solution of Crack Problems. Leyden: Noordhoff International Publishing, 1973. [8] KRENK S. On quadrature formulas for singular integral-equations of the first and second kind[J]. Q Appl Math, 1975, 33(3): 225-232. [9] MILLER G R, KEER L M. A numerical technique for the solution of singular integral-equations of the second kind[J]. Q Appl Math, 1985, 42(4): 455-465. [10] ERDOGAN F, GUPTA G D. On the numerical solution of singular integral equations[J]. Q Appl Math, 1972, 30(4): 525-534. [11] CHURCHMAN C M, SACKFIELD A, HILLS D A. Asymptotic solutions for contact problems: the effect of an internal discontinuity in surface profile[J]. Proc Inst Mech Eng C-J Mech Eng Sci, 2006, 220(4): 387-391. [12] SACKFIELD A, DINI D, HILLS D A. The tilted shallow wedge problem[J]. Eur J Mech Solid, 2005, 24: 919-928. [13] SACKFIELD A, DINI D, HILLS D A. Contact of a rotating wheel with a flat[J]. International Journal of Solids and Structures, 2007, 44: 3304-3316. [14] MUSKHELISHVILI N I. Singular integral equations: boundary problems of function theory and their application to mathematical physics[M]. New York: Dover Publications, 1992. [15] SURESH S, OLSSON M, GIANNAKOPOULOS A E, et al. Engineering the resistance to sliding-contact damage through controlled gradients in elastic properties at contact surfaces[J]. Acta Materialia, 1999, 47: 3915-3926. [16] LAWN B. Fracture of brittle solids[M]. Cambridge: Cambridge University Press, 1993. [17] MILLER G R, KEER L M. A numerical technique for the solution of singular integral-equations of the second kind[J]. Q Appl Math, 1985, 42(4): 455-465. An Efficient Solution Study for Elastically Dissimilar Contact Problems under Sliding Condition CHEN Ting, CHEN Chong-hua, WU Yuan-bo (Shanghai Institute of Satellite Engineering, Shanghai 201109, China) An efficient and straightforward technique based on the improved Gauss-Jacobi quadrature rule was studied for solving elastically dissimilar contact problems under sliding condition in the paper. The model of contact problem for elastically dissimilar contact problems was established. The singular integral equation was solved by the improved Gauss-Jacobi quadrature rule. The contact stress on the contact surface could be obtained, and so was the plane stress which was related to the fatigue. Because there is no integration process in the computation, the elastically dissimilar contact problem can be worked out by the method proposed more efficiently and directly. The computation can be applied to other types of contact problems. The effectiveness of the method proposed was proved by comparing with the exact value for some computation sample. The real contact problem for a cylindrical stamp sliding on a half-plane was calculated. The effect of frictional coefficient on the contact pressure distribution was analyzed. The possible reasons for crack initiation associated with fatigue and fracture of the contacting components were also discussed. It finds that the frictional effect on the contact surface will cause the centre of the contact area migrating to the end of the contact area. The migration will become bigger when the frictional coefficient is bigger. It will form migration moment. And the relationship of the normal contact force and the length of the contact area can be characterized by paracurve. This study has its theoretically value and reference meanings in designing the anti-fatigue parts in engineering. contact rigidity; disimilar contact problem; sliding condition; contact stress; plane stress; polynomial integral; improved Gauss-Jacobi quadrature rule; cylindrical stamp 1006-1630(2017)03-0066-07 2016-08-12; 2016-10-22 陳 汀(1984—),男,博士,主要研究方向?yàn)樾l(wèi)星總體設(shè)計(jì)、機(jī)械系統(tǒng)動力學(xué)。 TH113 A 10.19328/j.cnki.1006-1630.2017.03.0091 彈性非相似體建模
2 方程求解
3 方法有效性驗(yàn)證
4 接觸問題實(shí)例計(jì)算
5 結(jié)束語