楊冬梅, 朱 勤, 李 娜, 郭立云, 張曉帆, 張潔瑩, 胡 敏, 代解杰
(1. 云南省第二人民醫(yī)院眼科中心 昆明醫(yī)科大學(xué)第四附屬醫(yī)院眼科, 昆明 650021; 2. 中國醫(yī)學(xué)科學(xué)院/北京協(xié)和醫(yī)學(xué)院醫(yī)學(xué)生物學(xué)研究所, 昆明 650118)
·論 著·
樹鼩形覺剝奪性近視模型的建立及觀察
楊冬梅1, 朱 勤1, 李 娜2, 郭立云1, 張曉帆1, 張潔瑩1, 胡 敏1, 代解杰2
(1. 云南省第二人民醫(yī)院眼科中心 昆明醫(yī)科大學(xué)第四附屬醫(yī)院眼科, 昆明 650021; 2. 中國醫(yī)學(xué)科學(xué)院/北京協(xié)和醫(yī)學(xué)院醫(yī)學(xué)生物學(xué)研究所, 昆明 650118)
目的 建立樹鼩性成熟期及成年早期形覺剝奪性近視(FDM)模型,探討年齡在近視發(fā)生發(fā)展中的作用及以視網(wǎng)膜形態(tài)變化為主的局部視網(wǎng)膜機(jī)制與近視的關(guān)系。方法 4月齡和5月齡樹鼩各30只,隨機(jī)分為空白對照組、遮蓋組。遮蓋組右眼遮蓋作為實驗眼,左眼開放作為自身對照眼。用自制半透明眼罩建立形覺剝奪近視模型,然后撤出干預(yù)因素,分別于遮蓋3周、6周測量各組屈光度及眼軸長度; 于遮蓋6周觀察視網(wǎng)膜厚度及視網(wǎng)膜各層細(xì)胞數(shù)目變化情況。結(jié)果 4月齡和5月齡樹鼩遮蓋右眼3周后,遮蓋眼遠(yuǎn)視度數(shù)均有所降低,但與自身對照眼相比差異無統(tǒng)計學(xué)意義(P>0.05); 而遮蓋6周后: 兩組的屈光度和眼軸與對照眼比較均有明顯差異 (P<0.05); 在遮蓋期間,形覺剝奪眼眼軸不斷增長,近視度數(shù)也逐漸增加,二者有很好的直線負(fù)相關(guān)關(guān)系; 并且4月齡組所誘導(dǎo)出的近視程度高于5月齡組 (P<0.05)。形覺剝奪可引起各層視網(wǎng)膜普遍變薄,有核細(xì)胞層、感光細(xì)胞層、內(nèi)核層、神經(jīng)節(jié)細(xì)胞層中胞核數(shù)減少,排列稀疏紊亂。結(jié)論 形覺剝奪可以誘導(dǎo)性成熟期及成年早期樹鼩的近視形成及視網(wǎng)膜形態(tài)發(fā)生變化。
樹鼩; 形覺剝奪性近視(FDM); 視網(wǎng)膜形態(tài)學(xué)
世界各地的青少年近視患病率明顯增高,且絕大部分為病理性近視[1-5]。我國學(xué)齡期青少年近視眼患病率高達(dá)70%~80%, 位居世界第二位,且發(fā)病率呈上升趨勢[6-8]。因此,闡明青少年近視的發(fā)生機(jī)制并有效干預(yù)近視的發(fā)生發(fā)展具有重要意義。本實驗通過選擇與人類視覺系統(tǒng)高度相似的4月齡和5月齡樹鼩作為實驗動物[9-12],采用改良的自制半透明眼罩遮蓋實驗眼,造成形覺剝奪成像障礙,建立并誘導(dǎo)出樹鼩性成熟期及成年早期形覺剝奪性近視(FDM)模型,探討年齡在近視發(fā)展中的作用;并從形態(tài)學(xué)方面,初步探索局部視網(wǎng)膜機(jī)制在近視形成中的作用。
1.1 實驗動物及模型建立和分組
排除先天性近視及其他眼部疾患的4月齡及5月齡雄性健康實驗用樹鼩各3 0只,體質(zhì)量120~200 g,由昆明醫(yī)科大學(xué)實驗動物中心提供[SCXK(滇)K2013-0002]。將4月齡、5月齡樹鼩各隨機(jī)分為空白對照組和遮蓋組,每組15只。A0組: 4月齡空白對照組;A組(4月齡遮蓋組): 右眼遮蓋作為實驗眼,左眼開放作為自身對照眼,于遮蓋3周(A3)和6周(A6)時測量眼軸及屈光度; B0組: 5月齡空白對照組; B組(5月齡單純遮蓋組): 右眼遮蓋,左眼開放作為自身對照眼,于遮蓋3周(B3)和6周(B6)時測量眼軸及屈光度。將自制半透明眼罩(外徑1.428 mm,內(nèi)徑1.314 mm),用1-0黑絲線縫于實驗組樹鼩右眼內(nèi)外眥皮膚處,深達(dá)骨膜,打活結(jié)固定(以備定期進(jìn)行眼罩消毒),并在眼罩上打孔供透氣用(圖1)。室內(nèi)人工飼養(yǎng),自然晝夜節(jié)律,自由進(jìn)食飲水, 室溫22~28 ℃。遮蓋過程中,隔日觀察遮蓋情況,縫線松動或脫落立即重新縫合。
圖1 半透明眼罩遮蓋右眼建立形覺剝奪模型
1.2 主要儀器設(shè)備和試劑
復(fù)方托吡咔胺滴眼液,規(guī)格: 10 mL/支,批號: M584571,鹽酸奧布卡因滴眼液,規(guī)格: 20 mL: 80 mg/支,批號: J20100128, 均為日本Santen參天制藥(中國)有限公司; 戊巴比妥鈉, 規(guī)格: 50 mg/瓶,美國Sigma公司,批號: P3761; 外徑千分尺,中國LINKS/哈量,型號: 300; A超增益矯正儀器,天津邁達(dá)公司,型號: ODM-2100S; 帶狀檢影鏡,蘇州六六公司,型號: YZ24。
1.3 眼球生物學(xué)參數(shù)測量
1.3.1 屈光度測量 動物在安靜狀態(tài)時,于結(jié)膜囊點質(zhì)量分?jǐn)?shù)為1%復(fù)方托吡咔胺滴眼液共3次(間隔10 min),充分散瞳0.5 h后于暗室內(nèi)行視網(wǎng)膜檢影。動物頭部位置固定,工作距離為0.50 m,以0.25D間隔在水平及垂直子午線上帶狀光檢影,散光以半量計入球鏡,每眼重復(fù)測量3次取平均值。1.3.2 眼軸測量 鹽酸奧布卡因滴眼液共3次(間隔3 min),調(diào)整A超增益矯正儀器后,自動模式下測量眼軸長度(取角膜頂點到眼球后極部玻璃體視網(wǎng)膜界面的距離) 6次,精確到0.01 mm,取平均值。各時間段生物測量結(jié)束后,于各組隨機(jī)取1只樹鼩用質(zhì)量分?jǐn)?shù)3%戊巴比妥(0.1 mL/kg)深度麻醉后迅速摘除眼球后,用外徑千分尺測量樹鼩眼球前后徑(圖2)。
本實驗設(shè)計采用單盲法,檢影驗光及眼軸測量均由同一位專業(yè)人員操作,實驗過程中具體的分組方法及干預(yù)措施,操作人員均不知情。
1.4 視網(wǎng)膜形態(tài)學(xué)觀察
于遮蓋6周時, 腹腔內(nèi)注射過量質(zhì)量分?jǐn)?shù)3%戊巴比妥鈉深度麻醉樹鼩,在樹鼩上方、鼻側(cè)鞏膜縫線標(biāo)記后立即摘出眼球,放入新鮮配制的混合固定液(體積分?jǐn)?shù)40%甲醛、冰醋酸、蒸餾水、體積分?jǐn)?shù)95%乙醇,按2∶1∶7∶10的比例配制)中,4 ℃固定24 h,同時顯微鏡下用1 mL注射器刺破角膜,向玻璃體腔內(nèi)注射少量固定液,以便充分固定和防止視網(wǎng)膜脫離,待組織變硬后在顯微鏡下去除眼前節(jié),將眼球壁全層完整分離。所取標(biāo)本以流水沖洗24 h,然后常規(guī)梯度乙醇脫水,二甲苯透明, 石蠟包埋, 連續(xù)切片5張, 每張切片厚度4 mm, 1張用于HE染色, 2張用于TUNEL染色, 其余備用。用三乙氧基硅烷(APES)處理過的玻片收取組織切片, 恒溫箱60 ℃烤片3~4 h。光鏡下觀察HE切片中的視網(wǎng)膜厚度及各層細(xì)胞形態(tài)學(xué)變化。
圖2 眼球前后徑及眼軸的測量
1.5 統(tǒng)計學(xué)分析
本實驗所有數(shù)據(jù)均采用表示,應(yīng)用統(tǒng)計軟件SPSS17.0進(jìn)行數(shù)據(jù)檢驗。同一時間點雙眼比較采用配對t檢驗,不同時間點的數(shù)據(jù)比較采用單因素方差分析(ANOVA),組間兩兩比較比較采用LSD法,不同年齡組同一時間點數(shù)據(jù)比較用配對t檢驗,眼軸與屈光度關(guān)系采用Person相關(guān)性分析,P<0.05為差異有統(tǒng)計學(xué)意義。
2.1 眼球生物參數(shù)測量
A0組、B0組雙眼及其他各組左眼隨生長發(fā)育屈光度呈生理性遠(yuǎn)視化發(fā)展,眼軸逐漸延長; A3組右眼遠(yuǎn)視度數(shù)有所降低, 眼軸較左眼延長約0.05 mm; A6組右眼屈光度與左眼的差值為3.49D,呈明顯近視漂移,眼軸較左眼延長0.33 mm; B3組右眼屈光度及眼軸與左眼無明顯差異; B6組右眼誘導(dǎo)出的相對近視程度約為2.56 D,眼軸比左眼增長0.23 mm。將各組右眼的屈光度及眼軸長度差值進(jìn)行單因素方差分析,除A0組與A3組、B0組與B3組外,其他各組間比較均有差異(表1,表2)。
將A6組雙眼屈光度差值(d1)及眼軸的差值(d2)與B6組進(jìn)行比較,A6組誘導(dǎo)出的屈光度及眼軸數(shù)值明顯高于B6組 (表3)。并且在遮蓋期間,隨著形覺剝奪眼眼軸不斷增長,近視度數(shù)也逐漸增加,二者有很好的直線負(fù)相關(guān)關(guān)系(A6組r=-0.926,P<0.01; B6組r=-0.922,P<0.01)。
表1 4月齡樹鼩各組屈光度、眼軸長度比較Table 1 Four months tree shrews at the age of diopter and axial length contrast
表2 5月齡樹鼩各組屈光度、眼軸長度比較Table 1 Five months tree shrews at the age of diopter and axial length contrast
表3 4月齡和5月齡樹鼩形覺剝奪6周后雙眼屈光度與眼軸差值比較Table 3 Form deprivation after six weeks of age in four and five months at the age of tree shrew binoculus diopter difference and axial length difference
2.2 視網(wǎng)膜形態(tài)變化觀察
光學(xué)顯微鏡下可見, A0組和B0組雙眼視網(wǎng)膜厚度及各層細(xì)胞核數(shù)無明顯差別(圖3, 圖4); A6組和B6組實驗眼與對照眼相比視網(wǎng)膜各層普遍變薄,尤以神經(jīng)纖維層、內(nèi)叢狀層、內(nèi)核層最為明顯(圖5,圖6); 而有核細(xì)胞層胞核數(shù)減少、排列紊亂,尤以感光細(xì)胞層、內(nèi)核層最為明顯; 感光細(xì)胞層胞核明顯減少、內(nèi)外節(jié)排列紊亂,內(nèi)核層胞核層數(shù)明顯減少、排列稀疏(圖7,圖8)。
人類正視化過程中眼球發(fā)育經(jīng)歷了兩個階段,嬰兒期:此期眼軸發(fā)育較快, 2~3年增加約5 mm,遠(yuǎn)視度數(shù)明顯降低; 青少年期:此期約持續(xù)10年甚至更長的時間,眼球生長速度變緩,眼軸僅增加1 mm,屈光狀態(tài)向正視眼方向繼續(xù)發(fā)展[13,14]。但是異常的視覺環(huán)境可以改變這種眼球正視化的既定模式以適應(yīng)新的視覺刺激,使眼球生長失去調(diào)控,眼軸過度延長導(dǎo)致屈光不正。在經(jīng)典的動物實驗性近視模型中,F(xiàn)DM可以通過眼瞼縫合或戴彌散鏡片等方式,使物像無法在視網(wǎng)膜上聚焦,視覺系統(tǒng)缺乏相應(yīng)的反饋信號,眼球生長失去調(diào)控,過度延長而發(fā)生[15-18]。國內(nèi)外目前比較成熟的FDM動物模型包括: 雞、豚鼠、樹鼩、獼猴、松鼠猴和嚙齒類動物等[19-23]。
圖3 A0組樹鼩視網(wǎng)膜(HE×400)Figure 3 A0group of retina in tree shrew (HE×400)
圖4 B0組樹鼩視網(wǎng)膜(HE×400)Figure 4 B0group of retina in tree shrew (HE×400)
圖5 A6組樹鼩視網(wǎng)膜(HE×400)Figure 5 A6group of retina in tree shrew (HE×400)
圖6 B6組樹鼩視網(wǎng)膜 (HE×400)Figure 6 B6group of retina in tree shrew (HE×400)
圖7 A6組樹鼩視網(wǎng)膜的感光細(xì)胞層(紅色→)、內(nèi)核層(→) (HE×400)Figure 7 Photoreceptor cell layer (紅色→) and inner nuclear layer (→) of retina of A6 group in tree shrew (HE×400)
圖8 B6組樹鼩視網(wǎng)膜的感光細(xì)胞層(紅色→)、內(nèi)核層(→) (HE×400)Figure 8 Photoreceptor cell layer (紅色→) and inner nuclear layer (→) of retina of B6 group in tree shrew (HE×400)
盡管對FDM進(jìn)行了大量實驗研究,然而多數(shù)經(jīng)典的實驗動物模型幾乎都采用眼球發(fā)育敏感期的嬰幼兒模型,那么進(jìn)入青春期后以及成年早期,正視化機(jī)制是否依然發(fā)揮作用;在正視化的末期或結(jié)束后,異常視覺的輸入能否破壞眼球原有生長模式,從而產(chǎn)生近視。大量的流行病學(xué)統(tǒng)計[24-26]及相關(guān)研究表明[18,27-28],人類的近視絕大部分是從正視化的末期(大約7~9 歲左右)開始出現(xiàn),且高發(fā)于眼球發(fā)育的第二階段(青少年期),即人類FDM形成的最敏感時期為8~16歲; 并且成年后正視化機(jī)制仍在發(fā)揮作用, 只是表現(xiàn)方式發(fā)生了變化[18,29]。研究表明[30],暗光下雞可以形成近視眼,暗光環(huán)境中主要是視錐細(xì)胞受影響; 以視錐細(xì)胞為主的動物(如松鼠)對形覺剝奪極為敏感[31],而以視桿細(xì)胞為主的貓對形覺剝奪不敏感[32]; 用甲酞縮肌胺選擇性損傷視錐細(xì)胞后,雞對形覺剝奪的反應(yīng)明顯減輕[33];說明以視錐細(xì)胞為主的局部視網(wǎng)膜作用機(jī)制在FDM的形成中有重要作用。用外源性甲狀腺素抑制劑喂養(yǎng)性成熟期的大鼠和小鼠,造成與甲狀腺激素受體β缺陷時相同的表現(xiàn): 中波長視蛋白表達(dá)減少,短波長視蛋白普遍表達(dá)增多[34]。說明青春期(性成熟后)視錐細(xì)胞的視蛋白表達(dá),仍具有一定的可塑性,但是鼠的視網(wǎng)膜以視桿細(xì)胞為主,且其視覺系統(tǒng)與人類相差甚大。因此,選擇與人類正視化機(jī)制存在共性及視錐細(xì)胞為主的動物為研究對象,建立青少年期動物的FDM模型,研究結(jié)果才更具有比較醫(yī)學(xué)意義。
樹鼩具有發(fā)達(dá)的視覺系統(tǒng)和一些靈長類動物的視覺特征,雙眼視覺和色覺都很發(fā)達(dá), 它的光感受器以視錐細(xì)胞為主(視桿細(xì)胞少于4%),為二色視、晝行性動物, 是國內(nèi)外較成熟的近視眼動物模型。據(jù)文獻(xiàn)報道,樹鼩在正視化過程中眼球發(fā)育的兩個階段與人類接近,與人類的正視化機(jī)制存在共性[9,11,12,35,36]。根據(jù)眼部各屈光成分及眼軸發(fā)育曲線可知: 15~18周齡(4月齡左右)的樹鼩相當(dāng)于人類的青少年時期(10~15歲), 此時正是人類近視的高發(fā)期; 20周齡(近5月齡)相當(dāng)于成年早期(18~20歲)[12]。因此,本實驗選擇與人類視覺系統(tǒng)發(fā)育較接近的青春期(4月齡)和成年早期(5月齡)樹鼩作為實驗動物,采用改良的自制半透明眼罩遮蓋實驗眼,造成形覺剝奪成像障礙,結(jié)果表明誘導(dǎo)并建立了青春期及成年早期樹鼩單眼FDM動物模型。
樹鼩出生15 d左右睜眼時屈光狀態(tài)為+25D,然后迅速下降,30 d后基本穩(wěn)定在+5D左右,眼軸長約7.8 mm[37]。本實驗中,出生4月齡的樹鼩屈光度約為7.00 D,眼軸為7.80 mm,出生5月齡時屈光度下降約0.75 D,眼軸增加0.02 mm,與Siegwart等[37]和Norton等[10]的研究結(jié)果一致,即樹鼩性發(fā)育成熟后眼球處于緩慢發(fā)育階段,眼軸緩慢變長,趨于正視。4月齡和5月齡樹鼩在遮蓋3周后屈光度和眼軸變化不明顯,仍然呈高度遠(yuǎn)視狀態(tài);而遮蓋6周后,4月齡和5月齡樹鼩則分別誘導(dǎo)出的相對近視程度為3.49 D和2.56 D,眼軸相對增長約0. 33 mm和0.23 mm,均明顯形成了近視; 4月齡樹鼩所形成的近視程度遠(yuǎn)高于5月齡,這與Siegwart等[37]提出的在樹鼩青春期和成年早期可以成功誘導(dǎo)出近視模型的觀點相一致。此外,遮蓋眼的屈光度和眼軸長度之間存在負(fù)性線性相關(guān)關(guān)系;證實了形覺剝奪主要造成樹鼩遮蓋眼眼軸的延長,形成的近視屬軸性近視,且剝奪發(fā)生越早、持續(xù)時間越長,其近視程度越重。
盡管樹鼩的視網(wǎng)膜厚度與人類相比較薄, 但其視網(wǎng)膜結(jié)構(gòu)及主要組成細(xì)胞與人類極為相似[38,39]。本實驗結(jié)果顯示: 隨形覺剝奪時間延長至6周時,近視形成, 樹鼩視網(wǎng)膜全層普遍變薄, 尤以內(nèi)核層、內(nèi)叢狀層、神經(jīng)纖維層最為明顯,而有核細(xì)胞層感光細(xì)胞層、內(nèi)核層、神經(jīng)節(jié)細(xì)胞層中不僅胞核數(shù)減少, 而且排列稀疏紊亂,與一些研究者[40-43]對豚鼠FDM視網(wǎng)膜形態(tài)學(xué)的研究結(jié)果一致。
綜上所述, 本實驗研究表明, 在性成熟期以及成年早期樹鼩的眼球發(fā)育過程中,正視化機(jī)制仍然發(fā)揮作用,形覺剝奪仍然可以對此年齡段樹鼩的屈光狀態(tài)及視網(wǎng)膜形態(tài)造成明顯影響,初步證實了建立與人類視覺發(fā)育比較接近的形覺剝奪性動物近視模型的可行性。從實驗結(jié)果推測, 以感光細(xì)胞為主的視網(wǎng)膜細(xì)胞減少可能是高度近視眼患者永久性視網(wǎng)膜變薄、視功能障礙的重要原因之一。如果能從視錐細(xì)胞發(fā)育分化調(diào)控及其可塑性研究的途徑入手并予以有效地干預(yù),將會為病理性近視的藥物治療提供新的思路, 這也是本課題下一步研究的重點。
[1] Chow YC, Dhillon B, Chew PT, et al. Refractive errors in Singapore medical students[J]. Singapore Med J, 1990, 31 (5):472-473.
[2] Wong TY, Foster PJ, Hee J, et al. Prevalence and risk factors for refractive errors in adult Chinese population in Singapore [J]. Invest Ophthalmol Vis Sci, 2000, 41(9):2486-2494.
[3] Mohan M, Pakrasi S, Zutshi R. Myopia in India[J]. Acta Ophthalmol Suppl, 1988, 185:19-23.
[4] Fledelius HC. Myopia prevalence in Scandinavia.A survey, with emphasis on factors of relevance for epidemiological refraction studies in general[J]. Acta Ophthalmol Suppl, 1988, 185:44-50.
[5] Sperduto RD, Seigel D, Roberts J, et al. Prevalence of myopia in the United states[J]. Arch Ophthalmol, 1983, 101(3):405-407.
[6] Saw SM, Shih-Yen EC, Koh A, et a1. Interventions to retard myopia progression in children:an evidence-based update [J].Ophthalmology, 2002, 109(3):415-421.
[7] Lin LL, Chen CJ, Hung PT, et al. Nation-wide survey of myopia among school children in Taiwan, 1986[J]. Acta Ophthalmol Suppl, 1988, 185:29-33.
[8] Wilson A, Woo G.A review of the prevalence and causes of myopia[J]. Singapore Med J, 1989, 30(5):479-484.
[9] Norton TT, McBrien NA. Normal development of refractive state and ocular component dimensions in the tree shrew (Tupaia belangeri )[J]. Vision Res, 1992, 32(5):833- 842.
[10] Siegwart JT Jr, Norton TT. The susceptible period for deprivation induced myopia in tree shrew[J]. Vision Res, 1998, 38(22):3505-3515.
[11] JiangBC, Woessner WM. Vitreous chamber elongation is responsible for myopia development in a young adult [J]. Optom Vis Sci, 1996, 73(4):231-234.
[12] McBrien NA, Adams DW. A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group.Refractive and biometric findings[J]. Invest Ophthalmol Vis Sci, 1997, 38(2):321-333.
[13] Larsen JS. The sagittal growth of the eye. 3. Ultrasonic measurement of the posterior segment ( axial length of the vitreous) from birth to puberty[J]. Acta Ophthalmol(Copenh), 1971, 49(3):441- 453.
[14] Wiesel TN,Raviola E.Myopia and eye enlargement after neonatal lid fusion in monkeys[J]. Nature, 1977, 266(5597): 66-68.
[15] Marsh-Tootle WL, Norton TT. Refractive and structural measures of lid-suture myopia in tree shrew[J]. Invest Ophthalmol Vis Sci, 1989, 30(10):2245-2257.
[16] Qiao-Grider Y, Hung LF, Kee CS, et al. Recovery from formdeprivation myopia in rhesus monkeys[J]. Invest Ophthalmol Vis Sci, 2004, 45(10):3361-3372.
[17] Lu F, Zhou X, Zhao H, et al. Axial myopia induced by a monocularly-deprived facemask in guinea pigs: A non-invasive and effective model[J]. Exp Eye Res, 2006, 82(4):628-636.
[18] Grosvenor T. Reduction in axial length with age: an emmetropizing mechanism for the adult eye? [J]. Am J Optom Physiol Opt, 1987, 64 (9):657-663.
[19] Wildsoet C, Wallman J. Choroidal and scleral mechanisms of compensation for spcetacle lenses in chicks[J]. Vision Res, 1995, 35(9):1175-1194.
[20] Wallman J, Gottlieb MD, Rajaram V, et al. Local retinal regions control local eye growth and myopia[J]. Science, 1987, 237 (4810):73-77.
[21] Raviola E,Wiesel TN. Effect of dark-rearing on experimental myopia in monkeys[J]. Invest Ophthalmol Vis Sci, 1978, 17 (6):485-488.
[22] Schaeffel F, Howland HC. Properties of feedback loops controlling eye growth and refractive state in the chicken[J]. Vision Res, 1991, 31(4):717-734.
[23] Hu M, Hu Z, Xue L, et al. Guinea pigs reared in a monochromatic environment exhibit changes in cone density and opsin expression[J]. Exp Eye Res, 2011, 93(6):804-809.
[24] Zhao J, Pan X, Sui R, et al. Refractive error study in children: results from Shunyi District, China[J]. Am J Ophthalmol, 2000,129(4):427-435.
[25] He M, Huang W, Zheng Y, et al. Refractive error and visual impairment in school children in rural southern China[J]. Ophthalmology, 2007, 114(2):374-382.
[26] He M, Zeng J, Liu Y, et al. Refractive error and visual mipairment in urban children in southern china[J]. Invest Ophthalmol Vis Sci, 2004, 45(3):793-799.
[27] Rada JA, Nickla DL, Troilo D, et al. Decreased proteoglycan synthesis associated with form deprivation myopia in mature primate eyes[J].Invest Ophthalmol Vis Sci, 2000, 41 (8): 2050-2058.
[28] O’Leary DJ, Millodot M.Eyelid closure causes myopia in humans[J]. Experientia, 1979, 35(11):1478-1479.
[29] Lee KE, Klein BE, Klein R. Changes in refractive error over a 5-year interval in the Beaver Dam Eye Study[J]. Invest Ophthalmol Vis Sci , 1999, 40(8):1645-1649.
[30] Lauber JK, Kinnear A. Eye enlargement in birds induced by dim light[J]. Can J Ophthalmol, 1979, 14(4):265-269.
[31] MeBrien NA, Moghaddam HO, New R, et al. Experimental myopia in a diurnal mammal(Sciurus carolinensis) with no accommodative ability[J]. J Physiol, 1993, 469:427-441.
[32] Nathan J, Crewther SG, Grewther DP, et al. Effects of retinal image degradation on ocular growth in cats[J]. InvestOphthalmol Vis Sci, 1984, 25(11):1300-1306.
[33] Westbrook AM, Crewther SG, Liang H, et al.Formoguanamineinduced inhibition of deprivation myopia in chick is accompanied by choroidal thinning While retinal function is retained. Vision Res, 1995, 35(14):2075-2088.
[34] Lind GJ, Chew SJ, Marzani D, et al. Muscarinic acetylcholine receptor antagonists inhibit chick scleral chondrocytes[J]. Invest Ophthalmol Vis Sci, 1998, 39(12):2217-2231.
[35] McBrien NA, Norton TT. The development of experimental myopia and ocular component dimensions in monocularly lid-sutured tree shrews (Tupaia belangeri) [J]. Vision Res, 1992, 32(5):843-852.
[36] Jacobs GH, Neitz J. Spectral mechanisms and color vision in the tree shrew (Tupaia belangeri) [J]. Vision Res, 1986, 26(2): 291-298.
[37] Norton TT, McBrien NA. Normal development of refractive state and ocular component dimensions in the tree shrew (Tupaia belangeri) [J]. 1992, 32(5):833-842.
[38] Samorajski T, Ordy JM, Keefe JR. Structural organization of the retina in the tree shrew (Tupaia glis) [J]. J Cell Biol, 1966, 28(3):489-504.
[39] Foelix RF, Kretz R, Rager G.Structure and postnatal develpoment of photoreceptors and their synapses the retina of the tree shrew (Tupaia belangeri)[J]. Cell Tissue Res, 1987, 247(2):287-297.
[40] 文丹, 劉雙珍, 毛俊峰, 等. 豚鼠形覺剝奪性近視視網(wǎng)膜形態(tài)學(xué)研究[J]. 國際眼科雜志, 2006(5):1045-1048.
[41] Ehrlich D, Sattayasai J, Zappia J, et al. Effects of selective neurotoxins on eye growth in the young chick[J]. Ciba Found Symp, 1990, 155:63-84.
[42] Pruett RC. Complications associated with posterior staphyloma[J]. Curr Opin Ophthalmol, 1998, 9(3):16-22.
[43]徐格致, 李維英, 曹安民. 病理性近視視網(wǎng)膜變性中感光細(xì)胞的凋亡[J]. 中華眼底病雜志, 1996(3):68-70.
Preliminary Establishment and Research on Form Deprivation Myopia Model in Tree Shrew
YANG Dong-mei1, ZHU Qin1, LI Na2, GUO Li-yun1, ZHANG Xiao-fan1, ZHANG Jie-ying1, HU Min1, DAI Jie-jie2
(
1. Department of Ophthalmology, the Second People’s Hospital of Yunnan Province & the Fourth Affiliated Hospital of Kunming Medical University, Kunming 650021, China;
2. Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tree Shrew Germplasm Resource Center, Kunming 650018, China)
ObjectiveTo establish the adolescence and early adulthood form deprivation myopia (FDM) model in tree shrew and to observe the retinal morphology, in order to explore the role of age in the development of myopia and the effection of local retinal mechanism for FDM. Method Thirty tree shrews at age of 4 months and 5 months without congenital myopia and other eye diseases were respectively selected. All tree shrews were randomly divided into: control group, and cover group. In the cover group, right eyes served as the experimental eye, left eye as control eyes. Experimental eye were covered with handmade semi-translucent film. then measure the diopter and ?axial?length of tree shrews after being covered for 3 weeks and 6 weeks. The retinal thickness and the number of cells in each layer of retina were observed by electron microscopy after being covered for 6 weeks .ResultsThe tree shrews were born 4 months and 5 months form deprivation after 3 weeks, hyperopia was alleviated but not statistically significant compared with control eyes, and two groups of tree shrews cover eye diopter and eye axis are different obviously compared with control eyes after 6 weeks. At deprivation period, axial continue to extend and gradually increase to myopia, and they have a good negative linear relationship. Form deprivation can lead to thinning of the retina of the tree shrew, can also lead to number decrease on photoreceptor cell layer, inner nuclear layer, and ganglion cell layer cells .ConclusionForm deprivation can induce myopia formation and retinal morphological change in adolescence and early adulthood tree shrews.
Tree shrew; Form deprivation myopia (FDM); Retinal morphology.
Q95-33
A
1674-5817(2017)03-0171-08
10.3969/j.issn.1674-5817.2017.03.001
2016-12-12
國家自然科學(xué)基金(81560168), 國家科技支撐計劃項目 (2014BAI01B01), 云南省聯(lián)合支持國家計劃項目(2015GA009), 云南省自然科學(xué)基金(2013FZ191), 昆明醫(yī)科大學(xué)重點聯(lián)合專項(2014FA017), 云南省衛(wèi)生科技計劃項目(2014NS043)
楊冬梅(1985-), 女, 碩士研究生, 住院醫(yī)師, 研究方向: 斜視弱視小兒眼病。E-mail:12326703@qq.com
胡 敏。E-mail: fudanhumin@sina.com代解杰。E-mail: 278206145@qq.com