国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

銅摻雜對Fe/β催化劑NH3-SCR催化性能的影響

2017-08-02 01:40:22趙茹姜水燕周仁賢
關(guān)鍵詞:水熱轉(zhuǎn)化率老化

趙茹, 姜水燕, 周仁賢

(浙江大學(xué) 化學(xué)系 催化研究所, 浙江 杭州 310028)

銅摻雜對Fe/β催化劑NH3-SCR催化性能的影響

趙茹, 姜水燕, 周仁賢*

(浙江大學(xué) 化學(xué)系 催化研究所, 浙江 杭州 310028)

制備了一系列Cu摻雜量不同的Fe/β(40)催化劑,并采用ICP-AES、XRD、H2-TPR、UV-vis和XPS等表征技術(shù)分析了催化劑的物化性質(zhì).結(jié)果表明,適量的銅摻雜能大大提高Fe/β(40)催化劑的低溫活性,拓寬其活性溫度窗口,但過量的Cu摻雜會降低催化劑的N2選擇性.Cu摻雜質(zhì)量比為1.27%Cu-2%Fe/β(40)的催化劑具有最佳的SCR性能,這與催化劑中存在較多離子交換位的Fe3+和Cu2+物種有關(guān),而存在較多的CuO物種會促進(jìn)氨高溫氧化,使催化劑的N2選擇性降低且高溫窗口變窄.高溫水熱條件下Cu的存在可能使Cu、Fe物種更容易發(fā)生遷移和團(tuán)聚,導(dǎo)致Cu-Fe/β(40)催化劑的水熱穩(wěn)定性明顯變差.

NH3-SCR;Cu-Fe/β(40);銅摻雜;水熱老化

本文以Fe/β(40)催化劑為基礎(chǔ),研究了Cu添加量對Cu-Fe/β(40)催化劑NH3-SCR性能的影響.通過離子體發(fā)射光譜(ICP-AES)、X射線衍射(XRD)、H2程序升溫還原(H2-TPR)、紫外可見光譜(UV-vis)和X射線電子能譜(XPS)等表征手段,系統(tǒng)分析銅摻雜對鐵活性物種及催化劑物化性質(zhì)的影響,同時還考察了Cu-Fe/β(40)催化劑的水熱穩(wěn)定性和抗SO2性能.

1 實驗部分

1.1 催化劑的制備

以H-β(SiO2/Al2O3=40)為載體,采用溶液離子交換法(IE)制備Cu/β(40)催化劑.首先,用NH4NO3溶液與β(40)粉末進(jìn)行離子交換,將混合后形成的漿體在80 ℃水浴條件下攪拌2 h;用布什漏斗過濾,并用大量去離子水洗滌,直至濾液呈中性,之后100 ℃干燥2 h.將所得NH4-β(40)粉末與不同濃度的(CH3COO)2Cu溶液混合,于80 ℃水浴條件下攪拌3 h,經(jīng)過濾,用去離子水充分洗滌至中性,所得濾餅100 ℃干燥2 h.最后在空氣氣氛下500 ℃焙燒5 h,壓片,過篩(40~60目),通過等離子體發(fā)射光譜(ICP-AES)測定銅交換量,催化劑分別標(biāo)記為0.23Cu/β(40)、0.54Cu/β(40)、1.27Cu/β(40)和4.11Cu/β(40).

采用等體積浸漬法制備Cu-Fe/β(40)催化劑.以上述制得的一系列Cu/β(40)分子篩為載體,將一定量的Cu/β(40)分子篩粉末浸漬在一定濃度的Fe(NO3)3溶液中,室溫下攪拌過夜,然后經(jīng)80 ℃水浴烘干,110 ℃下干燥2 h、空氣氣氛下500 ℃焙燒5 h,壓片過篩(40~60目),F(xiàn)e的質(zhì)量分?jǐn)?shù)固定為2%.各催化劑分別標(biāo)記為0.23Cu-2Fe/β (40)、0.54Cu-2Fe/β (40)、1.27Cu-2Fe/β (40)和4.11Cu-2Fe/β (40).

為了考察催化劑的水熱穩(wěn)定性,將新鮮的2Fe/β(40)、1.27Cu/β(40)和1.27Cu-2Fe/β(40)催化劑放在自制的水熱老化設(shè)備上進(jìn)行水熱老化,老化時間為24 h,氣氛中水蒸氣體積分?jǐn)?shù)為10%,老化溫度為700 ℃.

1.2 催化劑活性測試

催化劑性能評價在自制的催化劑評價微反應(yīng)裝置上進(jìn)行.反應(yīng)氣氛組成(體積分?jǐn)?shù))為:0.05% NOx、0.05% NH3、5% O2,Ar為平衡氣,氣體總流量為160 mL·min-1, 空速48 000 h-1.使用Bruker EQUINOX 55型紅外儀(氣體池體積1.33 L,光路長10 m,分辨率2 cm-1)記錄反應(yīng)前后NO、NO2、N2O和NH3氣體的濃度變化.SCR評價測試溫度為100~550 ℃.反應(yīng)中NOx轉(zhuǎn)化率、NH3轉(zhuǎn)化率計算公式如下:

為了考察催化劑的抗SO2性能,1.27Cu-2Fe/β(40)催化劑分別在含有0,50×10-6和100×10-6SO2的反應(yīng)氣氛中連續(xù)反應(yīng)10 h,反應(yīng)溫度為170 ℃.

1.3 催化劑的表征

XRD 測定:采用Shimazu XRD 7000型X射線衍射儀測定,測試使用CuKα靶,管電壓為40 kV,管電流為30 mA,掃描范圍為5°< 2θ<70°,掃描速率為5°·min-1,步長為0.02°.

離子體發(fā)射光譜(ICP-AES)測定:催化劑中活性組分的實際含量在IRIS IntrepidⅡXSP型全譜等離子體發(fā)射光譜儀(美國熱電公司)上測定.樣品用濃鹽酸預(yù)處理.

H2-TPR測定:將100 mg樣品置于U型石英反應(yīng)管中,在高純氮(純度99.999%)氣氛中400 ℃預(yù)處理0.5 h,再冷卻至50 ℃,然后將氣氛切換為體積分?jǐn)?shù)為5%H2/Ar,流速控制為40 mL·min-1,待基線走穩(wěn)后程序升溫,升溫速率為10 ℃·min-1,熱導(dǎo)檢測器(TCD)檢測.還原過程中產(chǎn)生的水用5A分子篩吸收.

紫外可見光譜(UV-vis DRS)測定:催化劑表面物種類型在UV-2401 PC ( Shimadzu )儀器上測定,采用統(tǒng)一標(biāo)準(zhǔn)制樣,波長測量范圍為200~800 nm.測量所得譜圖通過origin軟件進(jìn)行分峰處理.

X-射線光電子能譜(XPS)測定:催化劑的表面元素含量及結(jié)合能在Thermo ESCALAB 250系統(tǒng)上測定,Al-Kα射線,20 eV/150 W,電子能量1 486.6 eV.所有譜圖用C1s的結(jié)合能(284.8 eV)作為基準(zhǔn)進(jìn)行校正.

2 結(jié)果與討論

2.1 NH3-SCR催化性能研究

2.1.1 新鮮Cu-Fe/β(40)催化劑的活性評價

圖1(a)給出了不同銅添加量的Cu-Fe/β(40)催化劑上的NOx轉(zhuǎn)化率曲線.從圖(a)中可知,隨著Cu添加量的增加,Cu-Fe/β(40)催化劑的低溫活性明顯改善,高溫活性略有降低,活性溫度窗口明顯拓寬.當(dāng)Cu添加質(zhì)量比達(dá)到1.27%時,低溫活性達(dá)到最佳,活性溫度窗口最寬,即165 ℃時NOx轉(zhuǎn)化率就可達(dá)到90%,且溫度在170~460 ℃時都可實現(xiàn)對NOx的完全轉(zhuǎn)化.在此基礎(chǔ)上,進(jìn)一步添加Cu,當(dāng)Cu添加質(zhì)量比達(dá)到4.11%時,低溫活性幾乎不再提高,高溫活性反而有所下降.圖1(b)是各催化劑上NH3的轉(zhuǎn)化率曲線.隨著溫度升高,NH3的轉(zhuǎn)化率也逐漸增加,其變化趨勢與NOx轉(zhuǎn)化率的變化趨勢一致,表明NH3的消耗與NOx的還原反應(yīng)密切相關(guān).圖1(c)是反應(yīng)過程中NO2的濃度變化曲線,原始反應(yīng)氣中含有少量NO2(~16×10-6),隨著溫度的升高,NO2逐漸被還原濃度降低,但NO2完全轉(zhuǎn)化的溫度遠(yuǎn)遠(yuǎn)低于NO完全轉(zhuǎn)化的溫度,這意味著在低溫狀態(tài)下NH3-NO2的SCR反應(yīng)比NH3-NO更容易進(jìn)行[21];當(dāng)反應(yīng)溫度超過400 ℃時,會逐漸生成少量NO2,這與部分NH3被氧化有關(guān);另一方面,NH3被部分氧化而造成還原劑不足,致使高溫條件下NOx轉(zhuǎn)化率下降.圖1(d)是副產(chǎn)物N2O的濃度曲線.從圖1(d)中可以看出,只有4.11Cu-2Fe/β(40)催化劑上生成了N2O,最大量約為20×10-6,并且隨著溫度的升高,N2O生成量逐漸減少至0,這說明過量的Cu添加會降低催化劑反應(yīng)過程中的N2選擇性.

圖1 不同Cu添加量Cu-Fe/β(40)催化劑的NH3-SCR性能Fig.1 NH3-SCR activity test of various Cu-Fe/β(40) catalysts

2.1.2 催化劑的水熱穩(wěn)定性

高溫水熱老化處理后催化劑樣品的活性評價結(jié)果如圖2所示.對于2Fe/β(40)催化劑,老化后樣品的低溫活性有所下降,高溫活性幾乎不變;對于1.27Cu/β(40)催化劑,老化后樣品的SCR活性大幅降低,NOx轉(zhuǎn)化率最大值僅為58%左右,表明1.27Cu/β(40)的抗水熱老化性能很差;對于1.27Cu-2Fe/β(40)催化劑,老化后樣品的SCR活性也大幅降低,老化前后90% NOx轉(zhuǎn)化率溫度窗口分別為165 ~ 470 ℃和410 ~ 500 ℃,表明水熱老化處理對于1.27Cu-2Fe/β(40)催化劑的SCR活性影響很大,同時也表明Cu的添加大大降低了Fe/β(40)催化劑的水熱穩(wěn)定性.

圖2 水熱老化對2Fe/β(40)、1.27Cu/β(40)和1.27Cu-2Fe/β(40)催化劑上NOx轉(zhuǎn)化率的影響Fig.2 Effect of hydrothermal aging on NOx conversion of 2Fe/β(40), 1.27Cu/β(40) and 1.27Cu-2Fe/β(40) catalysts

2.1.3 催化劑的抗SO2性能

在NOx初始轉(zhuǎn)化率約為95%時的反應(yīng)溫度(170 ℃)下,含不同濃度SO2的反應(yīng)氣持續(xù)通過1.27Cu-2Fe/β(40)催化劑,催化劑活性的變化情況如圖3所示.SO2濃度為0時,1.27Cu-2Fe/β(40)催化劑上NOx轉(zhuǎn)化率在10 h內(nèi)保持在95%幾乎不變;當(dāng)反應(yīng)氣中加入SO2后,催化劑的活性隨著時間的變化而明顯降低,在50×10-6和100×10-6SO22種情況下,1.27Cu-2Fe/β(40)的NOx轉(zhuǎn)化率在2.5 h內(nèi)就從95%分別降至41.2%和17.2%.表明1.27Cu-2Fe/β(40)催化劑對SO2非常敏感.另外,從圖3中可以看出,反應(yīng)氣中停止通SO2后,催化劑的活性幾乎維持不變,不會恢復(fù)為初始活性,這可能與催化劑表面生成的硫酸鹽物種覆蓋了活性位有關(guān),因為在170 ℃的低溫反應(yīng)條件下這些硫酸鹽物種是難以分解去除的.

圖3 SO2對1.27Cu-2Fe/β(40) 催化劑活性的影響Fig.3 Effect of SO2 on NOx conversion of 1.27Cu-2Fe/β(40) catalyst

2.2 催化劑表征結(jié)果

2.2.1 XRD

圖4 各Cu-Fe/β(40)催化劑的XRD圖譜Fig.4 XRD patterns of different Cu-Fe/β(40) catalysts(a)H-β(40), (b)2Fe/β(40), (c)0.23Cu-2Fe/β(40), (d)0.54Cu-2 Fe/β(40), (e)1.27Cu-2Fe/β(40), (f)4.11Cu-2Fe/β(40),(g)2Fe/β(40)-aged and (h)1.27Cu-2Fe/β(40)-aged catalysts.

圖4為Cu交換量不同的Cu-Fe/β(40)系列催化劑及老化后樣品的XRD圖譜.從圖4可以看出,在2Fe/β(40)的基礎(chǔ)上,添加第2種金屬Cu后,新鮮催化劑的XRD譜圖(a~f)沒有發(fā)生明顯改變,表明Cu的交換和Fe的負(fù)載并沒有破壞原來β(40)分子篩的晶相結(jié)構(gòu),金屬氧化物負(fù)載后的Cu-Fe/β(40)催化劑依然具有規(guī)則多孔以及較高結(jié)晶度的微觀結(jié)構(gòu)特征.此外,在所有新鮮催化劑樣品的XRD譜圖上均沒有發(fā)現(xiàn)明顯的FeOx或者CuOx物種的晶相衍射峰,表明FeOx或者CuOx物種在β(40)分子篩表面有很好的分散性,或者所形成的團(tuán)聚物種的表觀粒徑不超過3 nm,未達(dá)到XRD的檢測限.另外,對于2個老化后樣品,XRD圖譜中仍存在β(40)分子篩的特征衍射峰,強度也沒有明顯變化,說明高溫水熱老化并未導(dǎo)致分子篩的骨架坍塌;同時,兩譜圖(g~h)中也沒有出現(xiàn)與FeOx或者CuOx物種有關(guān)的明顯特征衍射峰.

2.2.2 H2-TPR

為了研究催化劑的氧化還原性,對新鮮和水熱老化樣品進(jìn)行H2-TPR表征.由圖5結(jié)果可知,2Fe/β(40)在415 ℃和540 ℃附近出現(xiàn)了2個還原峰[22],分別歸屬于孤立Fe3+的還原和低聚FeOx的還原.但在添加Cu后各還原峰溫度明顯下降,并隨著Cu添加量的增加而下降,說明Fe、Cu物種間可能存在較強的相互作用,使得催化劑的還原能力提高.各催化劑的起始還原溫度無明顯的差別,但其峰溫從高到低為4.11Cu-2Fe/β(40)<1.27Cu-2Fe/β(40)<0.54Cu-2Fe/β(40)<0.23Cu-2Fe/β(40)<2Fe/β(40).與2Fe/β(40)類似,各Cu-Fe/β(40)催化劑上的低溫還原峰可能分別歸屬于納米尺度上CuOx物種、Fe3+物種的還原,而高溫還原峰可能與分散較好的FeOx物種的還原有關(guān)[18, 21].1.27Cu-2Fe/β(40) 在438 ℃附近出現(xiàn)了一個新的還原峰,可能與Cu2+物種的還原有關(guān)[23-25].結(jié)合活性評價結(jié)果,認(rèn)為較高的低溫還原能力可能與1.27Cu-2Fe/β(40)和4.11Cu-2Fe/β(40)在140~180 ℃低溫段就具有高催化活性有關(guān),因為還原溫度越低,低溫下越容易將NO氧化為NO2, 而NH3-NO2反應(yīng)(快速SCR反應(yīng))相比于NH3-NO反應(yīng)(標(biāo)準(zhǔn)SCR反應(yīng))更易快速發(fā)生[21],進(jìn)而能夠提高催化劑的低溫活性.另外,4.11Cu-2Fe/β(40)催化劑上形成了較多的CuO物種,這可能是N2選擇性下降的主要原因.對于老化后的樣品,680 ℃左右出現(xiàn)了一個還原峰,歸屬于鐵氧化合物FeO的還原[26-28],表明水熱老化過程中鐵物種發(fā)生了團(tuán)聚,但其XRD結(jié)果中沒有觀察到該物相的存在,這可能與Fe負(fù)載量較低有關(guān).以上H2-TPR結(jié)果說明,F(xiàn)e與Cu物種間的相互作用會影響Cu-Fe/β(40)催化劑的氧化還原性能,進(jìn)而影響其催化性能.

圖5 各Cu-Fe/β(40)催化劑的H2-TPR圖譜Fig.5 H2-TPR profiles of different Cu-Fe/β(40) catalysts(a)4.11Cu-2Fe/β(40), (b)1.27Cu-2Fe/β(40), (c)0.54Cu-2 Fe/β (40), (d)0.23Cu-2Fe/β(40), (e)2Fe/β(40), (f) 2Fe/β(40)-aged and (g) 1.27Cu-2Fe/β(40)-aged catalysts.

2.2.3 UV-vis DRS

圖6給出了各催化劑的UV-vis DRS圖譜.可以看出,對于2Fe/β(40),紫外區(qū)間的吸收光譜歸屬于O→Fe3+電荷轉(zhuǎn)移躍遷(LMCT),可見光區(qū)間的吸收譜歸屬于α-Fe2O3中Fe的d-d躍遷[29-30];對于1.27Cu/β(40),215和280 nm左右的譜峰分別歸屬于Ozeolite→ Cu2+和O2-→ Cu2+的電荷轉(zhuǎn)移[31-32].同時,根據(jù)文獻(xiàn)[33-35],Cu/zeolites中300~500 nm間出現(xiàn)的譜峰為O-Cu-O和Cu-O-Cu的電荷轉(zhuǎn)移,500~800 nm間的譜峰歸屬于CuO中Cu2+的d-d躍遷;由此,對于Cu-Fe/β(40)催化劑,300 nm以下的譜峰共同歸屬于離子交換位的單核Fe3+和游離的Cu2+物種,300~800 nm的譜峰共同歸屬于FexOy、CuOx、Fe2O3和CuO物種.從圖6中還可以看出,隨著Cu交換量的增加,低波段(<300 nm)譜圖強度先變大后變小,1.27Cu-2Fe/β(40)催化劑的譜圖強度最強,表明催化劑中存在較多離子交換位的Fe3+和Cu2+物種;高波段(>300 nm)譜圖逐漸變寬和變強,表明過量的Cu會形成CuOx和CuO物種.結(jié)合活性評價結(jié)果可知,Cu-Fe/β(40)催化劑的低溫活性提高與存在較多的Cu2+物種有關(guān),而催化劑的N2選擇性降低可能與存在較多的CuO物種有關(guān).圖6的UV-vis DRS結(jié)果亦說明,Cu-Fe/β(40)催化劑中含有多個活性物種,各種Fe、Cu物種的共同作用決定了催化劑的SCR活性,1.27Cu-2Fe/β(40)催化劑的低溫SCR活性較高可能與其存在較多離子交換位的Fe3+和Cu2+物種有關(guān).

圖6 各Cu-Fe/β(40) 催化劑的UV-vis DRS圖譜Fig.6 UV-vis DRS profiles of different Cu-Fe/β(40) catalysts(a)1.27Cu/β(40), (b)2Fe/β(40), (c)0.23Cu-2Fe/β(40), (d)0.54Cu-2Fe/β (40), (e)1.27Cu-2Fe/β(40) and (f)4.11Cu-2Fe/β(40) catalysts.

2.2.4 XPS

用XPS進(jìn)一步研究了2Fe/β(40)和1.27Cu-2Fe/β(40)催化劑中表面Fe和Cu的原子百分?jǐn)?shù)和化學(xué)狀態(tài).圖7給出了催化劑的XPS譜圖及分峰結(jié)果,表1給出了由XPS分析得到的催化劑表面Fe、Cu原子百分?jǐn)?shù)及化學(xué)狀態(tài).從圖7(a) Fe 2p3/2的XPS圖譜可以看出,Cu-2Fe/β(40)催化劑中同時存在2種價態(tài)的鐵物種.從圖7(b) Cu 2p3/2的XPS譜圖可以看出,935.6和933.2 eV處出現(xiàn)2個譜峰,對于結(jié)合能為935.6 eV的Cu 2p3/2譜峰,由于其在更高結(jié)合能944.3 eV處有一個伴隨衛(wèi)星峰,并且還存在結(jié)合能為953.6 eV的Cu 2p1/2譜峰,因此可將該峰歸屬為CuO物種中Cu2+的XPS譜峰,而結(jié)合能為933.2 eV的Cu 2p3/2峰歸屬于Cu+的XPS譜峰[33, 36].

表1 由XPS分析所得的表面Fe、Cu原子百分?jǐn)?shù)及化學(xué)狀態(tài)

注 *指原子百分?jǐn)?shù);-表示該樣品本身不含有該元素數(shù)據(jù).

圖7 各Cu-Fe/β(40)催化劑的XPS譜圖Fig.7 XPS results of 2Fe/β(40) and 1.27Cu-2Fe/β(40) catalysts

表1給出了分峰結(jié)果,可知添加Cu之后1.27Cu-2Fe/β(40)催化劑表面的Fe原子百分?jǐn)?shù)高于2Fe/β(40)催化劑,表明Cu占據(jù)了部分離子交換位而形成了Cu2+物種,使得Cu-Fe/β(40)催化劑的低溫活性提高;對于老化后的樣品,其表面的Cu原子百分?jǐn)?shù)減少,且Cu2+比例大幅增加,表明水熱過程中表面部分Cu物種在熱動力驅(qū)動下遷移至分子篩孔道內(nèi),以CuOx或CuO物種形式存在,這可能是樣品老化后其低溫活性降低的主要原因.另外,為了得到表面硫物種的價態(tài),用XPS表征1.27Cu-2Fe/β(40)催化劑的硫物種.從圖7(c)中可以看出,S2p的結(jié)合能位于169.3 eV[37],屬于硫酸鹽物種.表明硫中毒過程中1.27Cu-2Fe/β(40)催化劑表面會形成硫酸鹽物種,從而使Cu-Fe/β(40)催化劑的抗SO2性能降低.同時,硫中毒的1.27Cu-2Fe/β(40)催化劑表面的Fe、Cu原子百分?jǐn)?shù)減少,且Cu2+和Fe3+比例增加,表明在含SO2的反應(yīng)氣氛條件下,Cu+和Fe2+分別變?yōu)镃u2+和Fe3+,而且,生成的硫酸鹽物種可能會進(jìn)入分子篩孔道并覆蓋活性位[38-39],再加上Cu活性位上SO2與NOx的競爭吸附[40],導(dǎo)致1.27Cu-2Fe/β(40)催化劑的抗SO2性能大大降低.

3 結(jié) 論

3.1 適量Cu添加能夠明顯提高Fe/β(40)催化劑的低溫活性,拓寬其活性溫度窗口,但過量Cu會降低催化劑的N2選擇性.Cu存在量為1.27%的1.27Cu-2Fe/β(40)催化劑表現(xiàn)出最佳SCR性能,溫度在165 ℃~470 ℃時NOx轉(zhuǎn)化率均在90%以上,且N2選擇性為100%.

3.2 Cu、Fe物種間的相互作用會影響催化劑的氧化還原性和活性物種的分布,Cu-Fe/β(40)催化劑良好的低溫SCR活性與其表面存在較多離子交換位的Fe3+和Cu2+物種有關(guān).而當(dāng)CuO物種較多時會促進(jìn)氨高溫氧化,使催化劑的 N2選擇性降低、高溫窗口變窄.

3.3 高溫水熱條件下Cu的存在可能使Cu、Fe物種更容易發(fā)生遷移和團(tuán)聚,導(dǎo)致Cu-Fe/β(40)催化劑的水熱穩(wěn)定性變差.

[1] BAIKER A, DOLLENMEIER P, GLINSKI M, et al. Selective catalytic reduction of nitric oxide with ammonia: I. monolayer and multilayers of vanadia supported on titania[J]. Applied Catalysis,1987,35(2):351-364.

[2] BOSCH H, JANSSEN F. Formation and control of nitrogen oxides[J]. Catalysis Today,1988(2):369-379.

[3] BUSCA G, LIETTI L, RAMIS G, et al. Chemical and mechanistic aspects of the selective catalytic reduction of NOxby ammonia over oxide catalysts: A review[J]. Applied Catalysis B: Environmental,1998,18:1-36.

[4] MUTIN P H, POPA A F, VIOUX A, et al. Nonhydrolyticvanadia-titaniaxerogels: Synthesis, cha-racterization, and behavior in the selective catalytic reduction of NO by NH3[J]. Applied Catalysis B: Environmental,2006,69:49-57.

[5] KANG M, YEON T H, PARK E D, et al. Novel MnOxcatalysts for NO reduction at low temperature with ammonia[J]. Catalysis Letters,2006,106:77-80.

[6] BALLE P, GEIGER B, KURETI S. Selective catalytic reduction of NOxby NH3on Fe/HBEA zeolite catalysts in oxygen-rich exhaust[J]. Applied Catalysis B: Environmental,2009,85:109-119.

[7] DJERAD S, CROCOLL M, KURETI S, et al. Effect of oxygen concentration on the NOxreduction with ammonia over V2O5-WO3/TiO2catalyst[J]. Catalysis Today,2006,113:208-214.

[8] DUNN J P, KOPPULA P R, STENGER H G, et al. Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts[J]. Applied Catalysis B: Environmental,1998,19:103-117.

[9] FENG X, HALL W K. FeZSM-5: A durable SCR catalyst for NOxremoval from combustion streams[J]. Journal of Catalysis,1997,166:368-376.

[10] LONG R Q, YANG R T. Superior Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia[J]. Journal of the American Chemical Society,1999,121:5595-5596.

[11] LONG R Q, YANG R T. Catalytic Performance of Fe-ZSM-5 catalysts for selective catalytic reduction of nitric oxide by ammonia[J]. Journal of Catalysis,1999,188:332-339.

[12] SUBBIAH A, CHO B K, BLINT R J, et al. NOxreduction over metal-ion exchanged novel zeolite under lean conditions: Activity and hydrothermal stability[J]. Applied Catalysis B: Environmental,2003,42:155-178.

[13] SJ?VALL H, OLSSON L, FRIDELLE, et al. Selective catalytic reduction of NOxwith NH3over Cu-ZSM-5-The effect of changing the gas composition[J]. Applied Catalysis B: Environmental,2006,64:180-188.

[14] QI G S, YANG R T. Ultra-active Fe/ZSM-5 catalyst for selective catalytic reduction of nitric oxide with ammonia[J]. Applied Catalysis B: Environmental,2005,60:13-22.

[15] JIANG S Y, ZHOU R X. Ce doping effect on performance of the Fe/β catalyst for NOxreduction by NH3[J]. Fuel Process Technol,2015,133:220-226.

[16] TWIGG M V. Catalytic control of emissions from cars[J]. Catalysis Today,2011,163:33-41.

[18] PEREDA-AYO B, DE LA TORRE U, ILLN-GMEZ M J, et al. Role of the different copper species on the activity of Cu/zeolite catalysts for SCR of NOxwith NH3[J]. Applied Catalysis B: Environmental,2014,147:420-428.

[19] ZHANG T, LIU J, WANG D, et al. Selective catalytic reduction of NO with NH3over HZSM-5-supported Fe-Cu nanocomposite catalysts: The Fe-Cu bimetallic effect[J]. Applied Catalysis B: Environmental,2014,148/149:520-531.

[20] FRANCO R M, MOLINER M, CONCEPCION P, et al. Selective catalytic reduction of NO with NH3over HZSM-5-supported Fe-Cu nanocomposite catalysts: The Fe-Cu bimetallic effect[J]. Journal of Catalysis,2014,314:73-82.

[21] SULTANA A, SASAKI M, SUZUKI K, et al. Tuning the NOxconversion of Cu-Fe/ZSM-5 catalyst in NH3-SCR[J]. Catalysis Communications,2013,41:21-25.

[22] MAUVEZIN M, DELAHAY G, COQ B, et al. Identification of iron species in Fe-BEA: Influence of the exchange level[J]. The Journal of Physical Chemistry B,2001,105(5):928-935.

[23] XUE J, WANG X, QI G, et al. Characterization of copper species over Cu/SAPO-34 in selective catalytic reduction of NOxwith ammonia: Relationships between active Cu sites and de-NOxperformance at low temperature[J]. Journal of Catalysis,2013,297:56-64.

[24] DE LA TORRE U, PERE-AYO B,GONZLEZ-VELASCO J R. Cu-zeolite NH3-SCR catalysts for NOxremoval in the combined NSR-SCR technology[J]. Chemical Engineering Journal,2012,207/208:10-17.

[25] SHEN K, ZHANG Y, WANG X, et al. Influence of chromium modification on the properties of MnOx-FeOxcatalysts for the low-temperature selective catalytic reduction of NO by NH3[J]. Journal of Energy Chemistry,2013,22:617-623.

[26] CHEN B, LIU N, LIU X, et al. Study on the direct decomposition of nitrous oxide over Fe-beta zeolites: From experiment to theory[J]. Catalysis Today,2011,175:245-255.

[27] WEI G L, YU Z, FANG N G, et al. Catalytic degradation of tobacco-specific nitrosamines by ferric zeolite[J]. Applied Catalysis B: Environmental,2013,129:301-308.

[28] PARK J Y, LEE Y J, KHANNA P, et al. Alumina-supported iron oxide nanoparticles as Fischer-Tropsch catalysts:Effect of particle size of iron oxide[J]. Journal of Molecular Catalysis A: Chemical,2010,323:84-90.

[29] TIPPINS H H. Charge-transfer spectra of transition-metal ions in corundum[J]. Physical Review B,1970,1(1):126-135.

[30] LU L, LI L, WANG X, et al. Understanding of the finite size effects on lattice vibrations and electronic transitions of nano α-Fe2O3[J]. The Journal of Physical Chemistry B,2005,109:17151-17156.

[31] JANAS J, GURGUL J, SOCHA R P, et al. Effect of Cu content on the catalytic activity of CuSiBEA zeolite in the SCR of NO by ethanol: Nature of the copper species[J]. Applied Catalysis B: Environmental,2009,91(1/2):217-224.

[32] ISMAGILOV Z R, YASHNIK S A, ANUFRIENKO V F, et al. Linear nanoscale clusters of CuO in Cu-ZSM-5 catalysts[J]. Applied Surface Science,2004,226(1/2/3):88-93.

[33] WANG L, GAUDET J R, LI W, et al. Migration of Cu species in Cu/SAPO-34 during hydrothermal aging[J]. Journal of Catalysis,2013,306:68-77.

[34] PESTRYAKOV A N, PETRANOVSKII V P, KRYAZHOV A, et al. Study of copper nanoparticles formation on supports of different nature by UV-Vis diffuse reflectance spectroscopy[J]. Chemical Physics Letters,2004,385:173-176.

[35] YASHNIK S A, ISMAGILOV Z R, ANUFRIENKO V F. Catalytic properties and electronic structure of copper ions in Cu-ZSM-5[J]. Catalysis Today,2005,110(3/4):310-322.

[36] CAMPOS-MARTIN J M, GUERRERO-RUIZ A, FIERRO J L. Changes of copper location in CuY zeolites induced by preparation methods[J]. Catalysis Letters,1996,41:55-61.

[37] WAHLQVIST M, SHCHUKAREW A. XPS spectra and electronic structure of group IA sulfates[J]. Journal of Electron Spectroscopy and Related Phenomena,2007,156/157/158:310-314.

[38] ARAKAWA K, MATSUDA S, KINOSHITA H. SOxpoisoning mechanism of NOxselective reduction catalysts[J]. Applied Surface Science,1997,121/122:382-386.

[39] MORENO-TOST R, SANTAMARA-GONZLEZ J, RODRGUEZ-CASTELLN E, et al. Selective catalytic reduction of nitric oxide by ammonia over Cu-exchanged Cuban natural zeolites[J]. Applied Catalysis B: Environmental,2004,50(4):279-288.

[40] ZHANG L, WANG D, LIU Y, et al. SO2poisoning impact on the NH3-SCR reaction over a commercial Cu-SAPO-34 SCR catalyst[J]. Applied Catalysis B: Environmental,2014,37:156-157.

The effect of Cu doping on catalytic performance of Fe/β catalyst for NH3-SCR.

ZHAO Ru, JIANG Shuiyan, ZHOU Renxian

(InstituteofCatalysis,DepartmentofChemistry,ZhejiangUniversity,Hangzhou310028,China)

The Cu doped Fe/β (40) catalysts were prepared by ion-exchanged/wetness-impregnation methods and characterized using various analytical techniques, including H2-TPR, XRD, UV-vis and XPS. Appropriate amount of copper enormously improved the low temperature activity of Fe/β (40) and broadened the temperature window of activity. Excessive amount of copper decreased the N2selectivity of catalysts. 1.27%Cu-2%Fe/β catalyst obtained the best performance attributed to many ion-exchanged positions of Fe3+and Cu2+. However, a large amount of CuO can promote NH3oxidation at high temperature, and decrease N2selectivity and narrow down the temperature window of activity. Cu doping may make the migration and agglomeration of Cu and Fe species more easily under high-temperature hydrothermal conditions, which leads to hydrothermal stability of Cu-Fe/β (40) catalyst change.

NH3-SCR; Cu-Fe/β(40); Cu doping; hydrothermal aging

2016-07-08.

浙江省重點科技創(chuàng)新團(tuán)隊計劃資助項目.

趙茹(1990-),ORCID:http://orcid.org/0000-0001-6295-3008,女,碩士研究生,主要從事柴油車尾氣脫硝研究,E-mail:21437079@zju.edu.cn.

*通信作者,ORCID:http://orcid.org/0000-0002-5627-070X,E-mail:zhourenxian@zju.edu.cn.

10.3785/j.issn.1008-9497.2017.04.015

O 643

A

1008-9497(2017)04-485-08

Journal of Zhejiang University(Science Edition), 2017,44(4):485-492

猜你喜歡
水熱轉(zhuǎn)化率老化
延緩大腦老化,要怎樣吃
我國全產(chǎn)業(yè)領(lǐng)域平均國際標(biāo)準(zhǔn)轉(zhuǎn)化率已達(dá)75%
節(jié)能技術(shù)在開關(guān)電源老化測試中的應(yīng)用
電子制作(2018年10期)2018-08-04 03:24:30
曲料配比與米渣生醬油蛋白質(zhì)轉(zhuǎn)化率的相關(guān)性
水熱還是空氣熱?
杜絕初春老化肌
Coco薇(2016年2期)2016-03-22 02:40:06
透視化學(xué)平衡中的轉(zhuǎn)化率
簡述ZSM-5分子篩水熱合成工藝
一維Bi2Fe4O9納米棒陣列的無模板水熱合成
微量改性單體與四(偏)氟乙烯等共聚的組成及轉(zhuǎn)化率模擬
七台河市| 潞城市| 屏山县| 大竹县| 海伦市| 平度市| 乐平市| 石屏县| 珲春市| 龙胜| 天门市| 迁西县| 东台市| 芜湖县| 清新县| 廉江市| 钟山县| 咸丰县| 平阳县| 闽侯县| 乐陵市| 砚山县| 巴南区| 郴州市| 嘉定区| 石河子市| 隆子县| 宜昌市| 廊坊市| 镇康县| 张家口市| 平远县| 沈阳市| 佛坪县| 德惠市| 江川县| 栾城县| 兖州市| 竹溪县| 乐清市| 泊头市|