馬錫慧 肖漓
·綜述·
淋巴細(xì)胞亞群成員研究進(jìn)展
馬錫慧 肖漓
淋巴細(xì)胞是人體重要的免疫細(xì)胞,占外周血白細(xì)胞總數(shù)的20%~ 45%,主要分為T細(xì)胞、B細(xì)胞和NK細(xì)胞三大類。根據(jù)細(xì)胞表面標(biāo)志及功能特征,將淋巴細(xì)胞亞群分為CD3+CD4+輔助性T細(xì)胞、CD3+CD8+的細(xì)胞毒性T細(xì)胞、CD19+B細(xì)胞、CD16+CD56+NK細(xì)胞。隨著基礎(chǔ)免疫學(xué)及免疫學(xué)技術(shù)的不斷發(fā)展,臨床和科研工作者不斷地將淋巴細(xì)胞亞群細(xì)化并發(fā)現(xiàn)一些新的亞群,包括γδT細(xì)胞、Th1/Th2細(xì)胞、Th17細(xì)胞、Th9細(xì)胞、Tfh細(xì)胞、Treg細(xì)胞、Breg細(xì)胞、NKT細(xì)胞和NKB細(xì)胞等,淋巴細(xì)胞亞群的內(nèi)容也隨之被賦予了新的定義,現(xiàn)將近年來淋巴細(xì)胞亞群的研究進(jìn)展進(jìn)行綜述。
T淋巴細(xì)胞亞群; B淋巴細(xì)胞亞群; 殺傷細(xì)胞,天然; 淋巴細(xì)胞亞群
隨著免疫學(xué)的發(fā)展和免疫學(xué)技術(shù)的進(jìn)步,橫向來看,淋巴細(xì)胞亞群由相對計數(shù)發(fā)展到絕對計數(shù);縱向來看,淋巴細(xì)胞亞群的細(xì)分更加精細(xì)化,并且各亞群在免疫網(wǎng)絡(luò)中的作用日漸明顯[1]。另外,臨床和科研工作者不斷地發(fā)現(xiàn)新亞群,使得淋巴細(xì)胞亞群在相關(guān)疾病的診療中的作用日趨顯著[2],全面了解淋巴細(xì)胞的內(nèi)容及分類,不僅是基礎(chǔ)免疫學(xué)的范疇,更是臨床診療的有力工具。本文對淋巴細(xì)胞亞群的成員(包括:淋巴細(xì)胞亞群類別、淋巴細(xì)胞亞群的細(xì)分和淋巴細(xì)胞特殊亞群)及研究進(jìn)展進(jìn)行綜述,具體內(nèi)容見表1。
(一)T淋巴細(xì)胞亞群
T淋巴細(xì)胞來源于骨髓的淋巴樣干細(xì)胞,在胸腺中發(fā)育和分化成熟,T細(xì)胞在胸腺的發(fā)育成熟過程中,經(jīng)歷陽性和陰性選擇,分化為CD4+T細(xì)胞和CD8+T細(xì)胞。一般而言,二者均為αβ T細(xì)胞,其中CD4+T細(xì)胞為輔助性T細(xì)胞(helper T cell,Th),在細(xì)胞免疫中發(fā)揮主要作用,并具有協(xié)助體液免疫的功能,可用于評價機(jī)體免疫系統(tǒng)的狀態(tài)。CD8+T細(xì)胞為細(xì)胞毒性T細(xì)胞(cytotoxic T cell,Tc/CTL),是一類具有殺傷活性的效應(yīng)細(xì)胞,主要通過分泌穿孔素、顆粒酶、TNF-α、借助FasL/Fas途徑等方式發(fā)揮細(xì)胞毒效應(yīng)。T淋巴細(xì)胞在外周血中含量最多,占淋巴細(xì)胞總數(shù)的65%~ 75%。正常狀態(tài)下T細(xì)胞各亞群維持在一定的比例,尤其是CD4+/CD8+比值的穩(wěn)定和平衡是機(jī)體發(fā)揮正常免疫功能的關(guān)鍵因素。
(二)B淋巴細(xì)胞
B淋巴細(xì)胞亦來源于骨髓的淋巴樣干細(xì)胞,直接在骨髓內(nèi)分化成熟,B細(xì)胞整個發(fā)育過程分為兩個階段,第1階段為抗原非依賴期,在此過程中,經(jīng)歷膜表面分子的改變和免疫球蛋白的基因重排等,最終產(chǎn)生對抗原具有應(yīng)答能力的成熟B細(xì)胞;第2階段為抗原依賴期,在此過程中,B細(xì)胞經(jīng)歷體細(xì)胞突變、抗原選擇、親和力成熟、Ig類別轉(zhuǎn)換等,最終分化為記憶性B細(xì)胞或漿細(xì)胞,從而發(fā)揮免疫功能。在外周血中B細(xì)胞約占淋巴細(xì)胞總數(shù)的8%~ 15%。CD19分布于除漿細(xì)胞外的B細(xì)胞發(fā)育的各個階段,是B細(xì)胞的特異性標(biāo)志,也是傳統(tǒng)B淋巴細(xì)胞檢測的表面標(biāo)志(CD3-CD19+)。
(三)NK細(xì)胞
NK細(xì)胞主要來源于骨髓,并在骨髓內(nèi)發(fā)育成熟。NK細(xì)胞缺乏T和B細(xì)胞的獨(dú)特標(biāo)志(TCR、BCR),又稱第三類淋巴細(xì)胞。外周血中,NK細(xì)胞約占淋巴細(xì)胞總數(shù)的5%~ 10%,且無需抗原預(yù)先作用,就可直接殺傷腫瘤和病毒感染的靶細(xì)胞,因此在機(jī)體免疫監(jiān)視和早期抗感染免疫過程中發(fā)揮重要作用。NK細(xì)胞主要通過分泌穿孔素和抗體依賴細(xì)胞介導(dǎo)的細(xì)胞毒作用(antibody dependent cell-mediated cytotoxicity,ADCC)作用發(fā)揮抗腫瘤、抗感染和免疫調(diào)節(jié)作用。CD56和CD16是NK細(xì)胞相對特異性的標(biāo)志,也是傳統(tǒng)T淋巴細(xì)胞亞群NK細(xì)胞流式檢測的依據(jù)(CD3-CD16+CD56+)。
(四)淋巴細(xì)胞亞群研究進(jìn)展
T淋巴細(xì)胞介導(dǎo)細(xì)胞免疫,B淋巴細(xì)胞介導(dǎo)體液免疫,NK細(xì)胞介導(dǎo)天然免疫。正常情況下,各淋巴細(xì)胞亞群(包括T細(xì)胞、B細(xì)胞、NK細(xì)胞等)可維持一定數(shù)量和比例,相互作用,穩(wěn)定調(diào)節(jié),維持著機(jī)體的正常免疫功能。當(dāng)不同淋巴細(xì)胞亞群的數(shù)量及功能發(fā)生異常改變時,機(jī)體會產(chǎn)生一序列病理變化和免疫功能障礙,導(dǎo)致疾病的發(fā)生。大量研究表明,淋巴細(xì)胞亞群在腫瘤性疾病[3-5]、感染性疾病[6-8]、器官移植術(shù)后[9-11]、自身免疫性疾病、糖尿病等過程中發(fā)揮重要作用。
Niu等[3]通過檢測淋巴細(xì)胞亞群對DC疫苗療法治療原發(fā)性腦腫瘤患者的短期免疫狀態(tài)進(jìn)行評估,發(fā)現(xiàn)DC疫苗具有誘導(dǎo)產(chǎn)生針對腫瘤細(xì)胞的免疫細(xì)胞毒性效應(yīng)的潛力,進(jìn)而驗證了淋巴細(xì)胞亞群在腦腫瘤中發(fā)揮作用。Lisse等[7]的研究表明T淋巴細(xì)胞亞群在水痘感染急性期發(fā)生顯著變化,包括CD4+T細(xì)胞的減少和CD8+T細(xì)胞的增加。而這些變化在水痘感染一個月后恢復(fù)正常。從而得出結(jié)論:T淋巴細(xì)胞亞群在水痘感染后的病程轉(zhuǎn)歸中發(fā)揮重要作用。Bravo Soto等[9]在術(shù)后12個月內(nèi)連續(xù)監(jiān)測了3組不同免疫抑制劑方案的腎移植受者的外周血淋巴細(xì)胞亞群,包括CD3+T細(xì)胞、CD3+CD4+輔助性T細(xì)胞、CD3+CD8+殺傷性T細(xì)胞、CD19+B細(xì)胞、CD3-CD16+NK細(xì)胞,結(jié)果顯示驍悉能夠通過“天然免疫進(jìn)化”降低早期CD19+B細(xì)胞的數(shù)量,使外周血淋巴細(xì)胞各亞群的數(shù)量發(fā)生變化,進(jìn)而為移植患者的免疫監(jiān)測提供了一種新方法。
Jiang等[12]通過檢測重癥自身免疫病患者在自體造血干細(xì)胞移植治療前后外周血淋巴細(xì)胞亞群的動態(tài)變化,得出結(jié)論:淋巴細(xì)胞亞群異常在SLE患者比RA患者更嚴(yán)重,雖然大多數(shù)自身免疫性T、B細(xì)胞在移植后的患者可有效去除,但非清髓性預(yù)處理是自身免疫病復(fù)發(fā)的危險因素。進(jìn)而表明淋巴細(xì)胞亞群在自身免疫病的診療中的作用不可小覷。Kremer等[13]研究了甲氨蝶呤對活動期類風(fēng)濕性關(guān)節(jié)炎患者血清細(xì)胞因子和T淋巴細(xì)胞亞群的影響,結(jié)果表明RA患者M(jìn)TX治療伴有多種淋巴細(xì)胞亞群及細(xì)胞因子的變化,而這些變化又反過來劇烈影響臨床疾病的活動性和MTX的藥代動力學(xué)。Francisco等[14]檢測了Ⅱ型糖尿病患者的細(xì)胞因子譜和淋巴細(xì)胞亞群,結(jié)果發(fā)現(xiàn)產(chǎn)生循環(huán)IL-10和IL-17的CD3+T細(xì)胞數(shù)量顯著增加,提示這些細(xì)胞因子參與了Ⅱ型糖尿病的免疫病理過程。從而證實(shí)淋巴細(xì)胞亞群在Ⅱ型糖尿病中發(fā)揮重要作用。
表1 淋巴細(xì)胞亞群成員
隨著基礎(chǔ)免疫學(xué)及免疫學(xué)技術(shù)的不斷發(fā)展,淋巴細(xì)胞亞群已經(jīng)不僅僅局限于CD4+T細(xì)胞、CD8+T細(xì)胞、B細(xì)胞和NK細(xì)胞,各亞群不斷細(xì)化并逐步發(fā)現(xiàn)一些新的亞群,比如:除通常所研究的αβ T細(xì)胞之外,γδ T細(xì)胞的作用也越來越受到人們重視,CD4+T細(xì)胞的功能亞群Th1/Th2細(xì)胞、Th17細(xì)胞、Treg細(xì)胞、Tfh等是臨床和科研工作者的研究熱點(diǎn);Breg細(xì)胞、NKT細(xì)胞、NKB細(xì)胞成為醫(yī)學(xué)免疫學(xué)的科研新寵。這些研究使淋巴細(xì)胞亞群的功能不斷擴(kuò)展,在越來越多疾病中發(fā)揮的作用也更加舉足輕重。
(一)T淋巴細(xì)胞亞群
1.γδ T細(xì)胞:按照TCR雙肽鏈的組成分類,T細(xì)胞可分為αβ T細(xì)胞和γδ T細(xì)胞,兩者均為CD3+T細(xì)胞。通常所指T細(xì)胞即為αβ T細(xì)胞,是參與機(jī)體適應(yīng)性免疫應(yīng)答的主要淋巴細(xì)胞亞群。成熟αβ T細(xì)胞多為CD4或CD8單陽性細(xì)胞,其占外周血成熟T細(xì)胞的90%~ 95%,而γδ T細(xì)胞多為CD4-CD8-雙陰性細(xì)胞,僅占外周血成熟T細(xì)胞的5%~10%,其廣泛分布于皮膚和粘膜下,屬于固有免疫細(xì)胞。
已有多項研究表明[15-18],γδ T細(xì)胞不但可以直接識別并殺傷靶細(xì)胞,參與早期抗HIV的天然免疫,而且其分泌的各類細(xì)胞因子有助于誘發(fā)獲得性免疫反應(yīng),在機(jī)體的抗腫瘤、抗感染、抗過敏及自身免疫性疾病中發(fā)揮著重要的作用。Kremer[13]的報道指出γδ T細(xì)胞通過抗原驅(qū)動的方式參與人類纖維性疾病、系統(tǒng)性硬皮病,發(fā)揮抗纖維化作用。Henriques等[17]的研究也證明γδ T細(xì)胞在肺纖維化疾病和系統(tǒng)性硬皮病中發(fā)揮細(xì)胞毒效應(yīng)。Murakami等[18]的研究結(jié)果表明:γδ T細(xì)胞通過分泌IL-23或獨(dú)立機(jī)制在宿主抗克雷伯菌感染所致肺炎的過程中發(fā)揮重要作用。
2. CD4+T細(xì)胞(Th細(xì)胞)功能亞群:Th細(xì)胞并非終末細(xì)胞,接受抗原刺激但尚未分化的Th細(xì)胞稱為Th0細(xì)胞,是不同Th細(xì)胞功能亞群的共同前體,細(xì)胞因子是調(diào)控Th細(xì)胞亞群分化的關(guān)鍵因素。在細(xì)胞因子、抗原特性和激素等因素的影響下,Th0進(jìn)一步分化為Th1、Th2、Th17、Tfh、Treg、Th9、Th22細(xì)胞。微環(huán)境IL-12有利于Th0向Th1的分化,其胞內(nèi)表達(dá)轉(zhuǎn)錄因子STAT4和T-bet,分泌IFN-γ;微環(huán)境IL-4可促進(jìn)Th0細(xì)胞分化為Th2細(xì)胞,其胞內(nèi)表達(dá)轉(zhuǎn)錄因子 GATA-3和STAT6,分泌 IL-4、IL-10、IL-5和 IL-13;微環(huán)境IL-6和TGF-β共同誘導(dǎo)Th0向Th17分化,其胞內(nèi)表達(dá)轉(zhuǎn)錄因子RORγt和STAT3,分泌IL-17;IL-6和IL-21誘導(dǎo)Th0分化為Tfh細(xì)胞;TGF-β誘導(dǎo)Th0分化為Treg細(xì)胞;TGF-β和IL-4誘導(dǎo)Th0分化為Th9細(xì)胞 ;IL-6和TNF-α誘導(dǎo)Th0分化為Th22細(xì)胞。
CD4+Th細(xì)胞亞群并非終末分化細(xì)胞,在特定微環(huán)境中可被重新塑型為其他亞型。微環(huán)境中的細(xì)胞因子調(diào)控轉(zhuǎn)錄因子表達(dá)及表型改變,從而改變信號因子及信號轉(zhuǎn)導(dǎo)通路,最終使T細(xì)胞功能亞群發(fā)生相互轉(zhuǎn)化。CD4+Th細(xì)胞功能亞群的可塑性和相互轉(zhuǎn)化意味著免疫應(yīng)答及調(diào)控的再平衡,也決定了該細(xì)胞在免疫相關(guān)疾病中應(yīng)用的可能性和廣泛性。
Th1和Th2細(xì)胞是最先被發(fā)現(xiàn)的CD4+T細(xì)胞功能亞群,Th1細(xì)胞主要通過所產(chǎn)生的炎性細(xì)胞因子介導(dǎo)細(xì)胞免疫及遲發(fā)型超敏反應(yīng)炎癥;Th2細(xì)胞主要通過分泌Th2型細(xì)胞因子介導(dǎo)體液免疫應(yīng)答,二者在體內(nèi)保持動態(tài)平衡。Th17細(xì)胞可選擇性高分泌IL-17而得名,活化的Th17細(xì)胞主要抵御胞外病原微生物感染,是最早參與抗感染應(yīng)答的效應(yīng)T細(xì)胞。Th1/Th2/Th17的數(shù)量和比例在多種疾病中作用顯著。Choi等[19]報道,辣木葉提取物外用可通過調(diào)節(jié)Th1/Th2/Th17平衡誘發(fā)特應(yīng)性皮炎,從而證明Th1/Th2/Th17在特應(yīng)性皮炎中發(fā)揮作用。Gupta等[20]的研究表明Th1/Th2/Th17及Treg比例在創(chuàng)傷后膿毒癥患者會出現(xiàn)紊亂和失衡,另外,Th2和Th17細(xì)胞數(shù)量的增多預(yù)示創(chuàng)傷后膿毒癥發(fā)生率更高且預(yù)后不良。
調(diào)節(jié)性T細(xì)胞(regulatory T cell,Treg)是一類具有免疫負(fù)調(diào)節(jié)功能的T細(xì)胞亞群,約占外周血CD4+T細(xì)胞的5%~ 10%。根據(jù)CD4+T細(xì)胞來源、表面標(biāo)志、所產(chǎn)生的細(xì)胞因子及作用機(jī)制,可將其分為自然調(diào)節(jié)性T細(xì)胞(natural Treg,nTreg)和誘導(dǎo)型調(diào)節(jié)性 T 細(xì)胞(inducible Treg,iTreg)。Treg細(xì)胞在維持機(jī)體內(nèi)環(huán)境穩(wěn)態(tài)、腫瘤免疫監(jiān)視、誘導(dǎo)移植耐受及自身免疫病發(fā)生中發(fā)揮重要作用。Christiaansen 等[21]以23例呼吸道合胞病毒感染患兒和17例正常對照嬰兒為研究對象,利用流式細(xì)胞術(shù)檢測外周血單個核細(xì)胞的Treg細(xì)胞及24種細(xì)胞因子,研究表明降低Treg的數(shù)量和功能可以適當(dāng)減輕嚴(yán)重呼吸道合胞病毒感染所致的炎癥反應(yīng)。Siemeni等[22]對人源化小鼠肺移植后外周血Treg細(xì)胞進(jìn)行了研究,從而得出結(jié)論細(xì)胞治療合并Treg細(xì)胞移植可能為肺移植后動脈粥樣硬化的治療提供新的策略。
濾泡輔助性T細(xì)胞(T follicular helper cell,Tfh)因定位于淋巴濾泡而得名,表型為CXCR5+CD40 LhiICOShi,高表達(dá) Bcl6,低表達(dá) T-bet、RORγt和 GATA-3等轉(zhuǎn)錄因子,Tfh細(xì)胞主要功能是促進(jìn)B細(xì)胞分化和記憶性細(xì)胞產(chǎn)生。Th9細(xì)胞是近年來新發(fā)現(xiàn)的一類CD4+Th細(xì)胞亞群,因可分泌大量IL-9而得名,其表型特征為CD4+IL-9+IL-4-IL-17-IFNγ-,主要存在于超敏反應(yīng)性疾病患者外周血及正?;蜓装Y皮膚組織。Th22細(xì)胞是2009年在炎癥性皮膚病患者表皮浸潤的Th細(xì)胞中鑒定出的一個新Th細(xì)胞亞群,可以分泌IL-22和 TNF-α,不分泌 IFNγ-、IL-4 和 IL-17。Jeon 等[23]報道阻止Tfh細(xì)胞增殖可以作為動物模型中自身免疫性疾病和同種異體移植排斥反應(yīng)的新一代治療干預(yù)措施。Yamasaki等[24]的研究結(jié)果表明,DC靶向細(xì)胞疫苗借助人工輔助載體細(xì)胞成為一種長期產(chǎn)生抗體的機(jī)制,在此過程中,Tfh細(xì)胞通過Bcl-6途徑發(fā)揮重要的作用。Luk等[25]對73例活動性狼瘡腎炎、13例高血壓硬化癥、25例健康對照者尿液IL-9、IL-10、IL-22的mRNA水平及相應(yīng)轉(zhuǎn)錄因子進(jìn)行定量研究,發(fā)現(xiàn)Th22細(xì)胞的細(xì)胞因子mRNA水平在狼瘡腎伴增生性腎炎中顯著降低,IL-10和IL-22尿mRNA的表達(dá)水平可作為評價活動性狼瘡腎炎和危險分層的標(biāo)志物。Ryba-Stanislawowska等[26]研究發(fā)現(xiàn)Ⅰ型糖尿病患者Th9、Th22細(xì)胞數(shù)量及血漿細(xì)胞因子水平均下調(diào),并認(rèn)為Th9和Th22細(xì)胞參與Ⅰ型糖尿病慢性低水平的炎癥。
3. CD8+T細(xì)胞(Tc細(xì)胞)功能亞群:Tc細(xì)胞是機(jī)體發(fā)揮特異性細(xì)胞毒作用的主要效應(yīng)細(xì)胞,可特異性殺傷靶細(xì)胞,主要參與抗胞內(nèi)感染[27]、抗腫瘤[28]及參與移植排斥反應(yīng)[29]。CD8+T細(xì)胞也并非均一的細(xì)胞群體,但對它的研究遠(yuǎn)不如CD4+T細(xì)胞,除Tc細(xì)胞外,目前研究相對較多的是CD8+Treg細(xì)胞和CD4-CD8-T細(xì)胞(DN T),CD8+Treg細(xì)胞存在于胸腺、淋巴結(jié)和脾臟,在CD8+T細(xì)胞中所占比例不足1%,可直接殺傷活化的T細(xì)胞,或通過分泌IL-10和TGF-β等發(fā)揮免疫抑制作用。外周血DN T細(xì)胞在小鼠器官移植模型中被發(fā)現(xiàn),該亞群能誘導(dǎo)CD8+T細(xì)胞凋亡,從而發(fā)揮負(fù)調(diào)節(jié)作用。
(二)B淋巴細(xì)胞功能亞群
根據(jù)是否表達(dá) CD5,B 細(xì)胞分為 B1(CD5+)和 B2(CD5-)細(xì)胞,B1細(xì)胞屬于固有免疫樣B細(xì)胞,B2細(xì)胞是參與體液免疫應(yīng)答的主要細(xì)胞類別。近年來研究發(fā)現(xiàn),體內(nèi)存在一類調(diào)節(jié)性B細(xì)胞(regulatory B cell,Breg),主要通過分泌IL-10下調(diào)炎癥反應(yīng)、抑制T細(xì)胞免疫從而發(fā)揮免疫負(fù)調(diào)節(jié)作用[30],Breg細(xì)胞也因此成為近年來的研究熱點(diǎn),Kalampokis等[31]的研究結(jié)果顯示,在多種細(xì)胞因子的作用下,自身免疫性疾病患兒的B10細(xì)胞數(shù)量和頻率均下調(diào),從而證明Breg在自身免疫病中發(fā)揮重要作用。Ding T等[32]報道,Breg細(xì)胞不僅在自身免疫病、炎癥和移植中的作用重大,最新研究表明Breg在某些腫瘤的生長和轉(zhuǎn)移中也發(fā)揮不可或缺的作用。
(三)NK細(xì)胞功能亞群
NK細(xì)胞主要來源于骨髓,并在骨髓內(nèi)發(fā)育成熟。NK細(xì)胞的活化受其表面活化性受體和抑制性受體調(diào)控,活化的NK細(xì)胞通過分泌細(xì)胞因子和細(xì)胞殺傷等方式發(fā)揮抗病毒[33-34]、抗腫瘤[35-36]和免疫調(diào)控作用[37]。按照CD56表達(dá)水平,可將人NK細(xì)胞分為兩個亞群:CD56 dimNK細(xì)胞,占外周血NK細(xì)胞的90%,高表達(dá)CD16和殺傷細(xì)胞免疫球蛋白樣受體(KIR),以殺傷功能為主,產(chǎn)生細(xì)胞因子的能力較低;CD56 brightNK細(xì)胞,占外周血NK細(xì)胞總數(shù)的10%,高表達(dá)CD94/NKG2A,低表達(dá)CD16、KIR、CCR7,具有較強(qiáng)分泌細(xì)胞因子的能力,細(xì)胞毒活性較低。
傳統(tǒng)意義上的淋巴細(xì)胞亞群均具有本系相對特異的表面標(biāo)志,而淋巴細(xì)胞亞群中有兩類特殊的群體具有跨系標(biāo)志物,即NKT(natural killer-like T cells,NKT)細(xì)胞和NKB(natural killer-like B cells,NKB)細(xì)胞。
NKT細(xì)胞是一群表面既有T細(xì)胞受體TCR,又有NK細(xì)胞受體的特殊T淋巴細(xì)胞亞群。經(jīng)典NKT細(xì)胞一般為CD4+和DN NKT細(xì)胞,其中NK1.1是NKT細(xì)胞最主要的表面標(biāo)志。NKT細(xì)胞識別由MHC-Ⅰ類樣分子CD1d提呈的脂類抗原,活化后通過分泌細(xì)胞因子、胞吐顆粒等在固有免疫中發(fā)揮調(diào)節(jié)和殺傷作用。NKT細(xì)胞在自身免疫、抗感染免疫和抗腫瘤免疫中發(fā)揮作用[38-39],特別是在自身免疫病中的調(diào)節(jié)作用受到廣泛重視[40-41]。
NKB細(xì)胞是近年來被發(fā)現(xiàn)的一類同時表達(dá)NK細(xì)胞和B細(xì)胞表面標(biāo)志的新型B淋巴細(xì)胞亞群(NK1.1+CD19+CD3-),存在于脾臟和腸系膜淋巴結(jié)中。NKB細(xì)胞有不同于T細(xì)胞和B細(xì)胞的獨(dú)特特征,在感染早期通過分泌IL-18和IL-12誘導(dǎo)NK細(xì)胞和1型先天性淋巴細(xì)胞(ILC1s)生成大量IFN-γ,激活天然免疫和適應(yīng)性免疫,從而對抗微生物感染[42]。
綜上所述,淋巴細(xì)胞作為人體最重要的免疫細(xì)胞,在生理和病理狀態(tài)下都發(fā)揮著不可或缺的作用。淋巴細(xì)胞亞群種類繁多,功能各異,淋巴細(xì)胞亞群的細(xì)分和鑒定已經(jīng)成為當(dāng)代免疫學(xué)發(fā)展的新趨勢,也更加符合臨床和科研的需要,而淋巴細(xì)胞新亞群的研究有助于微環(huán)境免疫疾病機(jī)制的破解。不同微環(huán)境賦予淋巴細(xì)胞亞群獨(dú)特的免疫特性與功能,并介導(dǎo)不同免疫應(yīng)答和病理,但不同淋巴細(xì)胞亞群間復(fù)雜的相互調(diào)節(jié)機(jī)制有待進(jìn)一步闡明。
1 Lv YF, Yan ZY, Chen NY, et al. Analysis of lymphocyte subsets in peripheral blood of patients with aplastic anemia or hypoplastic myelodysplastic syndrome[J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi,2016, 24(5):1505-1510.
2 Rudnicka J, Czerwiec M, Grywalska E, et al. In fl uence of fi ngolimod on basic lymphocyte subsets frequencies in the peripheral blood of multiple sclerosis patients-preliminary study[J]. Cent Eur J Immunol,2015, 40(3):354-359.
3 Niu J, Chang Y, Lu X, et al. Effect of dendritic cell vaccine therapy on lymphocyte subpopulation in refractory primary brain tumor[J]. Indian J Cancer, 2016, 52(4):587-589.
4 Hsieh CT, Luo YH, Chien CS, et al. Induced pluripotent stem cellconditioned medium suppressed melanoma tumorigenicity through the enhancement of Natural-Killer cellular immunity[J]. J Immunother,2016, 39(4):153-159.
5 Shao B, Li HP, Di LJ, et al. Predictive and prognostic value of monitoring lymphocyte subsets in peripheral blood before and after chemotherapy in patients with metastatic breast cancer[J]. Beijing Da Xue Xue Bao, 2016, 48(2):304-309.
6 Yushchuk ND, Gadzhikulieva MM, Balmasova IP, et al. The role of immune factors in the progression of chronic kidney diseases in HIV infection[J]. Ter Arkh, 2016, 88(3):56-61.
7 Lisse IM, Qureshi K, Poulsen A, et al. T-lymphocyte subsets and eosinophil counts in acute and convalescence chickenpox infection: a household study in Guinea-Bissau[J]. J Infect, 2005, 50(2):125-129.
8 Yin M, Zhang H, Xu X, et al. Effects of sanjin tablets on T lymphocyte subsets of peripheral blood of women with recurrent urinary tract infection[J]. Zhongguo Zhong Yao Za Zhi, 2011, 36(16):2294-2296.
9 Bravo Soto JA, Esteban De La Rosa RJ, Luna Del Castillo JD, et al. Effect of mycophenolate mofetil regimen on peripheral blood lymphocyte subsets in kidney transplant recipients[J]. Transplant Proc,2003, 35(4):1355-1359.
10 Calarota SA, Zelini P, De Silvestri A, et al. Kinetics of T-lymphocyte subsets and posttransplant opportunistic infections in heart and kidney transplant recipients[J]. Transplantation, 2012, 93(1):112-119.
11 Cho JH, Yoon YD, Jang HM, et al. Immunologic monitoring of T-Lymphocyte subsets and Hla-Dr-Positive monocytes in kidney transplant recipients: a prospective, observational cohort study[J].Medicine (Baltimore), 2015, 94(44):e1902.
12 Jiang Y, Li TS, Zhao Y, et al. Changes of lymphocyte subsets in autologous hemopoietic stem cell transplantation for severe/refractory autoimmune disease[J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao,2007, 29(3):388-393.
13 Kremer JM, Lawrence DA, Hamilton R, et al. Long-term study of the impact of methotrexate on serum cytokines and lymphocytesubsets in patients with active rheumatoid arthritis: correlation with pharmacokinetic measures[J]. RMD open, 2016, 2(1):e000287.
14 Francisco CO, Catai AM, Moura-Tonello SC, et al. Cytokine profile and lymphocyte subsets in type 2 diabetes[J]. Braz J Med Biol Res,2016, 49(4):e5062.
15 Bank I. The role of γδ T cells in fibrotic diseases[J]. Rambam Maimonides Med J, 2016, 7(4):e0029.
16 Zou C, Zhao P, Xiao Z, et al. γδ T cells in cancer immunotherapy[J].Oncotarget, 2017, 8 (5):8900-8909.
17 Henriques A, Silva C, Santiago M, et al. Subset-speci fi c alterations in frequencies and functional signatures of γδ T cells in systemic sclerosis patients[J]. In fl amm Res, 2016, 65(12):985-994.
18 Murakami T, Hatano S, Yamada H, et al. Two types of interleukin 17A-Producing γδ T cells in protection against pulmonary infection with klebsiella pneumoniae[J]. J Infect Dis, 2016, 214(11):1752-1761.
19 Choi EJ, Debnath T, Tang Y, et al. Topical application of Moringa oleifera leaf extract ameliorates experimentally induced atopic dermatitis by the regulation of Th1/Th2/Th17 balance[J]. Biomed Pharmacother, 2016, 84:870-877.
20 Gupta DL, Bhoi S, Mohan T, et al. Coexistence of Th1/Th2 and Th17/Treg imbalances in patients with post traumatic sepsis[J]. Cytokine,2016, 88:214-221.
21 Christiaansen AF, Syed MA, Ten Eyck PP, et al. Altered Treg and cytokine responses in RSV-infected infants[J]. Pediatr Res, 2016,80(5):702-709.
22 Siemeni T, Kn?fel AK, Madrahimov N, et al. In vivo development of transplant arteriosclerosis in humanized mice reflects alloantigen recognition and peripheral Treg phenotype of lung transplant recipients[J]. Am J Transplant, 2016, 16(11):3150-3162.
23 Jeon YH, Choi YS. Follicular helper T (Tfh) cells in autoimmune diseases and allograft rejection[J]. Immune Netw, 2016, 16(4):219-232.
24 Yamasaki S, Shimizu K, Kometani K, et al. In vivo dendritic cell targeting cellular vaccine induces CD4(+) Tfh cell-dependent antibody against in fl uenza virus[J]. Sci Rep, 2016, 6:35173.
25 Luk CC, Tam LS, Kwan BC, et al. Intrarenal and urinary Th9 and Th22 cytokine gene expression in lupus nephritis[J]. J Rheumatol, 2015,42(7):1150-1155.
26 Ryba-Stanis awowska M, Werner P, Brandt A, et al. Th9 and Th22 immune response in young patients with type 1 diabetes[J]. Immunol Res, 2016, 64(3):730-735.
27 Kato S, Asano N, Miyata-Takata T, et al. T-cell receptor (TCR)phenotype of nodal Epstein-Barr virus (EBV)-positive cytotoxic T-cell lymphoma (CTL): a clinicopathologic study of 39 cases[J]. Am J Surg Pathol, 2015, 39(4):462-471.
28 Nakajima H, Murakami Y, Morii E, et al. Induction of eEF2-speci fi c antitumor CTL responses in vivo by vaccination with eEF2-derived 9mer-peptides[J]. Oncol Rep, 2016, 35(4):1959-1966.
29 Cho S, Dong S, Parent KN, et al. Immune-tolerant elastin-like polypeptides (iTEPs) and their application as CTL vaccine carriers[J]. J Drug Target, 2016, 24(4):328-339.
30 Xiao X, Lao XM, Chen MM, et al. PD-1hi Identifies a Novel Regulatory B-cell Population in Human Hepatoma That Promotes Disease Progression[J]. Cancer Discov, 2016, 6(5):546-559.
31 Kalampokis I, Venturi GM, Poe JC, et al. The regulatory B cell compartment expands transiently during childhood and is contracted in children with autoimmunity[J]. Arthritis Rheumatol, 2017,69(1):225-238.
32 Ding T, Yan F, Cao S, et al. Regulatory B cell: New member of immunosuppressive cell club[J]. Hum Immunol, 2015, 76(9):615-621.
33 Wolter F, Gl?ssner A, Kr?mer B, et al. Hypoxia impairs anti-viral activity of natural killer (NK) cells but has little effect on anti- fi brotic NK cell functions in hepatitis C virus infection[J]. J Hepatol, 2015,63(6):1334-1344.
34 Muntasell A, Costa-Garcia M, Vera A, et al. Priming of NK cell anti-viral effector mechanisms by direct recognition of human cytomegalovirus[J]. Front Immunol, 2013, 4:40.
35 Krzywinska E, Allende-Vega N, Cornillon A, et al. Identification of Anti-tumor Cells Carrying Natural Killer (NK) Cell Antigens in Patients With Hematological Cancers[J]. EBioMedicine, 2015,2(10):1364-1376.
36 Polansky JK, Bahri R, Divivier M, et al. High dose CD11c-driven IL15 is suf fi cient to drive NK cell maturation and anti-tumor activity in a trans-presentation Independent manner[J]. Sci Rep, 2016, 6:19699.
37 Galazka G, Jurewicz A, Domowicz M, et al. HINT1 peptide/Hsp70 complex induces NK-cell-dependent immunoregulation in a model of autoimmune demyelination[J]. Eur J Immunol, 2014,44(10):3026-3044.
38 Viale R, Ware R, Maricic I, et al. NKT cell subsets can exert opposing effects in autoimmunity, tumor surveillance and in fl ammation[J]. Curr Immunol Rev, 2012, 8(4):287-296.
39 Vas J, Mattner J, Richardson S, et al. Regulatory roles for NKT cell ligands in environmentally induced autoimmunity[J]. J Immunol, 2008,181(10):6779-6788.
40 Reis EA, Athanazio DA, Lima I, et al. NK and NKT cell dynamics after rituximab therapy for systemic lupus erythematosus and rheumatoid arthritis[J]. Rheumatol Int, 2009, 29(4):469-475.
41 Aggarwal A, Sharma A, Bhatnagar A. Bi(o)communications among peripheral blood fractions: a focus on NK and NKT cell biology in rheumatoid arthritis[J]. Autoimmunity, 2013, 46(4):238-250.
42 Wang S, Xia P, Chen Y, et al. Natural killer-like B cells prime innate lymphocytes against microbial infection[J]. Immunity, 2016,45(1):131-144.
Research progress in members of lymphocyte subsets
Ma Xihui, Xiao Li.
Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, Basic Research Laboratory of Organ Transplant Institue, the 309th Hospital of Chinese People's Liberation Army, Beijing 100091, China Corresponding author:Xiao Li, Email:xiaolilab309@163.com
Lymphocytes are very important immune cells in the body, accounting for 20% ~ 45% of peripheral leukocytes. The three major subpopulation of lymphocytes are T cells, B cells and NK cells. According to different surface markers and functional characteristics, lymphocytes are mainly divided into CD3+CD4+helper T cells, CD3+CD8+cytotoxic T cells, CD19+B cells and CD16+CD56+NK cells. With the development of basic immunology and immunological techniques,new lymphocyte subsets are proposed, including gamma delta T cells, Th1/Th2 cells, Th17 cells,Th9 cells, Tfh cells, Treg cells, Breg cells, NKT cells, NKB cells, etc.The definition of lymphocyte subsets are refined constantly. The present review summarizes recent research progress of lymphocyte subsets.
T lymphocyte subsets; B lymphocyte subsets; Killer cells, natural;Lymphocyte subsets
2017-01-03)
(本文編輯:李少婷)
10.3877/cma.j.issn.2095-1221.2017.03.009
解放軍第309醫(yī)院院內(nèi)課題(2016MS-002)
100091 北京,解放軍第309醫(yī)院器官移植研究所移植研究室 北京市器官移植與免疫調(diào)節(jié)重點(diǎn)實(shí)驗室
肖漓,Email:xiaolilab309@163.com
馬錫慧,肖漓.淋巴細(xì)胞亞群成員研究進(jìn)展[J/CD].中華細(xì)胞與干細(xì)胞雜志(電子版),2017,7(3):168-172.