李 均, 劉曉靜
(1.重慶師范大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,重慶 401331;2.重慶師范大學(xué) 圖書館,重慶 401331)
廣義E-凸函數(shù)的幾點新發(fā)現(xiàn)*
李 均1, 劉曉靜2**
(1.重慶師范大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,重慶 401331;2.重慶師范大學(xué) 圖書館,重慶 401331)
廣義E-凸函數(shù)在優(yōu)化理論中有著重要的作用.通過對比凸函數(shù)的相關(guān)性質(zhì),得到了廣義E-凸函數(shù)與凸函數(shù)的關(guān)系,對文獻(xiàn)[5]中引理的證明舉出了反例,并對E-凸函數(shù)與E-單調(diào)的等價性給出了重新證明,進(jìn)一步論證了在有限維空間中,f在特定的開集E(M)上任意一點都有上界;最后,針對廣義E-凸函數(shù)已有的性質(zhì)和結(jié)論進(jìn)行了相應(yīng)的推廣.
E-凸集;E-凸函數(shù);擬-E-凸函數(shù);擬-半-E-凸函數(shù);E-單調(diào)
廣義凸性的研究在優(yōu)化理論研究中占有十分重要的地位,E-凸函數(shù)是凸函數(shù)的推廣,具有更廣意義下的凸性.1999年YOUNESS[1]首先提出E-凸集和E-凸函數(shù)的概念,CHEN[2],YOUNESS[3],郝英[4]、王蕾[5]、黃科登[6]、寧剛[7]、王建勇[8]、ZHOU等人[9]對E-凸函數(shù)的性質(zhì)進(jìn)行了大量的研究,并將E-凸函數(shù)推廣到了半-E-凸函數(shù)、擬-半-E-凸函數(shù).彭再云[10]、景書杰[11-12]、王世磊[13]、Beheaded[14]對廣義E-凸函數(shù)的重要性質(zhì)進(jìn)行了研究,得到了E-凸函數(shù)等價命題等一系列重要結(jié)論.羅杰[15]率先研究E-偽凸函數(shù)性質(zhì)及其應(yīng)用,促進(jìn)了廣義E-凸函數(shù)應(yīng)用的發(fā)展.基于上述研究成果,針對文獻(xiàn)[5]中的錯誤引理進(jìn)行了糾正,探究了E-凸函數(shù)與E-單調(diào)的等價性,得到了在特殊映射下擬-E-凸函數(shù)的等價命題,推廣了文獻(xiàn)[12]中擬-半-E-凸函數(shù)的等價形式,進(jìn)一步完善了E凸性理論.
定義1[1]若存在E:Rn→Rn,使得?x,y∈M?Rn,?t∈[0,1],都滿足tE(x)+(1-t)E(y)∈M,則稱集合M為E-凸集.
定義2[1]若M?Rn為E-凸集,且存在映射E:Rn→Rn,使得對?x,y∈M,?t∈[0,1],都滿足f(tE(x)+(1-t)E(y))≤tf(E(x))+(1-t)f(E(y)),則稱f:M?Rn→R為E-凸函數(shù).
定義3[2]若M?Rn為E-凸集,且存在映射E:Rn→Rn,使得對?x,y∈M,?t∈[0,1],都滿足f(tE(x)+(1-t)E(y))≤tf(x)+(1-t)f(y),則稱f:M?Rn→R為半-E-凸函數(shù).
定義4[3]若M?Rn為E-凸集,且存在映射E:Rn→Rn,使得對?x,y∈M,?t∈[0,1],都滿足f(tE(x)+(1-t)E(y))≤max{f(E(x)),f(E(y))},則稱f:M?Rn→R為擬-E-凸函數(shù).
定義5[2]若M?Rn為E-凸集,且存在映射E:Rn→Rn,使得對?x,y∈M,?t∈[0,1],都滿足f(tE(x)+(1-t)E(y))≤max{f(x),f(y)},則稱f:M?Rn→R為擬-半-E-凸函數(shù).
定義6[4]設(shè)非空集合M?Rn,f:M→R,若存在映射E:Rn→Rn,對?x,y∈M,x≠y,都滿足[E(y)-E(x)]T·[f(E(y))-f(E(x))]≥0,稱f在M上E-單調(diào).
定理1 設(shè)M?Rn為E-凸集且E(M)為凸集,則f為M上的E-凸函數(shù)當(dāng)且僅當(dāng)f為E(M)上的凸函數(shù).
證明 (必要性)因為M為E-凸集,對?x,y∈M,?t∈[0,1]有tE(x)+(1-t)E(y)∈M且E(M)?M,又因為E(M)為凸集,有tE(x)+(1-t)E(y)∈E(M)?M,由f為M上的E-凸函數(shù),所以有f(tE(x)+(1-t)E(y))≤tf(E(x))+(1-t)f(E(y)).因此,f為E(M)上的凸函數(shù).
(充分性)對?x,y∈M,有E(x),E(y)∈E(M)?M,由E(M)為凸集,對?t∈[0,1],又有tE(x)+(1-t)E(y)∈E(M),f在E(M)上為凸函數(shù),故f(tE(x)+(1-t)E(y))≤tf(E(x))+(1-t)f(E(y)).根據(jù)定義2,故f為M上的E-凸函數(shù).
文獻(xiàn)[5]中的引理為“設(shè)M為n維歐式空間Rn上的開E-凸集,f在M上具有一階連續(xù)偏函數(shù),則f為M上的E-凸函數(shù)的充要條件是:對任意兩個不同點x,y∈M,有f(E(y))≥f(E(x))+f(E(x))T(E(y)-E(x))”.該引理存在錯誤,在引理的條件中并未保證E(M)為凸集,故在其充分性的證明之中,對0 例1 給定M=(0,5π),f=sinx,f在M上顯然是連續(xù)可導(dǎo)的,對于 下面是對文獻(xiàn)[5]中唯一一個定理的完善,并給出了不同的證明方法. 定理2f為E-凸集M?Rn上可微函數(shù)且E(M)為凸集,則f為M上E-凸函數(shù)當(dāng)且僅當(dāng)f在M上是E-單調(diào). 證明 (必要性)由f為M上E-凸函數(shù),對?x,y∈M,x≠y,?t∈[0,1],有f(tE(x)+(1-t)E(y))≤tf(E(x))+(1-t)f(E(y)). 由E(M)為凸集,則f為E(M)上的凸函數(shù),因為f在M上可微,則有 (1) (2) (充分性)f在M上可微,對?x,y∈M且x≠y,由M是E-凸集,則E(x),E(y)∈E(M)?M,由均值定理可以得到f(E(y))-f(E(x))=〈f(E(ξ)),E(y)-E(x)〉.其中?λ∈(0,1),使得E(ξ)=E(x)+λ(E(y)-E(x)). f(E(y))-f(E(x))=〈f(E(ξ))-f(E(x)),E(y)-E(x)〉+〈f(E(x)),E(y)-E(x)〉≥ 所以f為E(M)上的凸函數(shù),由定理1可得f為M上E-凸函數(shù). 定理4 f:Rn→R,f為Rn上的E-凸函數(shù),E(Rn)為開集,則?x∈Rn,f在E(x)的鄰域內(nèi)有上界. 定理5 M?Rn為E-凸集,h:Rn→R為M擬-E-凸函數(shù),g:R→R為非減函數(shù),則g°h為M上的擬-E-凸函數(shù). 證明M為E-凸集,對?x,y∈M,?t∈[0,1],有tE(x)+(1-t)E(y)∈M,h為擬-E-凸函數(shù),根據(jù)定義4,有h(tE(x)+(1-t)E(y))≤max{h(E(x)),h(E(y))},g為非減函數(shù),則有g(shù)°h(tE(x)+(1-t)E(y))≤g{max{h(E(x)),h(E(y))}}=max{g°h(E(x)),g°h(E(y))}. 由定義4,g°h為M上的擬-E-凸函數(shù). 推論1 若M?Rn為E-凸集且E(M)=M,f為擬-E-凸函數(shù)當(dāng)且僅當(dāng)f為M上的擬凸函數(shù). 下面在特殊的映射E下得到了擬-E-凸函數(shù)的等價命題. 定理6 設(shè)E:Rn→Rn為線性冪等映射,則f:Rn→R為擬-E-凸函數(shù)當(dāng)且僅當(dāng)E-e(f)= {(x,α)∈Rn×R:f(E(x))≤α}為E×I凸集. 證明 (必要性)對?(x1,α),(x2,α)∈E-e(f),要證E-e(f)是E×I凸集,需證?t∈[0,1],有t(E×I)(x1,α)+(1-t)(E×I)(x2,α)∈E-e(f),即證f(E(tE(x1)+(1-t)E(x2)))≤α,因為f為擬-E-凸函數(shù),E為線性冪等映射,所以f(E(tE(x1)+(1-t)E(x2)))=f(tE(x1)+(1-t)E(x2))≤max{f(E(x1)),f(E(x2))}≤α,故E-e(f)為E×I凸集. (充分性)E-e(f)為E×I凸集,設(shè)(x1,f(E(x1))),(x2,f(E(x2)))∈E-e(f), 令α=max{f(E(x1)),f(E(x2))}.對?t∈[0,1],有t(E×I)(x1,f(E(x1)))+(1-t)(E×I)(x2,f(E(x2)))∈E-e(f),所以有f(tE(x1)+(1-t)E(x2))=f(E(tE(x1)+(1-t)E(x2)))≤α=max{f(E(x1)),f(E(x2))},故f為擬-E-凸函數(shù). 定理7 若M?Rn為非空E-凸集,f:M→R為M上的擬凸函數(shù),則f為M上的擬-半-E-凸函數(shù)的充要條件是對?x∈M,都有f(E(x))≤f(x). 此定理是文獻(xiàn)[12]中定理4的適當(dāng)推廣,證明類似. [1] YOUNESS E A.E-convex Sets, E-Convex Functions, and E-Convex Programming[J].Journal of Optimization Theory and Application,1999,102(2):440-446 [2] CHEN X S.Some Properties of Semi-E-Convex Functions[J].Journal of Mathematics Analysis and Applications,2002,275:251-262 [3] YOUNESS E A.Quasi and Strictly Quasi-E-Convex Functions[J].Journal of Statistics and Management System,2001(4):201-210 [4] 郝英.一類E-凸函數(shù)及在最優(yōu)化中的應(yīng)用[D].天津:河北工業(yè)大學(xué),2007 HAO Y.A Class of E-convex Function and Application in Optimization[D].Tianjin:Hebei University of Techn-ology,2007 [5] 王蕾.E-凸函數(shù)和它梯度的E-單調(diào)性的等價性證明[J].西華大學(xué)學(xué)報,2007,26(1):86-87 WANG L.The Proof on Equivalent of E-Convex Function and E-Monotonicity of Its Gradient[J]. Journal of Xihua University,2007,26(1):86-87 [6] 黃科登,馬國棟.E-凸函數(shù)的拓展研究[J]. 玉林師范學(xué)院學(xué)報,2007,28(5):1-4 HUANG K D,MA G D.Extension Research of E-Convx Function[J].Journal of Yulin Normal University,2007,28(5):1-4 [7] 寧剛.E-凸函數(shù)的若干特征[J]. 運籌學(xué)學(xué)報,2007,11(1):121-126 NING G.Some Characterizations of E-convex Functions[J].Or Transactions,2007,11(1):121-126 [8] 王建勇,宋穎,白咸倫.E-擬凸函數(shù)[J].聊城大學(xué)學(xué)報,2003,16(3):16-19 WANG J Y,SONG Y,BAI X L.E-Quasiconvex Function[J].Journal of Liaocheng University,2003,16(3):16-19 [9] ZHOU M.Some New Properties of an E-Convex Function[J].Journal of Hainan Normal University,2012,25(1):5-8 [10] 彭再云.關(guān)于擬-半-E-凸函數(shù)的一個新的判別準(zhǔn)則[J].長春師范學(xué)院學(xué)報,2006,25(1):4-5 PENG Z Y.A New Criteria of Quisi-Semi-E-convex Functions[J]. Journal of Changchun Normal University,2006,25(1):4-5 [11] 景書杰,宋虹穎.幾類廣義凸函數(shù)的一些新性質(zhì)[J]. 聊城大學(xué)學(xué)報,2008,21(4):25-27 JING S J,SONG H Y.New Propertise of Some Kinds of Generalized Convex Functions[J]. Journal of Liaocheng University,2008,21(4):25-27 [12] 景書杰,王世磊.關(guān)于擬-半-E-凸函數(shù)的幾個新結(jié)論[J].河南教育學(xué)院學(xué)報,2015,24(2):9-12 JING S J,WANG S L.Some New Conclusions of Quasi-Semi-E-Convex Function[J].Journal of Henan Institute of Education,2015,24(2):9-12 [13] 王世磊,景書杰,劉爭杰.E-凸函數(shù)的一個等價定理[J].海南師范大學(xué)學(xué)報,2015,28(2):127-130 WANG S L,JING S J,LIU Z J.One Equivalent Theorem of E-Convex Functions[J]. Journal of Hainan Normal University,2015,28(2):127-130 [14] AYACHE B,KHALED S.On E-Convex and Semi-E-Convex Functions for a Linear Map E[J].Applied Mathematical Sciences,2015,9(21):1043-1049 [15] 羅杰.E-偽凸函數(shù)性質(zhì)及在數(shù)學(xué)規(guī)劃中的應(yīng)用[J].重慶工商大學(xué)學(xué)報(自然科學(xué)版),2008,25(5):449-453 LUO J.Some Properties of E-Pseudo-Convex Functions and the Applications in Mathematical Programming[J]. Journal of Chongqing Technology and Business University (Naturnal Science Edition),2008,25(5):449-453 責(zé)任編輯:李翠薇 Some New Findings of Generalized E-Convex Function LI Jun1, LIU Xiao-jing2 (1. School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China;2. Library, Chongqing Normal University, Chongqing 401331, China) The generalizedE-convex function plays an important role in the optimization theory. The relationship between generalizedE-convex function and convex function is obtained by comparing the correlation properties of convex functions. Then a counterexample is given for the proof of the lemma in the literature [5], and the equivalence between theE-convex function and theE-monotone is proved newly. It is further proved thatfhas an upper bound on a specific open setE(M) in a finite dimensional space. Finally, the properties and conclusions of the generalized E-convex function are generalized. E-convex sets;E-convex function; quasi-E-convex function; quasi-semi-E-convex function;E-monotonicity 2016-12-22; 2017-03-15. 基礎(chǔ)科學(xué)與前沿技術(shù)研究(重點) (cstc2015jcyjBX0029). 李均(1992-),男,重慶人,碩士研究生,從事最優(yōu)化理論研究. **通訊作者:劉曉靜(1970-),女,四川南溪人,館員,從事最優(yōu)化理論及其在經(jīng)濟(jì)管理中的應(yīng)用研究. 10.16055/j.issn.1672-058X.2017.0004.004 O174.13 A 1672-058X(2017)04-0020-04