李丹丹,湯響林,龍隆,許龍龍,譚洪玲,梁乾德,肖成榮,王宇光,馬增春,王莉莉,高月
(1.廣西醫(yī)科大學藥理學系,廣西南寧530000;軍事醫(yī)學科學院2.放射與輻射醫(yī)學研究所藥理學研究室,
3.毒物藥物研究所藥物化學研究室,北京100850;4.安徽醫(yī)科大學藥理學系,安徽合肥230032)
基于高內涵篩選技術研究生首烏和制首烏醇提物的肝毒性機制
李丹丹1,2,湯響林2,龍隆3,許龍龍4,譚洪玲2,梁乾德2,肖成榮2,王宇光2,馬增春2,王莉莉3,高月1,2
(1.廣西醫(yī)科大學藥理學系,廣西南寧530000;軍事醫(yī)學科學院2.放射與輻射醫(yī)學研究所藥理學研究室,
3.毒物藥物研究所藥物化學研究室,北京100850;4.安徽醫(yī)科大學藥理學系,安徽合肥230032)
目的 應用高內涵篩選技術研究生首烏醇提物(RPM)和制首烏醇提物(RPMP)的肝毒性及其可能機制。方法RPM(終濃度10,25,50,100,200和300 mg·L-1)和RPMP(終濃度10,50,100,300,600和1200 mg·L-1)作用于HepG2細胞3~24 h。采用CellTiter-GloTM熒光細胞活性檢測試劑盒檢測HepG2細胞存活率;應用高內涵篩選技術進行HepG2細胞計數(shù),并檢測線粒體內活性氧(ROS)、線粒體膜電位(MMP)、細胞內谷胱甘肽(GSH)、超氧化物歧化酶2(SOD2)、轉錄激活因子4(ATF4)水平及細胞凋亡和細胞周期阻滯;Western蛋白質印跡法驗證HepG2細胞SOD2和ATF4蛋白表達水平。結果 與細胞對照組相比,RPM 300 mg·L-1作用24 h使HepG2細胞存活率下降約48%(P<0.01),而相同濃度RPMP對細胞存活率無顯著影響;RPM和RPMP均能降低MMP(P<0.05),并升高GSH,ROS,SOD2和ATF4水平(P<0.05)。與細胞對照組相比,RPM 200 mg·L-1作用3 h SOD2水平顯著升高(P<0.05),6 h ATF4水平顯著升高(P<0.05);RPMP 300 mg·L-1作用6 h ATF4水平顯著升高(P<0.05),24 h SOD2水平顯著升高(P<0.05)。結論RPM和RPMP均具有一定的細胞毒性,RPM的細胞毒性強于RPMP,兩者的肝毒性可能主要與氧化應激和內質網(wǎng)應激導致的細胞凋亡有關。
何首烏;肝毒性;細胞,HepG2;高內涵篩選技術;氧化應激;內質網(wǎng)應激
DOl:10.3867/j.issn.1000-3002.2017.06.019
何首烏是蓼科多年生纏繞藤本植物何首烏(Polygonum multiflorum Thunb.),又名紫烏藤或夜交藤的干燥塊根,性溫,味苦澀,是中醫(yī)傳統(tǒng)的補益類中藥[1-2]。生首烏和制首烏是何首烏在臨床上常用的2種劑型。生首烏主要用于解毒、消癰和潤腸通便等,制首烏主要用于補肝腎、烏須發(fā)和強筋骨等[3]。何首烏自古以來一直被認為安全無毒,但自20世紀90年代開始,有關何首烏及含何首烏制劑的毒性報道逐漸增多,甚至出現(xiàn)中毒致死的案例[4-11]。何首烏肝毒性的問題引起了國內外的高度關注,但何首烏的肝毒性機制及其毒性物質基礎至今還不完全清楚,嚴重制約了何首烏的臨床應用并威脅患者的用藥安全。
高內涵篩選技術是藥物篩選的新技術,通過與不同的熒光指示劑、熒光抗體或配體結合,在細胞水平實現(xiàn)對生物體多系統(tǒng)、多途徑、多靶標的動態(tài)篩選,通過觀察細胞形態(tài)預測藥物的毒性,實現(xiàn)毒性的早期、快速和高通量檢測[12-13]。本研究通過高內涵篩選技術檢測與肝毒性密切相關的細胞毒性參數(shù)及毒性反應通路,如細胞數(shù)目、線粒體內活性氧(reactive oxygen species,ROS)水平、線粒體膜電位(mitochondrial membrane potential,MMP)、細胞內谷胱甘肽(glutathione,GSH)含量、氧化應激反應、內質網(wǎng)應激反應、凋亡和細胞周期阻滯等,對比研究了RPM和RPMP的肝毒性及其可能的毒性機制,并應用Western蛋白質印跡法進一步確證高內涵分析技術所得結果 的可靠性。因何首烏的肝毒性成分主要存在于醇提物中[14-16],故本研究采用何首烏的醇提物進行毒性機制研究。
1.1 藥物、主要試劑和儀器
生首烏及同一批次制首烏均購自北京同仁堂,產(chǎn)地河南,批號20120707;多聚甲醛,廣東西隴化工股份有限公司;DMEM培養(yǎng)基、磷酸鹽緩沖液(phosphate-buffered saline,PBS)、Hank平衡液(Hank balance sodium solution,HBSS)、0.25%胰蛋白酶溶液、青霉素-鏈霉素雙抗液(100×)和1× GlutaMAXTM-I CTSTM,美國Gibco公司;牛血清白蛋白(bovine serum albumin,BSA),美國Sigma公司;CellTiter-GloTM熒光細胞活性檢測試劑盒,美國Promega公司;熒光染料Hoechst 33342,Mitotracker Red CMXRos,MitoSOX red,monochlorobimane(mBCI),碘化丙啶(propidium iodide,PI)和AnnexinⅤ,西班牙Invitrogen公司;兔抗人轉錄激活因子4(activating transcription factor 4,ATF4)單克隆抗體(一抗),美國Cell Signaling公司;小鼠抗人超氧化物歧化酶2(superoxide dismutase 2,SOD2)單克隆抗體(一抗),英國Abcam公司;Aexa Fluor 488熒光標記驢抗小鼠IgG抗體和Aexa Fluor 488熒光標記驢抗兔IgG抗體(二抗),美國Life公司;GAPDH兔單克隆抗體(一抗)、HRP標記山羊抗兔IgG抗體和HRP標記山羊抗小鼠IgG抗體(二抗)、抗體稀釋液、RIPA裂解液、蛋白酶抑制劑、電泳液、轉膜液、封閉液和TBS Tween-20(TBST,10×),北京康為世紀公司;HRP發(fā)光液和蛋白質分子質量標準,美國Thermo公司;二苯乙烯苷(2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside,TSG)、大黃素和大黃素-8-O-β-D-葡萄吡喃糖苷對照品(純度均>98%),上海一飛生物科技有限公司。CO2培養(yǎng)箱,美國Thermo公司;IN CELL 2000高內涵分析儀,美國GE HealthCare公司;超高效液相色譜(UPLC)-四級桿飛行時間(qTOF)-質譜(MS)儀,美國Waters公司。
1.2 生首烏和制首烏醇提物制備
稱取生首烏和制首烏各100 g,分別加入10倍體積無水乙醇浸泡30 min后冷凝回流煎煮3次,每次1 h,合并3次濾液,經(jīng)低壓抽濾、濃縮后干燥成粉末。生首烏醇提物(ethanol extract of Radix Polygoni Multiflori,RPM)得率為12.71%,制首烏醇提物(ethanol extract of Radix Polygoni Multiflori Praeparata,RPMP)得率為24.54%。稱取RPM和RPMP粉末,溶于DMSO中配制成濃度分別為100和400 g·L-1的母液。
1.3 細胞培養(yǎng)和給藥
HepG2細胞購自北京協(xié)和細胞庫,生長于含有10%胎牛血清、1×105U·L-1青霉素、100 mg·L-1鏈霉素和1×GlutaMAXTM-I CTSTM的DMEM高糖培養(yǎng)基中,在含5%CO2的37℃恒溫培養(yǎng)箱中培養(yǎng)。待培養(yǎng)于T-25培養(yǎng)瓶中的HepG2細胞生長至80%~90%融合時,用胰酶將細胞消化下來,添加適量完全培養(yǎng)基調整細胞密度至5×107L-1;將HepG2細胞接種于底透壁黑的96孔板中,每孔200 μL細胞懸液,約1×104細胞。RPM終濃度為10,25,50,100,200和300 mg·L-1;RPMP則為10,50,100,300,600和1200 mg·L-1;細胞對照組為0.3%DMSO。
1.4 CellTiter-GloTM熒光法檢測HepG2細胞存活率
給藥處理24 h后,采用CellTiter-GloTM熒光細胞活性檢測試劑盒檢測細胞存活率。先將CellTiter-GloTM的底物和緩沖液在室溫平衡1 h;檢測開始前,將緩沖液轉移至底物瓶中,混勻制成底物混合物。給藥結束后,取出96孔板平衡至室溫,每孔吸棄100 μL細胞培養(yǎng)基,添加100 μL底物混合液,將96孔板置于搖床上振搖2 min,室溫放置10 min后,用酶標儀檢測熒光強度(fluorescence intensity,F(xiàn)I)值,計算細胞存活率。細胞存活率(%)=(待測藥物組FI-空白對照組FI)/(細胞對照組FI-空白對照組FI)×100%。
1.5 高內涵篩選技術檢測GSH和ROS水平
給藥處理24 h后,用預熱至37℃的1×HBSS配制含有細胞核染料Hoechst 33342,GSH染料mBCI和線粒體ROS染料MitoSOX red的混合活細胞染料,各染料的終濃度分別為1,100和5 μmol·L-1。HepG2細胞用每孔200 μL的1×HBSS輕輕洗滌1次,加入50 μL混合細胞染料,37℃避光染色40 min,再用200 μL的1×HBSS小心洗滌1次,加入200 μL 1×HBSS,采用高內涵分析儀進行檢測。
1.6 高內涵篩選技術檢測MMP,SOD2和ATF4蛋白水平
給藥處理24 h后,用預熱至37℃的1×HBSS配制含有細胞核染料Hoechst 33342和線粒體紅色熒光探針染料MitoTracker Red CMXRos(其紅色熒光染料的積累取決于膜電位)的混合細胞染料,終濃度分別為1和0.25 μmol·L-1。吸棄96孔板中的培養(yǎng)基,每孔細胞用200 μL的1×HBSS輕輕洗滌1次,加入50 μL混合細胞染料,于37℃避光染色40 min。染色結束后,吸棄96孔板中的混合細胞染料,每孔加入100 μL含4%甲醛的PBS溶液,室溫避光固定20 min;吸棄甲醛溶液,加入200 μL的1×透膜液(含0.1%Triton X-100的PBS溶液),室溫避光孵育30 min;吸棄透膜液,用200 μL PBS清洗細胞3次,加入200 μL的1×封閉液(含5%BSA的PBS溶液)室溫孵育1 h;吸棄封閉液,加入40 μL SOD2或ATF4一抗工作液(小鼠抗人SOD2單克隆抗體用1×封閉液按1∶500稀釋,兔抗人ATF4單克隆抗體用1×封閉液按1∶200稀釋),4℃避光孵育過夜;吸棄一抗工作液,用100 μL的1×封閉液清洗細胞3次,加入50 μL相對應的二抗工作液(Aexa Fluor 488驢抗兔IgG二抗與Aexa Fluor 488驢抗鼠IgG二抗均用1×封閉液按1∶500稀釋)室溫避光孵育2 h。吸棄二抗工作液,用200 μL PBS清洗細胞3次,加入100 μL PBS,采用高內涵分析儀進行檢測。
1.7 高內涵篩選技術檢測細胞凋亡和細胞周期
給藥處理24 h后,HepG2細胞用PBS清洗1次,每孔加入2 μL AnnexinⅤ-FITC,2 μL PI溶液和40 μL 1×Annexin結合緩沖液,室溫避光孵育15 min,補加156 μL的1×Annexin結合緩沖液,再加入100 μL用1×Annexin結合緩沖液配制的12%甲醛溶液,室溫避光固定20 min;吸棄固定液,加入100 μL含1 μmol·L-1Hoechst 33342的PBS,室溫避光染色1 h后,采用高內涵分析儀進行檢測。
1.8 Western蛋白質印跡法檢測ATF4和SOD2水平
將HepG2細胞接種于6孔板中,每孔2×105細胞,放入CO2培養(yǎng)箱中培養(yǎng)18~24 h后進行給藥處理。RPM終濃度為50,100和200 mg·L-1;RPMP為300,600和1200 mg·L-1;對照組為0.3%DMSO。給藥處理24 h后,使用RIPA裂解液將細胞裂解,取上清,采用BCA法測定蛋白質濃度,取30 μg蛋白質樣品經(jīng)10%SDS-PAGE電泳和轉印,使用凝膠成像系統(tǒng)進行圖像采集,Image J軟件分析各組條帶的積分吸光度(integrated absorbance,IA)值,目的蛋白的相對表達水平用IA目的蛋白/IAGAPDH比值表示。
1.9 UPLC-qTOF-MS技術檢測RPM和RPMP化學成分
色譜柱Waters HSS T3(2.1 mm×100 mm,1.8 μm);流動相:A為含0.1%甲酸水溶液,B為含0.1%甲酸乙腈溶液;流速:0.5 mL·min-1;進樣量:5 μL;柱溫:30℃。流動相采用梯度洗脫:0~1 min,2%B;1~2 min,2%~5%B;2~5 min,5%~12%B;5~7 min,12%~20%B;7~10 min,20%~30%B;10~12 min,30%~50%B;12~14 min,50%~80% B;14~16 min,80%~85%B;16~18 min,85%~100%B;18~22 min,2%B。DAD全波長掃描范圍:200~400 nm。采用電噴霧離子源(ESI),應用飛行時間(TOF)Ⅴ模式進行質量檢測。負離子掃描范圍為m/z 100~1500。
稱取RPM和RPMP粉末各10 mg,置于10 mL容量瓶中,加入50%甲醇溶解并定容,12 000×g離心15 min,取上清經(jīng)0.22 μm微孔濾膜過濾后得到供試品溶液。稱取適量的TSG、大黃素和大黃素-8-O-β-D-葡萄吡喃糖苷對照品,置于10 mL容量瓶中,加入50%甲醇溶解并定容,經(jīng)0.22 μm微孔濾膜過濾后得到相應的對照品溶液。
1.10 統(tǒng)計學分析
實驗結果 數(shù)據(jù)以x±s表示,使用SPSS 18.0統(tǒng)計軟件,采用單因素方差分析和LSD檢驗進行統(tǒng)計處理,P<0.05為差異具有統(tǒng)計學意義。
2.1 RPM和RPMP對HepG2細胞存活率的影響
如圖1所示,RPM和RPMP作用于HepG2細胞24 h后,與細胞對照組相比,RPM 300 mg·L-1使HepG2細胞存活率明顯下降(P<0.01);而相同濃度RPMP對細胞存活率無明顯影響;當RPMP濃度升高至600和1200 mg·L-1時,HepG2細胞存活率明顯下降(P<0.01)。
Fig.1Effect of ethanol extract of Radix Polygoni Multiflori(RPM)and Radix Polygoni Multiflori Praeparata(RPMP)on HepG2 cell vialibility by CellTiter-GloTMluminescent cell viability assay.Cells were incubated with RPM(10,25,50,100,200 and 300 mg·L-1)and RPMP(10,50,100,300,600 and 1200 mg·L-1)for 24 h,respectively.x±s,n=3.**P<0.01,compared with corresponding cell control(0)group.
2.2 RPM和RPMP對HepG2細胞數(shù)目的影響
RPM和RPMP作用于HepG2細胞24 h后,與細胞對照組相比,RPM 300 mg·L-1使細胞數(shù)目顯著減少(P<0.01),而相同濃度RPMP對細胞數(shù)目無明顯影響;當RPMP濃度升高至600和1200 mg·L-1時細胞數(shù)目顯著減少(P<0.05,P<0.01)(圖2)。
Fig.2 Effect of RPM and RPMP on HepG2 cell count by high-content screen assay.See Fig.1 for the cell treatment.x±s,n=3.*P<0.05,**P<0.01,compared with corresponding cell control(0)group.
2.3 RPM和RPMP對GSH,ROS和MMP水平的影響
如圖3和4所示,RPM和RPMP 100 mg·L-1作用24 h,HepG2細胞內GSH水平顯著升高(P<0.05);RPM 200 mg·L-1和RPMP 600 mg·L-1組 ROS水平開始顯著升高(P<0.01,P<0.05);RPM 100 mg·L-1和RPMP 300 mg·L-1組MMP水平顯著降低(P<0.05,P<0.01),使線粒體發(fā)生損傷。說明RPM和RPMP對肝毒性相關參數(shù)GSH,ROS和MMP均有一定的影響;與RPMP相比,RPM在較低濃度時即可對線粒體造成一定損傷。
2.4 RPM和RPMP對SOD2和ATF4蛋白水平的影響
如圖5和6所示,不同濃度的RPM和RPMP作用24 h均能引起HepG2細胞內氧化應激相關蛋白SOD2和內質網(wǎng)應激相關蛋白ATF4水平顯著升高(P<0.05)。從圖7可見,RPM 200 mg·L-1在3 h時即能引起SOD2水平升高(P<0.05),6 h時引起ATF4水平升高(P<0.05)。RPMP 300 mg·L-1在 6 h時引起ATF4水平升高(P<0.05),24 h時引起SOD2水平升高(P<0.05)。
Fig.3 Representative images of effect of RPM(A)and RPMP(B)on levels of glutathione(GSH),reactive oxygen species(ROS)and mitochondrial membrane potential(MMP)of HepG2 cells by high-content screen assay.See Fig.1 for the cell treatment.The levels of GSH,ROS and MMP were determined by relative fluorescence intensity(FI)of mBCI,Mito-SOX red and Mitotracker Red CMXRos,respectively.
Fig.4 Effect of RPM and RPMP on levels of GSH(A),ROS(B)and MMP(C)of HepG2 cells by high-content screen assay.See Fig.1 and Fig.3 for the cell treatment.FI:fluorescence intensity.x±s,n=3.*P<0.05,**P<0.01,compared with corresponding cell control(0)group.
Fig.5 Representative images of effect of RPM(A)and RPMP(B)on levels of activating transcription factor 4(ATF4)and superoxide dismutase 2(SOD2)of HepG2 cells by high-content screen assay.See Fig.1 for the cell treatment.The expression of SOD2 and ATF4 was determined by relative FI of SOD2 and ATF4,respectively.
Fig.6 Effect of RPM and RPMP on levels of ATF4(A)and SOD2(B)of HepG2 cells by high-content screen assay.See Fig.1 and Fig.5 for the cell treatment.x±s,n=3.*P<0.05,**P<0.01,compared with corresponding cell control(0)group.
Fig.7 Effect of RPM(A)and RPMP(B)on expression of ATF4(A1 and B1)and SOD2(A2 and B2)protein in HepG2 cells at different time points by high-content screen assay.Cells were treated with RPM and RPMP for 3,6,12 and 24 h,respectively.x±s,n=3.*P<0.05,**P<0.01,compared with corresponding cell control group.
2.5 RPM和RPMP對細胞凋亡和細胞周期的影響
RPM和RPMP作用24 h均可使HepG2細胞發(fā)生不同程度的凋亡(表1和圖8)。RPM誘導細胞凋亡的作用明顯強于RPMP。RPM 300 mg·L-1使細胞早期凋亡率、晚期凋亡率和死亡率明顯升高(P<0.01),相同濃度的RPMP對HepG2細胞凋亡無明顯誘導作用。此外,RPM 100 mg·L-1引起細胞凋亡作用與RPMP 1200 mg·L-1接近。細胞周期分析結果 (圖8和表2)表明,RPM對細胞周期無明顯影響,RPMP在最高濃度1200 mg·L-1時使HepG2細胞G2期發(fā)生明顯的阻滯。
2.6 Western蛋白質印跡法驗證RPM和RPMP對SOD2和ATF4蛋白表達的影響
Western蛋白質印跡法檢測結果 表明,RPM和RPMP作用24 h均能顯著升高SOD2和ATF4蛋白水平(圖9)。RPM引起SOD2和ATF4含量顯著升高的最低濃度分別為50和200 mg·L-1(P<0.05,P<0.01),RPMP則分別為1200和300 mg·L-1(P<0.05),與高內涵技術所得實驗結果 基本一致。
2.7 RPM和RPMP的化學成分
RPM和RPMP中主要含有TSG、大黃素和大黃素-8-O-β-D-葡萄吡喃糖苷3種主要的二苯乙烯苷類、蒽醌類及蒽醌糖苷類化合物。根據(jù)各單體成分的峰面積比(圖10)可知,RPM經(jīng)炮制后化學成分發(fā)生了明顯的改變,TSG和大黃素-8-O-β-D-葡萄吡喃糖苷含量分別下降約37%和78%,大黃素含量上升約337%,與文獻[6,10]報道一致。
Tab.1 Effect of RPM and RPMP on HepG2 cell apopotosis by high-content screen assay
Fig.8 Representative images of effect of RPM(A)and RPMP(B)on apoptosis and cell cycles of HepG2 cells by high-content screen assay.See Fig.1 for the cell treatment.
Tab.2 Effect of RPM and RPMP on HepG2 cell cycle by high-content screen assay
Fig.9 Effect of RPM(A)and RPMP(B)on expression of SOD2 and ATF4 proteins in HepG2 cells detected by Western blotting.Cells were treated with RPM and RPMP for 24 h,respectively.A2 and B2 was the semi-quantitative results of A1 and B1,respectively.x±s,n=3.*P<0.05,**P<0.01,compared with corresponding cell control(0)group.
Fig.10 Negative ion mass spectra of RPM(A)and RPMP(B)by UPLC-qTOF-MS.C:2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside;D:emodin-8-O-β-D-glucoside;E:emodin.Peak 1:TSG;peak 2:emodin-8-O-β-D-glucoside;peak 3:emodin.
本研究采用高內涵篩選技術較為系統(tǒng)的研究了RPM和RPMP對肝毒性相關參數(shù)及信號通路的影響,并應用Western蛋白質印跡技術證實了高內涵篩選結果 的可靠性。研究發(fā)現(xiàn),高內涵篩選技術測得細胞計數(shù)結果 與CellTiter-GloTM熒光法檢測HepG2細胞存活率相近,說明應用高內涵篩選技術檢測藥物對細胞數(shù)量的影響可在一定程度上反映藥物的細胞毒性。RPM和RPMP都能引起一定的氧化應激和內質網(wǎng)應激反應,并能通過降低線粒體膜電位對線粒體功能造成損傷,最終導致細胞凋亡。雖然RPM和RPMP均能使HepG2細胞發(fā)生明顯的氧化應激與內質網(wǎng)應激反應,但應激反應的強弱及引起應激反應所需要的藥物濃度和作用時間有很大區(qū)別,RPM主要以氧化應激為主,在較低濃度和(或)較短作用時間內就能使氧化應激相關指標GSH,ROS和SOD2水平明顯升高,而內質網(wǎng)應激相關指標ATF4發(fā)生明顯變化的時間較晚且所需藥物濃度較高;RPMP則與RPM正相反。吳宇等[17]通過高內涵篩選技術同樣檢測到何首烏70%乙醇提取物能引起HepaRG細胞發(fā)生明顯的內質網(wǎng)應激反應,但并未檢測到其對活性氧和線粒體膜電位的影響,與本研究結果 不一致,其原因可能是何首烏乙醇提取物的制備工藝不同導致了其中的主要成分有差異所致。
藥物的肝毒性與氧化應激和內質網(wǎng)應激密切相關,能引起肝損傷的藥物通常會刺激線粒體和內質網(wǎng),進而激活氧化應激和內質網(wǎng)應激等信號通路使細胞恢復穩(wěn)態(tài),但當損傷無法修復時,長期的氧化應激與內質網(wǎng)應激將導致細胞凋亡并引發(fā)肝損傷[18-20]。此外,氧化應激產(chǎn)生的ROS能擾亂內質網(wǎng)上蛋白質的正確折疊并引起內質網(wǎng)應激,反之,內質網(wǎng)應激也能引起線粒體功能的失調并引起線粒體ROS的產(chǎn)生,所以內質網(wǎng)應激與氧化應激不僅能單獨影響細胞功能導致細胞死亡,還可通過相互促進作用形成一個正反饋的循環(huán),共同干擾細胞的功能并激活促凋亡等信號通路[21-23]。
RPM經(jīng)炮制后其主要成分TSG的含量明顯降低,而大黃素含量顯著升高。實驗室前期研究發(fā)現(xiàn),TSG可引起ROS含量升高并導致強烈的氧化應激反應,大黃素則可以通過內質網(wǎng)應激反應途徑引發(fā)HepG2細胞凋亡(待發(fā)表)。RPM引起的應激反應主要以氧化應激為主,這可能與其含有大量的TSG有關;而RPMP經(jīng)炮制后升高的大黃素可能是其能引起強烈內質網(wǎng)應激的主要原因。考慮到氧化應激與內質網(wǎng)應激存在協(xié)同促進的關系,何首烏中同時存在能導致氧化應激的TSG和導致內質網(wǎng)應激的大黃素可能是其引起肝毒性的潛在危險因素,故炮制雖然在一定程度上減弱了何首烏的細胞毒性,但并未完全消除何首烏致肝毒性的可能性。
[1]Ma ZJ.A preliminary study on the objectivity,clinical biomarkers and injury mechanism of Polygonum multiflorum-induced hepatotoxicity(何首烏肝毒性客觀性、臨床標志物及損傷機制的初步研究)[D]. Chengdu:Chengdu University of TCM(成都中醫(yī)藥大學),2013.
[2]He YZ,Chen J,Shen SL.Research progress in relationship between Polygonum multiflorum and liver injury[J].Med Recapit(醫(yī)學綜述),2013,19(12):2206-2208.
[3]Yan LC,Zhao JN,Qiu X.The research progress on the safety of Polygonum multiflorum[J].Pharmacol Clin Chin Mater Med(中藥藥理與臨床),2009,25(3):77-81.
[4]Dong H,Slain D,Cheng J,Ma W,Liang W.Eighteen cases of liver injury following ingestion of Polygonum multiflorum[J].Complement Ther Med,2014,22(1):70-74.
[5]Lei X,Chen J,Ren J,Li Y,Zhai J,Mu W,et al. Liver damage associated with Polygonum multiflorum Thunb.:A systematic review of case reports and case series[J].Evid Based Complement Alternat Med,2015,2015:459749.
[6]Liang Z,Chen H,Yu Z,Zhao Z.Comparison of raw and processed Radix Polygoni Multiflori(Heshouwu)by high performance liquid chromatography and mass spectrometry[J].Chin Med,2010,5:29.
[7]Lin L,Ni B,Lin H,Zhang M,Li X,Yin X,et al. Traditional usages,botany,phytochemistry,pharmacology and toxicology of Polygonum multiflorum Thunb.:a review[J].J Ethnopharmacol,2015,159:158-83.
[8]Lv GP,Meng LZ,Han DQ,Li HY,Zhao J,Li SP. Effect of sample preparation on components and liver toxicity of Polygonum multiflorum[J].J Pharm Biomed Anal,2015,109:105-111.
[9]Ma J,Zheng L,He YS,Li HJ.Hepatotoxic assessment of Polygoni Multiflori Radix extract and toxicokinetic study of stilbene glucoside and anthraquinones in rats[J].J Ethnopharmacol,2015,162:61-68.
[10]Wu X,Chen X,Huang Q,F(xiàn)ang D,Li G,Zhang G. Toxicity of raw and processed roots of Polygonum multiflorum[J].Fitoterapia,2012,83(3):469-475.
[11]Yu J,Xie J,Mao XJ,Wang MJ,Li N,Wang J,et al.Hepatotoxicity of major constituents and extractions of Radix Polygoni Multiflori and Radix Polygoni Multiflori Praeparata[J].J Ethnopharmacol,2011,137(3):1291-1299.
[12]O′Brien PJ,Irwin W,Diaz D,Howard-Cofield E,Krejsa CM,Slaughter MR,et al.High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening[J].Arch Toxicol,2006,80(9):580-604.
[13]Gasparri F.An overview of cell phenotypes in HCS:limitations and advantages[J].Expert Opin Drug Discov,2009,4(6):643-657.
[14]Li Y,Xu L,Liu RN,Lin LF,Shi L.Influence of ethanol extract of raw and processed Polygonum multiflorum on mice liver[J].J Hainan Med Univ(海南醫(yī)學院學報),2011,17(4):452-455.
[15]Li Q,Zhao KJ,Zhao YL,Wang JB,F(xiàn)ang F,Lv Y,et al.High dosage administration of Polygonum multiflorum alcohol extract caused the multi-organ injury in rats[J].Global Tradit Chin Med(環(huán)球中醫(yī)藥),2013,6(1):1-7.
[16]LV Y,Wang JB,Ji Y,Zhao YL,Ma ZJ,Li Q,et al.Influence of extracting solvent on hepatocytes toxicity of Polygonum multiflorum[J].Chin J Exp Tradit Med Form(中國實驗方劑學雜志),2013,19(20):268-272.
[17]Wu Y.Screening of in vitro model in drug-induced liver injury and preliminary investigation of Polgonum multiflorum induced liver injury(藥物性肝損傷體外篩選模型和何首烏致肝損傷的初步研究)[D].Chinese Academy of Medical Sciences&Peking Union Medical College(中國醫(yī)學科學院北京協(xié)和醫(yī)學院),2016.
[18]Adachi T,Kaminaga T,Yasuda H,Kamiya T,Hara H.The involvement of endoplasmic reticulum stress in bile acid-induced hepatocellular injury[J]. J Clin Biochem Nutr,2014,54(2):129-135.
[19]Han D,Dara L,Win S,Than TA,Yuan L,Abbasi SQ,et al.Regulation of drug-induced liver injury by signal transduction pathways:critical role of mitochondria[J].Trends Pharmacol Sci,2013,34(4):243-353.
[20]Pereira CV,Nadanaciva S,Oliveira PJ,Will Y. The contribution of oxidative stress to drug-inducedorgan toxicity and its detection in vitro and in vivo[J].Expert Opin Drug Metab Toxicol,2012,8(2):219-237.
[21]Cheville NF.Ultrastructural pathology and interorganelle cross talk in hepatotoxicity[J].Toxicol Pathol,2013,41(2):210-226.
[22]Cao SS,Kaufman RJ.Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease[J].Antioxid Redox Signal,2014,21(3):396-413.
[23]Chen S,Melchior WB Jr,Guo L.Endoplasmic reticulum stress in drug-and environmental toxicantinduced liver toxicity[J].J Environ Sci Health C Environ Carcinog Ecotoxicol Rev,2014,32(1):83-104.
High-content screen assay for studying hepatotoxicity mechanisms of ethanol extract of Radix Polygoni Multiflori and Radix Polygoni Multiflori Praeparata
LI Dan-dan1,2,TANG Xiang-lin2,LONG Long3,XU Long-long4,TAN Hong-ling2,LIANG Qian-de2,
XIAO Cheng-rong2,WANG Yu-guang2,MA Zeng-chun2,WANG Li-li3,GAO Yue1,2
(1.Department of Pharmacology,Guangxi Medical University,Nanning 530021,China;2.Department of Pharmacology,Institute of Radiation Medicine,3.Department of Medicinal Chemistry,Institute of Pharmacology and Toxicology,Academy of Military Medical Sciences,Beijing 100850,China;
4.Department of Pharmacology,Anhui Medical University,Hefei 230032,China)
OBJECTlVETo investigate the hepatotoxicity mechanisms of ethanol extract of Radix Polygoni Multiflori(RPM)and Radix Polygoni Multiflori Praeparata(RPMP)by high-content screen assay.METHODSHepG2 cells were treated with RPM(10,25,50,100,200 and 300 mg·L-1)and RPMP(10, 50,100,300,600 and 1200 mg·L-1)for 3-24 h,respectively.The cell viability was detected by a CellTiter-GloTMluminescent cell viability assay kit.Cell count,reactive oxygen species(ROS),mitochondrial membrane potential(MMP),glutathione(GSH),superoxide dismutase 2(SOD2),activating transcription factor 4(ATF4),apoptosis,and cell cycles were investigated by high-content screen assay.Besides, SOD2 and ATF4 levels were confirmed by Western blotting.RESULTSRPM 300 mg·L-1showed nearly 48%reduction in cell viability compared with cell control(P<0.01),while RPMP had no significant effect at the same concentration.Both RPM and RPMP decreased the level of MMP(P<0.05)but incresed levels of GSH,ROS,SOD2 and ATF4 significantly(P<0.05).Besides,RPM 200 mg·L-1significantly increased the expression of SOD2(P<0.05)at 3 h by high-content screen assay,and the enhanced expression of ATF4 was shown at 6 h(P<0.05).RPMP 300 mg·L-1markedly increased the expression of ATF4 at 6 h(P<0.05),while the expression of SOD2 significantly increased at 24 h(P<0.05).CONCLUSlONBoth RPM and RPMP have some cytotoxicity,and the cytotoxicity of RPM is stronger than that of RPMP.The hepatotoxicity mechanisms of RPM and RPMP may be related to cell apoptosis caused by long-term oxidative stress and endoplasmic reticulum stress.
Polygonum multiflorum Thunb.;hepatotoxicity;cells,HepG2;high-content screen; oxidative stress;endoplasmic reticulum stress
The project supported by Natural Science Foundation of Beijing City(7164291);National Science and Techonology Major Project of China(2014ZX09304307-001-003);National Science and Techonology Major Project of China(2015ZX 09501004-003-003);and Special Scientific Research for Traditional Chinese Medicine of State Administrortion of Traditional Chinese Medicine of China(201507004)
GAO Yue,E-mail:gaoyue@bmi.ac.cn;TANG Xiang-ling,E-mail:tangxianglin@139.com
R285
A
1000-3002-(2017)06-0626-10
2016-11-10接受日期:2017-01-25)
(本文編輯:齊春會)
北京市自然科學基金(7164291);國家科技重大專項(2014ZX09304307-001-003);國家科技重大專項(2015ZX-09501004-003-003);中醫(yī)藥行業(yè)科研專項(201507004)
李丹丹,碩士研究生,主要從事中藥藥理學和毒理學研究;高月,博士,研究員,主要從事中藥藥理學和毒理學研究;湯響林,博士,助理研究員,主要從事中藥藥理學和毒理學研究。
高月,E-mail:gaoyue@bmi.ac.cn;湯響林,E-mail:tangxianglin@139.com