佟洪雙 王常松
[摘要] 分析呼出氣體、血液、汗液、尿液、唾液、胸腔積液、腦脊液、糞便等揮發(fā)性有機(jī)化合物是最新發(fā)展起來用于評估健康狀況、疾病篩查和診斷的一種方法。近幾年來,這種方法因其非侵入性、快速、操作簡單方便、廉價以及患者良好的耐受性等優(yōu)點(diǎn),不但引起越來越多研究者的注意,而且擴(kuò)展了新的研究領(lǐng)域。目前,肺癌呼出氣、血液、尿液等代謝組學(xué)的研究表明烷烴、芳香烴、含氧有機(jī)化合物具有一定診斷價值,并在各種癌癥中已經(jīng)確定和某些特殊的揮發(fā)性有機(jī)化合物之間存在聯(lián)系。
[關(guān)鍵詞] 揮發(fā)性有機(jī)代謝物;生物標(biāo)志物;生物體液
[中圖分類號] R503 [文獻(xiàn)標(biāo)識碼] A [文章編號] 1673-7210(2017)07(a)-0043-04
[Abstract] Analysis of volatile organic compounds in exhaled breath, blood, sweat, urine, saliva, pleural effusion, cerebrospinal fluid, stool is a new method that was used for the assessment of health status, disease screening and diagnosis. In recent years, this method has the advantages of non-invasive, rapid, convenient operation, cheap and patients with good tolerance. The analysis of volatile organic compounds has attracted more and more attention of researchers and expanded a new research field. At present, the metabolomics research of lung cancer in exhaled breath, blood and urine show that alkanes, aromatic hydrocarbons, oxy-compound has a certain diagnostic value. There is also a link between identified various types of cancer and some special volatile organic compounds.
[Key words] Volatile organic compounds; Biomarkers; Biological fluids
目前使用揮發(fā)性有機(jī)化合物(VOCs)分析來診斷疾病的方法已經(jīng)被廣泛研究。呼出氣、血液和尿液VOCs分析已經(jīng)應(yīng)用于各種不同的領(lǐng)域,如毒理學(xué)、司法學(xué)、生物化學(xué)以及包括癌癥的醫(yī)學(xué)領(lǐng)域。但是VOCs分析各種不同的生物體液有很多種方法,被廣泛研究的是固相微萃?。⊿PME)聯(lián)合氣相色譜-質(zhì)譜分析(gas chromatography-mass spectrometry,GC-MS)方法。本綜述是通過幾種不同分析方法來論述不同生物體液產(chǎn)生特定的VOCs以及和疾病之間的關(guān)系。
1 VOCs分析的緣起及發(fā)展
早在古希臘內(nèi)科醫(yī)生就已發(fā)現(xiàn)人類呼出的氣味能為疾病診斷提供線索。1971年諾貝爾獎獲得者Laureate Linus和同事首次提出代謝組學(xué)揮發(fā)性物質(zhì)部分的分析,命名為Volatome。他描述了正常人呼出氣以及尿液中大約有250到280種揮發(fā)性物質(zhì)[1]。1989年Williams和Pembroke證實(shí)了嗅探犬經(jīng)過訓(xùn)練后能發(fā)現(xiàn)黑色素瘤的患者,表明惡性腫瘤中存在“特殊氣味”[2]。隨后其他幾項(xiàng)研究證實(shí)了某種特殊VOC和各種癌癥之間的關(guān)系,例如肺癌[3]、肝癌[4]、乳腺癌[5]和結(jié)直腸癌[6-8]。
2 人體內(nèi)VOCs的產(chǎn)生與代謝
人體內(nèi)源性VOCs是由癌細(xì)胞和組織進(jìn)行新陳代謝和氧化應(yīng)激產(chǎn)生的代謝產(chǎn)物,反映機(jī)體內(nèi)炎癥、壞死、癌癥變性、微生物群以及內(nèi)環(huán)境的變化,其存在與含量可以反映人體健康情況。同時也受外部因素的影響,如環(huán)境、藥物等[2]。研究顯示導(dǎo)致VOCs降解加速是肺癌患者體內(nèi)細(xì)胞色素P450系統(tǒng)被激活,這些代謝產(chǎn)物在水中溶解度很低,而有些釋放于血液中,經(jīng)過血液循環(huán)到達(dá)肺泡或者腎小管,最終隨呼出氣或尿液被排出體外[2]。腸道VOCs是結(jié)腸內(nèi)細(xì)菌經(jīng)過非淀粉多糖發(fā)酵產(chǎn)生,代表小腸細(xì)胞、腸道微生物群和入侵病原體復(fù)雜的相互作用,可在糞便及尿液中被檢測到[9]。這些VOCs產(chǎn)生后可以以氣相的形式在呼出氣體、血液、汗液、尿液、糞便、腦脊液以及母乳中被檢測到。
2.1 唾液VOCs分析
唾液中VOCs可作為疾病、生理狀態(tài)和從事職業(yè)的生物標(biāo)志物。人類口腔中有大約700種細(xì)菌和微生物定植,這些微生物所釋放的VOCs主要有揮發(fā)性硫化物(volatile sulfur compounds,VSC)、吲哚(indole)、酚(phenol)、脂肪胺(aliphatic amines)等[10-12]。外源性化合物來源于化妝品、香水、洗滌劑、煙草和大氣污染物。有研究通過GC-MS分析唾液中VOC鑒別與疾病相關(guān)的標(biāo)志物,如二甲基硫(dimethyl disulfide)、苯乙烯(styrene)和甲基叔丁基醚(methyl tert-butyl ether)[13-14],與肺癌有關(guān)的VOCs,如苯甲酮(benzophenone)和反式石竹烯(trans-caryophyllene)[15-16]。Kostelc等[17]分析17個受試者(3名男性和14名女性)由刺激產(chǎn)生的全唾液酸化合物。他們發(fā)現(xiàn)了超過30種化合物,主要是醇/酚類和脂肪族和芳族烴。但是其中至少11種揮發(fā)物是外源性的。其中辛醇(2-ethyl-1-hexanol)是塑化劑,而二丁基羥基甲苯(butylatedhydroxytoluene,BHT)是一種常用的抗氧化劑。而十四酸異丙酯(isopropyl tetradecanoate)和棕櫚酸異丙酯(isopropyl hexadecanoate)這兩種脂肪酸酯可能來源于化妝品制劑。四氯乙烯(Tetrachloroethylene)可能來源于環(huán)境中的空氣或生活飲用水。烯丙基異硫氰酸酯(allylisothiocyanate)的存在可能與飲食有關(guān),因?yàn)樗饕墙婺┑闹饕煞帧H扇℉exanal)和己醛(nonanal)是氧化應(yīng)激的標(biāo)志物,口腔微生物群活動可能產(chǎn)生2,3-丁二酮(2,3-butanedione)、2,3-戊二酮(2,3-pentanedione)、苯酚(phenol)、吡咯(pyrrole)、吲哚(indole)和二甲基二硫醚(dimethyl disulfide)等VOCs。唾液幾乎完全是水溶性物質(zhì),VOCs濃度比血液或尿液低?!靶迈r”唾液中的大部分VOCs主要來源于食品及口腔衛(wèi)生用品,這些外源性物質(zhì)可能阻礙尋找真正疾病的生物標(biāo)志物。只有幾個內(nèi)源性的唾液化合物可作為疾病的標(biāo)志物。如今,關(guān)于使用唾液VOCs分析來診斷疾病的方法已經(jīng)被質(zhì)疑,除了毒理學(xué)應(yīng)用領(lǐng)域。然而,口腔微生物定植細(xì)菌活性產(chǎn)物的研究可能為疾病的診斷提供更有價值的信息。
2.2 血液VOCs分析
從理論上講,低分子量VOCs質(zhì)譜分析可以通過血液的頂空萃取而鑒別。通過血培養(yǎng)瓶的頂空萃取等研究發(fā)現(xiàn)了特殊的VOCs,表明這些特殊的VOCs是由菌血癥患者的血液產(chǎn)生[18]。2006年Allardyce等[19]采用選擇性離子流質(zhì)譜分析人工感染5種細(xì)菌菌株的血液培養(yǎng)瓶,結(jié)果表明,微生物VOCs的檢測可能是一種敏感細(xì)菌檢測方法,即用來鑒定和測定抗生素在傳統(tǒng)血液培養(yǎng)系統(tǒng)中的敏感性。然而并沒有研究頂空尿細(xì)菌和陽性血培養(yǎng)物或血清微生物細(xì)胞培養(yǎng)物的頂空中發(fā)現(xiàn)這些化合物的相關(guān)性。在目前的研究中,大部分是應(yīng)用SPME與GC-MS用于肺癌的VOCs研究;頂空SPME(纖維涂層,提取溫度和提取時間)和解析條件是應(yīng)用于測定人體血液中的揮發(fā)物、尋找癌癥生物標(biāo)志物的最佳方法。Deng等[20-22]通過SPME和GC-MS法描述了肺癌患者正常樣品和樣品頂空中揮發(fā)性醛(aldehydes)的測定,認(rèn)為人類血液中的己醛(Hexanal)和庚醛(heptanal)是肺癌的潛在生物標(biāo)志物,同時通過呼出氣和血液中揮發(fā)物的比較,論證了己醛和庚醛起源于血液。類似的研究發(fā)現(xiàn)在吸煙者血液的頂空萃取檢測到乙腈(acetonitrile)水平升高[23]。
2.3 尿液VOCs分析
迄今為止,已經(jīng)從尿液中檢測到超過230種不同化學(xué)類型的VOCs,包括醛類、酮類、呋喃、吡咯、萜類和含硫化合物等[24-25]。由于尿液易于收集,如今已廣泛應(yīng)用于代謝組學(xué)研究領(lǐng)域,輔助探索病理進(jìn)程,例如先天性代謝疾病、糖尿病和多種癌癥。目前,尿液代謝組學(xué)的研究已經(jīng)應(yīng)用到乳腺癌[26]、結(jié)直腸癌[27]、食管癌[28]、胰腺癌[29]和肝癌[30]等疾病。Matsumura等[31]證實(shí),尿液揮發(fā)性化合物可以應(yīng)用于肺癌的協(xié)助診斷。Zhang等[32]使用尿液代謝組學(xué)分析方法,對27例腎細(xì)胞癌患者、26例其他泌尿系統(tǒng)腫瘤患者和26名正常人進(jìn)行了實(shí)驗(yàn),分析結(jié)果得到十四種代謝產(chǎn)物。腎細(xì)胞癌患者尿液中含有機(jī)酸、馬尿酸、色氨酸及其降解產(chǎn)物,其中戊酸(pentanoic acid)、丙二酸(malonic acid)、戊二酸(glutaric acid)、己二酸(adipic acid)、吲哚乙酸(indoleacetic acid)、氨基喹啉(aminoquinoline)、喹啉(quinoline)及色氨酸(tryptophan)的濃度高于正常人;戊酸(pentanoic acid)、苯丙氨酸(phenylalanine)、6-甲氧基-硝基喹啉(6-methoxy-nitroquinoline)等濃度高于其他泌尿系統(tǒng)腫瘤患者。經(jīng)分析,這些代謝產(chǎn)物主要與脂肪代謝、氨基酸代謝,以及能量傳遞途徑有關(guān)。因此需要對這些代謝產(chǎn)物及其參與的代謝途徑進(jìn)行深入的研究,以發(fā)現(xiàn)具有診斷腎細(xì)胞癌的特異性生物標(biāo)志物。
2.4 胸腔積液VOCs分析
胸腔積液與肺部疾病關(guān)系密切。與肺部疾病相關(guān)蛋白的改變、細(xì)胞功能異常通過與控制代謝的酶或核酸相結(jié)合而引起胸腔積液中內(nèi)源代謝物比例、濃度等方面發(fā)生的變化可以區(qū)分肺癌和肺部炎癥。SPME結(jié)合GC/MS是一種簡單、快速、靈敏和無溶劑法測定胸腔積液中的VOC。Liu等[33]通過質(zhì)譜儀定量比較胸腔積液樣品中揮發(fā)性代謝物(VOMs)化學(xué)類別的強(qiáng)度,發(fā)現(xiàn)肺癌患者胸腔積液樣品中主要的代謝物為醇類(alcohols)、酮類(ketones)和苯系衍生物(benzene derivatives),而良性對照組胸腔積液中主要為酮類(ketones)、酯類(terpenoids)和苯系衍生物(benzene derivatives),通過篩選得到肺癌組和良性組間的差異性代謝化合物分別為環(huán)己酮(cyclohexanone)和2-乙基-1-己醇(2-ethyl-1-hexanol)。這些化合物是否適合肺癌生物標(biāo)志物仍然需要進(jìn)一步研究,另一方面,環(huán)己酮和2-乙基-1-己醇可能來源于內(nèi)源性生化途徑,這兩種物質(zhì)在肺癌患者尿液生物標(biāo)志物中也被發(fā)現(xiàn)[34]。然而到目前為止,沒有研究比較良性和惡性胸膜之間胸腔積液VOCs的差異。
3 VOCs分析存在的問題
從生物學(xué)的角度看,人類的VOCs顯著改變可能受人類自身?xiàng)l件及環(huán)境影響。生理效應(yīng)能影響VOC濃度,因此也是疾病的VOCs生物標(biāo)志物的混雜因素。此外,來源于外源性的VOCs可以被吸收到體內(nèi),從而影響身體內(nèi)的VOCs[35]。因此,在臨床研究中無法避免受到這些外部因素影響,甚至可能會導(dǎo)致錯誤的結(jié)論[36]。在臨床試驗(yàn)中,需要嚴(yán)格控制干預(yù)措施和規(guī)范對樣本的處理。VOCs的收集和分析,采用SPME與GC-MS等其他方法均可以影響標(biāo)志物的結(jié)果。
[參考文獻(xiàn)]
[1] Pauling L,Robinson AB,Teranishi R,et al. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography [J]. Proc Natl Acad Sci USA,1971,68(10):2374-2376.
[2] Williams H,Pembroke A. Sniffer dogs in the melanoma clinic? [J]. Lancet,1989,333(8640):734.
[3] Kischkel S,Miekisch W,F(xiàn)uchs P,et al. Breath analysis during one-lung ventilation in cancer patients [J]. Eur Respir J,2012,40(3):706-713.
[4] Ressom HW,Xiao JF,Tuli L,et al. Utilization of metabolomics to identify serum biomarkers for hepatocellular carcinoma in patients with liver cirrhosis [J]. Analytica Chimica Acta,2012,743:90-100.
[5] Li J,Peng Y,Duan Y. Diagnosis of breast cancer based on breath analysis:An emerging method [J]. Crit Rev Oncol Hematol,2013,87(1):28-40.
[6] Peng G,Hakim M,Broza YY,et al. Detection of lung,breast,colorectal,and prostate cancers from exhaled breath using a single array of nanosensors [J]. Br J Cancer,2010,103(4):542-551.
[7] Altomare DF,Di M,Porcelli F,et al. Exhaled volatile organic compounds identify patients with colorectal cancer [J]. Br J Surg,2013,100(1):144-150.
[8] Di Lena M,Porcelli F,Altomare DF. Volatile organic compounds as new biomarkers for colorectal cancer:a review [J]. Colorectal Dis,2016,18(7):654-663.
[9] Arasaradnam RP,McFarlane MJ,Ryan-Fisher C,et al. Detection of colorectal cancer(CRC)by urinary volatile organic compound analysis [J]. PLoS One,2014,9(9):e108750.
[10] Tonzetich J,Carpenter PA. Production of volatile sulphur compounds from cysteine,cystine and methionine by human dental plague [J]. Arch Oral Biol,1971,16(6):599-607.
[11] Imamura T. Influences of amino acids on the phenol and indole production of salivary microorganisms [J]. Shigaku,1982,70(1):21-35.
[12] Claus D,Geypens B,Ghoos Y,et al. Oral malodor,assessed by closed-loop,gas chromatography,and ion-trap technology [J]. High Resol Chromatogr,1997,20(2):94-98.
[13] Sánchez MN,García EH,Pavón JL,et al. Fast analytical methodology based on mass spectrometry for the determination of volatile biomarkers in saliva [J]. Anal Chem,2012,84(1):379-385.
[14] Amann A,Mochalski P,Ruzsanyi V,et al. Assessment of the exhalation kinetics of volatile cancer biomarkers based on their physicochemical properties [J]. J Breath Res,2014,8(1):016003.
[15] Soini,HA,Klouckova I,Wiesler D,et al. Analysis of volatile organic compounds in human saliva by a static sorptive extraction method and gas chromatography-mass spectrometry [J]. Chem Ecol,2010,36(9):1035-1042.
[16] Al-Kateb H,de Lacy Costello B,Ratcliffe N. An investigation of volatile organic compounds from the saliva of healthy individuals using headspace-trap/GC-MS [J]. J Breath Res,2013,7(3):036004.
[17] Kostelc JG,Preti G,Zelson PR,et al. Volatiles of exogenous origin from the human oral cavity [J]. J Chromatogr,1981,226(2):315-323.
[18] Scotter JM,Allardyce RA,Langford VS,et al. The rapid evaluation of bacterial growth in blood cultures by selected ion flow tube-mass spectrometry(SIFT-MS)and comparison with the BacT/ALERT automated blood culture system [J]. J Microbiol Methods,2006,65(3):628-631.
[19] Allardyce RA,Hill AL,Murdoch DR. The rapid evaluation of bacterial growth and antibiotic susceptibility in blood cultures by selected ion flow tube mass spectrometry [J]. Diagn Microbiol Infect Dis,2006,55(4):255-261.
[20] Deng C,Zhang X,Li N. Investigation of volatile biomarkers in lung cancer blood using solid-phase microextraction and capillary gas chromatography-mass spectrometry [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2004, 808(2):269-277.
[21] Deng C,Li N,Zhang X. Development of headspace solid-phase microextraction with on-fiber derivatization for determination of hexanal and heptanal in human blood [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2004,813(1):47-52.
[22] Li N,Deng C,Yin X,et al. Gas chromatography-mass spectrometric analysis of hexanal and heptanal in human blood by headspace single-drop microextraction with droplet derivatization [J]. Analyt Biochem,2005,342(2):318-326.
[23] Houeto P,Hoffman JR,Got P,et al. Acetonitrile as a possible marker of current cigarette smoking [J]. Hum Exp Toxicol,1997,16(11):658-661.
[24] Mochalski P,Krapf K,Ager C,et al. Temporal profiling of human urine VOCs and its potential role under the ruins of collapsed buildings [J]. Toxicol Mech Methods,2012,22(7):502-511.
[25] Mochalski P,Al-Zoairy R,Niederwanger A,et al. Quantitative analysis of volatile organic compounds released and consumed by rat L6 skeletal muscle cells in vitro [J]. J Breath Res,2014,8(4):046003.
[26] Johnson CH,Manna SK,Krausz KW,et al. Global meta-bolomics reveals urinary biomarkers of breast cancer in a mcf-7 xenograft mouse model [J]. Metabolites,2013,3(3):658-672.
[27] Cheng Y,Xie G,Chen T,et al. Distinct urinary metabolic profile of human colorectal cancer [J]. Proteome Res,2012,11(2):1354-1363.
[28] Davis VW,Schiller DE,Eurich D,et al. Urinary metabolomic signature of esophageal cancer and Barrett's esophagus [J]. World J Surg Oncol,2012,10(1):271.
[29] Davis VW,Schiller DE,Eurich D,et al. Pancreatic ductal adenocarcinoma is associated with a distinct urinary metabolomic signature [J]. Ann Surg Oncol,2013,20(3):S415-S423.
[30] Zhang A,Sun H,Yan G,et al. Urinary metabolic profiling identifies a key role for glycocholic acid in human liver cancer by ultra-performance liquid-chromatography coupled with high-definition mass spectrometry [J]. Clin Chim Acta,2013,418:86-90.
[31] Matsumura K,Opiekun M,Oka H,et al. Urinary volatile compounds as biomarkers for lung cancer:a proof of principle study using odor signatures in mouse models of lung cancer [J]. PLoS One,2010,5(1):e8819.
[32] Zhang L,Li L,Kong H,et al. Urinary metabolomics study of renal cell carcinoma based on gas chromatography-mass spectrometry [J]. Nan Fang Yi Ke Da Xue Xue Bao,2015,35(5):763-766.
[33] Liu H,Wang H,Li C,et al. Investigation of volatile organic metabolites in lung cancer pleural effusions by solid-phase microextraction and gas chromatography/mass spectrometry [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2014,945/946:53-59.
[34] Hanai Y,Shimono K,Matsumura K,et al. Urinary volatile compounds as biomarkers for lung cancer [J]. Biosci Biotechnol Biochem,2012,76(4):679-684.
[35] de Lacy Costello B,Amann A,Al-Kateb H,et al. A review of the volatiles from the healthy human body [J]. J Breath Res,2014,8(1):014001.
[36] Filipiak W,Ruzsanyi V,Mochalski P,et al. Dependence of exhaled breath composition on exogenous factors,smoking habits and exposure to air pollutants [J]. J Breath Res,2012,6(3):036008.
(收稿日期:2017-02-28 本文編輯:張瑜杰)