国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

帶積分邊值條件下分?jǐn)?shù)階脈沖微分方程解的存在性*

2017-07-18 11:07周宗福
關(guān)鍵詞:邊值邊值問題不動點

蔣 偉, 周宗福

(安徽大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,合肥 230601)

帶積分邊值條件下分?jǐn)?shù)階脈沖微分方程解的存在性*

蔣 偉, 周宗福**

(安徽大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,合肥 230601)

針對分?jǐn)?shù)階脈沖微分方程解的存在性研究, 提出一類帶積分邊值條件的分?jǐn)?shù)階脈沖微分方程邊值問題; 通過上下解方法, 利用Schauder 不動點定理得到此邊值問題解的存在性結(jié)果; 最后給出了一個例子來說明所得結(jié)果的應(yīng)用性.

積分邊值條件;分?jǐn)?shù)階脈沖微分方程;Schauder不動點定理

0 引 言

近年來, 分?jǐn)?shù)階微分方程應(yīng)用面十分廣泛, 除了在數(shù)學(xué)各方面的應(yīng)用外, 還廣泛應(yīng)用于生物系統(tǒng)的電傳導(dǎo)、流體力學(xué)、粘彈性力學(xué)、電化學(xué)分析、分?jǐn)?shù)控制系統(tǒng)與分?jǐn)?shù)控制器等.分?jǐn)?shù)階微分方程理論吸引了很多學(xué)者研究[1-15].本文研究分?jǐn)?shù)階脈沖微分方程邊值問題解的存在性. 近幾年, 關(guān)于這類問題的研究可以參考文獻[15-18].

在本文中,研究一類積分邊值條件下的分?jǐn)?shù)階脈沖微分方程:

(1)

積分邊值條件:

(2)

1

0=t0

J′=J{t1,t2,…tm},J0=[0,t1]

Jk=(tk,tk+1],k=1,2,…,m

w(t)∈C(J,J+),t-r≤w(t)≤t(t∈J),r>0

文獻[19]研究了無窮區(qū)間上的分?jǐn)?shù)階微分方程積分邊值問題:

文獻[20]研究了如下的分?jǐn)?shù)階脈沖微分方程邊值問題:

非線性邊值條件:

g0(u(0),u(T))=0,g1(u′(0),u′(T))=0

在以上文獻的基礎(chǔ)上,利用Schauder不動點定理討論邊值問題(1)(2)解的存在性.

1 預(yù)備知識

定義1 函數(shù)f的q>0階Riemann-Liouville積分定義為

定義2 函數(shù)f的q>0階Caputo積分定義為

n-1

② 常值函數(shù)的Caputo分?jǐn)?shù)階導(dǎo)數(shù)為0.

根據(jù)引理1,可以得到如下的引理.

引理3 令f(t)=L[J,R], 邊值問題

(3)

的解:

t∈Jk,k=0,1,2,…,m

其中,

證明 令u是式(3)的解, 由引理2,有

其中C1,C2∈R, 因此可得

如果t∈J1, 則

其中d1,d2∈R.因此有

因此

依次類推可得

t∈Jk,k=0,1,2,…,m

于是得到

證畢.

2 主要結(jié)果

定義算子T:PC(J+)→PC(J+),

其中,

顯然,T的不動點就是邊值問題(1)(2)的解.

引理4 算子T是全連續(xù)的.

因此有

因此

也就意味著

所以TD一致有界.

另一方面, 對任意的u∈D,t∈Jk,0≤k≤m,有

因此, 對任意t1,t2∈Jk且t1

所以TD是全連續(xù)的,因此TD在PC(J+)上是相對緊的,所以T是全連續(xù)的.證畢.

下控制函數(shù):

易知Ga(u),gb(u),Ya(u),yb(u),Ha(t,u,w),hb(t,u,w)關(guān)于u,w是單調(diào)不減的, 且

gb(u)≤Ik(u)≤Ga(u)

hb(t,u,w)≤f(t,u,w)≤Ha(t,u,w)

(t,u,w)∈[0,1]×[a,b]×[a,b]

其中,

Ha(s,u(s),u(w(s)))dsdμ(τ)+

Ha(s,u(s),u(w(s)))dsdμ(τ)+

Ha(s,u(s),u(w(s)))dsdμ(τ)+

hb(s,u(s),u(w(s)))dsdμ(τ)+

hb(s,u(s),u(w(s)))dsdμ(τ)+

下證T(S)?S:?v(t)∈S, 有

3 實例分析

下面給出一個例子說明主要結(jié)果的應(yīng)用.

例1 考慮下面的邊值問題:

邊值條件為

由方程(5)可知其中

f(t,u,v)=2t2+cost+sinu+arctanv

(6)

Ha(t,u,v)=4+t+u+v

hb(t,u,v)=t2+sinu+arctanv

4 結(jié) 論

近年來,分?jǐn)?shù)階微分方程成為研究的熱點,由于其初值條件的復(fù)雜性,以及它們某些物理意義還沒有得到普遍認(rèn)可,所以還有大量的工作要做. 本文是研究帶積分邊值條件的分?jǐn)?shù)階脈沖微分方程邊值問題解的存在性. 首先介紹一些定義、引理,然后定義了一個全連續(xù)算子,于是由Schauder不動點定理可知,此算子存在一個不動點,且這個不動點是邊值問題的一個解.

[1] AEI-SAYED A M.On the Fractional Differential Equation[J].Appl Math Comput,1992(49):205-213

[2] IBRAHIM R W,MOMANI S.On the Existence and Uniqueness of Solutions of a Class of Fractional Differential Equations[J].Math Anal Appl,2007(334):1-10

[3] TIAN Y.Differential Equations,Compute[J].Math Appl,2010(59):2601-2609

[4] PODLUBNY I.Fractional Differential Equations[M].San Diego:Academic press,1999

[5] AHMAD B,NIETO J J.Existence Results for Nonlinear Boundary Value Problems of Fractional Integro Differential Equations with Integral Boundary Conditions[J].Boundary Value Problems,2009(2009):11-19

[6] CABALLERO MENA J,HARJANI J,SADARANGANI K.Existence and Uniqueness of Positive and Nondecreasing Solutions for a Class of Singular Fractional Boundary Value Problems[J].Boundary Value Problems,2009(2009):10-20

[7] AHMAD B,NIETO J J.Existence Results for a Coupled System of Nonlinear Fractional Differential Equations with Three-Point Boundary Conditions[J].Computer and Mathematics with Applications,2009(9):1838-1843

[8] GOODRICH C S.Existence of Positive Solution to a Class of Fractional Differential Equations[J].Applied Mathematics Letters,2010(23):1050-1055

[9] ZHANG S Q.Positive Solutions to Singular Boundary Value Problem for Nonlinear Fractional Differential Equation[J].Computer and Mathematics with Applications,2010(3):1300-1309

[10] AHMAD B.Existence of Solutions for Irregular Boundary Value Problems of Nonlinear Fractional Differential Equations[J].Applied Mathematics Letters,2010(4):390-394

[11] MOMANI S,QARALLEH R.An Efficient Method for Solving Systems of Fractional Integro-Differential Equations[J].Computer and Mathematics with Applic-ations,2006(3-4):459-470

[12] HOSSEINNIA S H,RANJBAR A,MOMANI S.Using an Enhanced Homotopy Perturbation Method in Fractional Differential Equations Via Deforming the Linear Part[J].Computational and Mathematics with Applications,2008(12):3138-3149

[13] ABDULAZIZ O,HASHIM I,HOMANI S.Application of Homotopy-Perturbation Method to Fractional IVPs[J].Journal of Computational and Applied Mathematics,2008(2):574-584

[14] WANG C Y,WANG R F,WANG S,et al.Positive Solution of Singular Boundary Value Problem for a Nonlinear Fractional Differential Equation[J].Boundary Value Problems,2011(2011):12-20

[15] BAINOV D D,SIMEONOV P S.Impulsive Differential Equations,Periodic Solutions and Applications[M].New York:Longman Scientific and Technical Group Limited,1993

[16] LAKSHMIKANTHAM V,BAINOV D D,SIMEONOV P S.Theory of Impulsive Differential Equations[M].London:World Scientific and Singapore-London,1989

[17] BENCHOHRA M,HENDERVON J,NTOUYAS S K.Impulsive Differential Equations and Inclusions[M].New York:Hindawi Publishing Corporation,2006

[18] WANG J R,ZHOU Y,FECKAN M.On Recent Developments in the Theory of Boundary Value Problems for Impulsive Fractional Differential Equations[J].Computers and Mathematics with Applications,2012(64):3008-3020

[19] GUO L,ZHANG X.Existence of Positive Solutions for a Class of Fractional Differential Equations with Integral Boundary Value Condition on Infinite Interval[J].J Sys Sci Math Scis,2014(34):752-762

[20] KILBAS A A,HARIM SRIVASTAVA J,TRUJLLO J.Theory and Applications of Fractional Differential Equations[M].North-hdland Mathematics Shudies,Amsterdam:Elsevier Science B V,2006

責(zé)任編輯:李翠薇

The Existence of Solution for Impulsive Fractional Differential Equations with Integral Boundary Value Condition

JIANG Wei, ZHOU Zong-fu

(School of Mathematical Science, Anhui University, Hefei 230601, China)

For the existence of solution to impulsive fractional differential equations, this paper proposes boundary value problems of impulsive fractional differential equations with integral boundary value condition, and the existence of solution for boundary value problems is obtained by upper and lower solutions together with Schauder fixed point theorem. Finally, an example is given to illustrate the application of the obtained results.

integral boundary value condition; impulsive fractional differential equation; Schauder fixed point theorem

2016-11-23;

2017-01-17.

國家自然科學(xué)基金(11371027);安徽省自然科學(xué)基金(1608085MA12).

蔣偉(1992-),女,安徽滁州人,從事泛函微分方程的研究.

**通訊作者:周宗福(1964-),男,安徽合肥人,教授,從事泛函微分方程的研究.E-mail:zhouzf12@126.com.

10.16055/j.issn.1672-058X.2017.0004.005

O175

A

1672-058X(2017)04-0024-08

猜你喜歡
邊值邊值問題不動點
Riech型Edelstein不動點定理
一類帶有Slit-strips型積分邊值條件的分?jǐn)?shù)階微分方程及微分包含解的存在性
臨界Schr?dinger映射非齊次初邊值問題的有限差分格式
振蕩Robin混合邊值齊次化問題
帶有積分邊界條件的奇異攝動邊值問題的漸近解
一類抽象二元非線性算子的不動點的存在性與唯一性
帶有積分邊值條件的兩項分?jǐn)?shù)階微分方程正解的存在性
Neumann邊值齊次化問題:W1,p強收斂估計
活用“不動點”解決幾類數(shù)學(xué)問題
不動點集HP1(2m)∪HP2(2m)∪HP(2n+1) 的對合
阳朔县| 南汇区| 双桥区| 宁城县| 石河子市| 五常市| 库伦旗| 天祝| 永川市| 鹿泉市| 抚顺县| 高青县| 彝良县| 锦州市| 康平县| 沭阳县| 于都县| 福州市| 浙江省| 南开区| 屏东市| 九龙县| 宜黄县| 融水| 罗平县| 玛纳斯县| 尖扎县| 黎川县| 瑞丽市| 靖江市| 阳山县| 兰州市| 长春市| 田东县| 英超| 禹城市| 冕宁县| 昆明市| 尉犁县| 青海省| 灵川县|