柴寶峰,王美,石文鑫,柴楊麗,呂佳
(山西大學(xué) 黃土高原研究所,山西 太原 030006)
無(wú)義mRNA降解途徑的機(jī)制與進(jìn)化
柴寶峰,王美,石文鑫,柴楊麗,呂佳
(山西大學(xué) 黃土高原研究所,山西 太原 030006)
含有無(wú)義突變的mRNA在細(xì)胞中被無(wú)義介導(dǎo)的mRNA降解(nonsense-mediated mRNA decay,NMD)途徑選擇性降解,同時(shí)該途徑還能調(diào)控細(xì)胞中一些生理性RNA的豐度。NMD途徑的核心是含有無(wú)義突變的mRNA的識(shí)別和降解機(jī)制,其中關(guān)鍵因子上游移碼蛋白(up-frameshift,UPF)和生殖器形態(tài)效應(yīng)抑制因子(suppressor with morphological effect on genitalia,SMG)的功能及其調(diào)控機(jī)制是NMD途徑研究的熱點(diǎn)問(wèn)題。NMD途徑核心因子的種類和功能在不同進(jìn)化地位的生物中既有一定的保守性,也有一定的差異,說(shuō)明NMD途徑具有一定的進(jìn)化學(xué)特征。高等真核生物NMD途徑機(jī)制的研究取得了一定的進(jìn)展,而在原生生物中尚無(wú)機(jī)制層面的研究。利用原生動(dòng)物作為模式生物開(kāi)展NMD途徑關(guān)鍵因子的功能和進(jìn)化研究,有助于從進(jìn)化學(xué)角度揭示NMD途徑的功能和調(diào)控機(jī)制,為建立人類細(xì)胞中NMD途徑的調(diào)控網(wǎng)絡(luò)提供數(shù)據(jù)支持,為人類遺傳學(xué)疾病和腫瘤的預(yù)防和治療提供理論基礎(chǔ)。
NMD途徑;無(wú)義mRNA識(shí)別;核心因子;功能調(diào)控;進(jìn)化
基因的表達(dá)受到轉(zhuǎn)錄和翻譯水平多重機(jī)制的調(diào)控,各種核酸和蛋白質(zhì)因子協(xié)調(diào)作用,對(duì)基因表達(dá)的特定步驟或者特定基因的精確表達(dá)進(jìn)行調(diào)控。在不同層次對(duì)靶基因進(jìn)行實(shí)時(shí)調(diào)控的特異因子和具體機(jī)制是現(xiàn)代分子生物學(xué)研究的核心課題[1]。轉(zhuǎn)錄后RNA的質(zhì)量控制是基因精確表達(dá)的關(guān)鍵環(huán)節(jié)之一。DNA的突變、轉(zhuǎn)錄和轉(zhuǎn)錄后加工過(guò)程中的任何錯(cuò)誤,都可能導(dǎo)致mRNA中產(chǎn)生提前密碼子(premature termination codon,PTC)。這些含有PTC的mRNA的翻譯會(huì)使細(xì)胞中積累截短型蛋白質(zhì),對(duì)細(xì)胞產(chǎn)生毒害。有趣的是,在真核細(xì)胞中存在一種RNA質(zhì)控機(jī)制,即無(wú)義介導(dǎo)的mRNA降解途徑(nonsense-mediated mRNA decay,NMD),可以降解含有PTC的mRNA[2-3]。此外,NMD途徑還可以調(diào)控細(xì)胞中10%~20%的正常的生理性mRNA和非編碼RNA,確保細(xì)胞的內(nèi)平衡(homeostasis),與細(xì)胞免疫、神經(jīng)系統(tǒng)發(fā)育,如軸突導(dǎo)向、突觸強(qiáng)度和神經(jīng)元表達(dá)[3-5]以及胚胎發(fā)育等密切相關(guān)[6]。大約有三分之一的遺傳性疾病和多種癌癥的發(fā)生與NMD途徑有關(guān)[7-9]。NMD途徑機(jī)制的研究成果對(duì)于人類遺傳性疾病和腫瘤的預(yù)防和治療具有廣闊的應(yīng)用前景[7,10-11]。因此,近年來(lái)無(wú)義突變基因的表達(dá)調(diào)控機(jī)制的研究成為分子細(xì)胞生物學(xué)的熱點(diǎn)之一[4,12-13]。
Fig.1 The model of NMD pathway and the degradation of mRNAA:the faux 3’-UTR model (up) and exon-exon junction complex model (down) dependent on translation termination;B:the UPF1 3’-UTR sensing and potentiation modelA:依賴于翻譯終止過(guò)程的偽3’-UTR模型(上)和EJC模型(下);B不依賴于翻譯終止的UPF1 3’-UTR感應(yīng)和增效模型(Serdar,2016[31])圖1 NMD 途徑模型及mRNA的降解
NMD途徑研究的核心是含有無(wú)義密碼子的mRNA的識(shí)別和降解機(jī)制。即NMD途徑如何區(qū)分含有無(wú)義密碼子的mRNA(PTC-mRNA)與含有正常終止密碼子的mRNA。目前為止有三個(gè)主要模型(圖1):以酵母和果蠅細(xì)胞為代表的“偽3’-UTR模型(the faux 3’-UTR model)”[14-16];以哺乳動(dòng)物細(xì)胞為代表的“外顯子連接復(fù)合體模型(exon-exon junction complex,the EJC model)”[16];UPF1 3’-UTR 感應(yīng)和增效模型(UPF1 3’-UTR sensing and potentiation model)[17]。偽3’-UTR模型中(圖1A上),當(dāng)翻譯終止復(fù)合體停滯在提前終止密碼子(PTC)位置時(shí),mRNA 3’端的多聚腺苷酸A結(jié)合蛋白PABP(poly(A) binding protein)與第二類肽鏈釋放因子eRF3 (eukaryotic polypeptide release factor) 距離較遠(yuǎn)而不能相互作用時(shí),NMD途徑核心因子UPF (up-frameshift suppressor)與eRF3相互作用,啟動(dòng)了NMD途徑。EJC模型中(圖1A下),翻譯終止復(fù)合體在提前終止密碼子處停滯,肽鏈釋放因子與NMD途徑核心因子UPF1和SMG1形成SMG1-UPF1-eRF3-eRF1復(fù)合體結(jié)構(gòu)(SURF),其中UPF1通過(guò)UPF2與下游(>50-55nt)的外顯子拼接復(fù)合體EJC核心因子相互作用[18],調(diào)控SMG1 (suppressor with morphological effect on genitalia) 激酶活性,磷酸化修飾UPF1,啟動(dòng)NMD途徑[19]。以上兩個(gè)模型均依賴于翻譯終止過(guò)程。UPF1 3’-UTR 感應(yīng)和增效模型中(圖1B),UPF1因子優(yōu)先結(jié)合到mRNA的PTC下游3’-UTR區(qū),而且UPF1與mRNA的結(jié)合與3’-UTR的長(zhǎng)度有關(guān),而與序列特征無(wú)關(guān)。UPF1可以感知3’-UTR的長(zhǎng)度,啟動(dòng)NMD途徑,該過(guò)程與翻譯過(guò)程無(wú)關(guān)。
三個(gè)模型中,UPF1作為核心因子與多種調(diào)控因子 (regulator) 和效應(yīng)子(effector)相互作用,包括UPF2、UPF3、SMG1,以及核糖體和肽鏈釋放因子eRF1和eRF3等,但各因子間相互作用的功能和機(jī)制有待闡明[2]。UPF1具有ATPase和RNA helicase 活性,同時(shí)作為磷酸蛋白質(zhì)被SMG1修飾,為招募mRNA的降解因子提供平臺(tái)。UPF1結(jié)合ATP后,與翻譯終止復(fù)合體結(jié)合,形成SURF結(jié)構(gòu),促進(jìn)無(wú)義mRNA的翻譯終止和截短型肽鏈的釋放。ATP被UPF1水解后,將翻譯終止復(fù)合體從mRNA解離,進(jìn)而招募mRNA降解因子,啟動(dòng)NMD途徑[20];在SURF復(fù)合體中,eRF1和eRF3可能抑制UPF1的ATPase活性,而UPF2和UPF3激活UPF1的ATPase活性和解旋酶活性[20]。在后生動(dòng)物中,UPF1的N端和C端包含多個(gè)保守的絲氨酸和蘇氨酸磷酸化位點(diǎn),被SMG1或者其它激酶超磷酸化修飾后,招募SMG6和SMG5-SMG7因子,以及脫帽酶Dcp2(decapping enzyme),直接或間接降解mRNA(圖1B)[21]。而在酵母(Saccharomycescerevisiae)細(xì)胞中,UPF1則沒(méi)有富含磷酸化位點(diǎn)的N端和C端結(jié)構(gòu)域,盡管酵母的UPF1也被磷酸化修飾,但UPF1因子上卻沒(méi)有SMG1的結(jié)合位點(diǎn)[22],目前為止,酵母細(xì)胞中還沒(méi)有克隆到SMG1基因。原生動(dòng)物賈第蟲(Giardialamblia)[23]和草履蟲(Parameciumtetraurelia)、錐蟲(Trypanosomabrucei)[24]細(xì)胞與后生動(dòng)物線蟲(Caenorhabditiselegans)、果蠅(Drosophilamelanogaster)、擬南芥(Arabidopsisthaliana)、人類細(xì)胞相比,NMD途徑因子的種類(表1)和一級(jí)結(jié)構(gòu)序列和高級(jí)結(jié)構(gòu)上也存在一定差異[23,25-26],所以NMD途徑機(jī)制的保守性和進(jìn)化特征是一個(gè)值得關(guān)注的問(wèn)題。
表1 不同進(jìn)化地位的真核生物中基因中內(nèi)含子含量、外顯子復(fù)合體和NMD途徑核心因子[27]
Table 1 Intron content,exon-exon complex and core factors in genes of eukaryotic organisms at different evolutionary position
生物類群Group內(nèi)含子/基因Introns/geneEJC核心因子EJCcorecomponentsNMD核心因子NMDcorecomponentsMagoY14REF/AlyBtzeIF4AIIISMG1UPF1UPF2UPF3SMG5SMG6SMG7脊椎動(dòng)物vertebrate6.6+++++++++-±+尾索動(dòng)物Urochordate5.8+++++++++-+-昆蟲Insects4.0+++++++++++-線蟲Nematodes5.1++++++++++++真菌Fungi1.2±++-+-±±±---粘液菌Slimemold1.3+++-+++++-++阿米巴原蟲Entamoebid0.3+++-+++-+---綠色植物Chlorophyte4.2+++-+-+++---紅藻Rhodophytes0--+-+-------頂腹蟲類Apicomplexans0.8+++-+-+++-±-卵菌綱Oomycetes2.8+++±--+++---纖毛蟲Ciliates2.3++--+-+++---動(dòng)基體Kinetoplastids0±±+-±---+---硅藻Diatom1.4+++-+-+++-+-毛滴蟲Trichomonad2.6+++-++++----雙滴蟲Diplomonad0--+-+++-----注:“±”在真菌中,有些物種,如Eucephalitzooncuniculi缺失UPF1、UPF2和UPF3基因,有些物種缺失UPF1基因,如Candidaalbican和Trichodermaressei。在其他生物中也有類似現(xiàn)象,如頂腹蟲類和動(dòng)基體類生物。最初的研究認(rèn)為雙滴蟲類中沒(méi)有SMG1,本實(shí)驗(yàn)室最近從藍(lán)氏賈第蟲(Giardialamblia)細(xì)胞中克隆到了SMG1基因。
Fig.2 Comparison of the eukaryotic phylogenetic trees between that constructed using ribosome RNA and sequences of multiple proteins and that using sequences of NMD core factors listed in table 1圖2 真核生物門水平上根據(jù)核糖體RNA和多蛋白序列構(gòu)建的系統(tǒng)樹(shù)[28](A)與NMD途徑核心因子(表1)構(gòu)建的系統(tǒng)樹(shù)(B)比較
根據(jù)Baldauf等利用多種蛋白質(zhì)序列數(shù)據(jù)在門水平構(gòu)建的真核生物系統(tǒng)樹(shù)[28],簡(jiǎn)化后如圖2A所示。用NMD途徑核心因子(表1)構(gòu)建的系統(tǒng)樹(shù)如圖2B所示。兩個(gè)系統(tǒng)樹(shù)之間具有一定的相似性,圖2A中真核生物進(jìn)化關(guān)系明確,而圖2B中真菌的地位與圖2A中的真菌所處的位置差異較大?,F(xiàn)在的問(wèn)題是在動(dòng)基體門(kinetoplastids)的錐蟲(Trypanosoma)和利什曼蟲(Leishmania)、紅藻門(Rhodophyte)的紅藻(Cyanidioschyzon)、真菌門(Fungi)的微孢子蟲(Encephalitozoon)、雙滴蟲門(Diplomonad)的賈第蟲(Giardia)這些生物中,缺少NMD途徑的一些關(guān)鍵的因子UPF或SMG(表1),是NMD途徑在這些生物中剛顯雛形,還是NMD途徑功能的退化?那么,尚存的那些NMD途徑因子的功能又是什么呢?目前為止尚無(wú)機(jī)制層面的研究,沒(méi)有確定的結(jié)論。用NMD途徑因子構(gòu)建的系統(tǒng)樹(shù)不能反映真核生物的進(jìn)化關(guān)系,很可能是我們還沒(méi)有完全闡明NMD途徑的起源和進(jìn)化,還沒(méi)有完全弄清NMD途徑因子來(lái)龍去脈。
目前關(guān)于NMD途徑分子機(jī)制研究的熱點(diǎn)問(wèn)題是:無(wú)義mRNA的分子特征是什么?NMD途徑因子如何感知到的這些特征;翻譯正常終止和提前終止過(guò)程中終止復(fù)合體結(jié)構(gòu)和功能差異;NMD途徑核心因子(UPF1) 是何時(shí)何處結(jié)合到mRNA上的,即在細(xì)胞核內(nèi)的轉(zhuǎn)錄過(guò)程中,還是在細(xì)胞質(zhì)mRNA的翻譯過(guò)程中,是如何結(jié)合到mRNA上的;底物mRNA是如何降解的等。三個(gè)模型對(duì)這些問(wèn)題進(jìn)行了初步闡述,但仍然存在許多機(jī)制性的問(wèn)題,一些機(jī)制上的矛盾仍然沒(méi)有解決,致使NMD途徑受到一些學(xué)者質(zhì)疑[29]。
有些研究認(rèn)為無(wú)義mRNA上的核苷酸序列元件是NMD途徑識(shí)別該mRNA的主要特征。如在釀酒酵母細(xì)胞中,無(wú)義突變位點(diǎn)PTC的下游存在一種下游序列元件DSE (downstream sequence element),可以結(jié)合Hrp1p因子,激活NMD途徑[15],但在其它生物中沒(méi)有找到類似的DSE序列。而最近的一項(xiàng)研究顯示,PTC的上下游核苷酸序列對(duì)于無(wú)義mRNA的識(shí)別發(fā)揮重要作用[30]。而主流研究都認(rèn)為,無(wú)論偽3’-UTR模型還是EJC模型,對(duì)于無(wú)義mRNA的識(shí)別過(guò)程都與翻譯終止過(guò)程相關(guān),即依賴于翻譯終止復(fù)合體(核糖體和肽鏈釋放因子復(fù)合體)。在兩種模型中,是翻譯終止復(fù)合體招募了UPF1,形成SURF結(jié)構(gòu),接著SURF復(fù)合體中的UPF1被SMG1磷酸化,招募了RNA酶等相關(guān)因子,開(kāi)啟無(wú)義mRNA的降解過(guò)程。不過(guò)在PTC處的翻譯終止效率要低于正常的終止過(guò)程,為NMD途徑因子的招募提供了機(jī)會(huì),此時(shí)終止復(fù)合體中肽鏈釋放因子 (eRF1、eRF3) 與PABP、UPF1以及ATP結(jié)合盒式蛋白ABCE1 (ATP-binding cassette protein E1) 等因子相互作用關(guān)系的動(dòng)力學(xué)特征發(fā)生變化[31]。正常終止過(guò)程中,eRF3水解GTP激活eRF1的活性,釋放新生肽鏈,招募ABCE1,其作為一種ATPase,水解ATP,解離mRNA上終止復(fù)合體[32],而在PTC處,是UPF1水解ATP,促進(jìn)終止復(fù)合體的解離[33]。因此,翻譯終止過(guò)程和翻譯終止復(fù)合體結(jié)構(gòu)是NMD途徑機(jī)制的主要組成部分,二者之間的耦聯(lián)關(guān)系有待詳細(xì)研究。但是,最近的研究認(rèn)為,UPF1在細(xì)胞核內(nèi)mRNA加工過(guò)程中作為RNP結(jié)合到mRNA上,這種結(jié)合是一種動(dòng)態(tài)過(guò)程[34]。在正常翻譯過(guò)程中翻譯復(fù)合體將UPF1從mRNA上驅(qū)離,但當(dāng)翻譯意外終止時(shí),終止復(fù)合體中的eRF3與(結(jié)合在mRNA上)UPF1相互作用,UPF1水解ATP使終止復(fù)合體解離,引發(fā)NMD途徑[33]。在無(wú)義mRNA的PTC的下游結(jié)合大量的UPF1,UPF1的N端和C端中的[S/T]Q模體結(jié)構(gòu)被超磷酸化修飾,招募各種RNA酶,降解無(wú)義mRNA[1]。這意味著UPF1是無(wú)義mRNA的先行識(shí)別者,為終止復(fù)合體與UPF1的相互作用奠定基礎(chǔ),與之前的結(jié)果矛盾。
目前為止,所有的無(wú)義mRNA識(shí)別模型中,UPF1都是核心因子,對(duì)于UPF1的研究焦點(diǎn)在于(1)UPF1如何被招募到mRNA上的,是直接與mRNA相互作用,還是由RNA結(jié)合蛋白介導(dǎo);(2)UPF1的ATPase和解旋酶活性在無(wú)義mRNA識(shí)別和降解中的作用[20];(3)UPF1的ATPase和解旋酶活性的調(diào)控機(jī)制;(4)UPF1的磷酸化和超磷酸化的功能和調(diào)控機(jī)制[35]。這些問(wèn)題的解決將有助于闡明NMD途徑的分子機(jī)制,建立人類細(xì)胞中NMD途徑的調(diào)控網(wǎng)絡(luò),為人類遺傳疾病和腫瘤的預(yù)防和治療提供理論基礎(chǔ)。
[1] Durand S,F(xiàn)ranks T M,Lykke-Andersen J.Hyperphosphorylation Amplifies UPF1 Activity to Resolve Stalls in Nonsense-mediated mRNA Decay[J].NatCommun,2016,7:12434.DOI:10.1038/ncomms12434.
[2] Kervestin S,Jacobson A.NMD:a Multifaceted Response to Premature Translational Termination[J].NatRevMolCellBiol,2012,13(11):700-712.DOI:10.1038/nrm3454.
[3] Smith J E,Baker K E.Nonsense-mediated RNA Decay-a Switch and Dial for Regulating Gene Expression[J].Bioessays,2015,37(6):612-623.DOI:10.1002/bies.201500007.
[4] Nicholson P,Yepiskoposyan H,Metze S,etal.Nonsense-mediated mRNA Decay in Human Cells:Mechanistic Insights,F(xiàn)unctions Beyond Quality Control and the Double-life of NMD Factors[J].CellMolLifeSci,2010,67(5):677-700.DOI:10.1007/s00018-009-0177-1.
[5] Karam R,Wengrod J,Gardner L B,etal.Regulation of Nonsense-mediated mRNA Decay:Implications for Physiology and Disease[J].BiochimBiophysActa,2013,1829(6-7):624-633.DOI:10.1016/j.bbagrm.2013.03.002.
[6] Hwang J,Maquat L E.Nonsense-mediated mRNA Decay (NMD) in Animal Embryogenesis:to Die or not to Die,That is the Question[J].CurrOpinGenetDev,2011,21(4):422-430.DOI:10.1016/j.gde.2011.03.008.
[7] Welch E M,Barton E R,Zhuo J,etal.PTC124 Targets Genetic Disorders Caused by Nonsense Mutations[J].Nature,2007,447:87-91.DOI:10.1038/nature05756.
[8] Holbrook J A,Neu-Yilik G,Hentze M W,etal.Nonsense-mediated Decay Approaches the Clinic[J].NatGenet,2004,36(8):801-808.DOI:10.1038/ng1403.
[9] Bhuvanagiri M,Schlitter A M,Hentze M W,etal.NMD:RNA Biology Meets Human Genetic Medicine[J].BiochemJ,2010,430(3):365-377.DOI:10.1042/BJ20100699.
[10] Ainsworth C.Nonsense Mutations:Running the Red Light[J].Nature,2005,438(7069):726-728.DOI:10.1038/438726a.
[11] Wang X,Gregory-Evans C Y.Nonsense Suppression Therapies in Ocular Genetic Diseases[J].CellMolLifeSci,2015,72(10):1931-1938.DOI:10.1007/s00018-015-1843-0.
[12] Fatscher T,Boehm V,Gehring N H.Mechanism,F(xiàn)actors,and Physiological Role of Nonsense-mediated mRNA Decay[J].CellMolLifeSci,2015,72(23):4523-4544.DOI:10.1007/s00018-015-2017-9.
[13] Durand S,Lykke-Andersen J.SnapShot:Nonsense-Mediated mRNA Decay[J].Cell,2011,145(2):324-324 e322.DOI:10.1016/j.cell.2011.03.038.
[14] Zhang S,Ruiz-Echevarria M J,Quan Y,etal.Identification and Characterization of a Sequence Motif Involved in Nonsense-mediated mRNA Decay[J].MolCellBiol,1995,15(4):2231-2244.
[15] Gonzalez C I,Ruiz-Echevarria M J,Vasudevan S,etal.The Yeast hnRNP-like Protein Hrp1/Nab4 Marks a Transcript for Nonsense-mediated mRNA Decay[J].MolCell,2000,5(3):489-499.
[16] Brogna S,Wen J.Nonsense-mediated mRNA Decay (NMD) Mechanisms[J].NatStructMolBiol,2009,16(2):107-113.DOI:10.1038/nsmb.1550.
[17] Hogg J R,Goff S P.Upf1 senses 3′UTR Length to Potentiate mRNA Decay[J].Cell,2010,143(3):379-389.DOI:10.1016/j.cell.2010.10.005.
[18] Lopez-Perrote A,Castano R,Melero R,etal.Human Nonsense-mediated mRNA Decay Factor UPF2 Interacts Directly with eRF3 and the SURF Complex[J].NucleicAcidsRes,2016,44(4):1909-1923.DOI:10.1093/nar/gkv1527.
[19] Yamashita A,Izumi N,Kashima I,etal.SMG-8 and SMG-9,Two Novel Subunits of the SMG-1 Complex,Regulate Remodeling of the mRNA Surveillance Complex During Nonsense-mediated mRNA Decay[J].GenesDev,2009,23(9):1091-1105.DOI:10.1101/gad.1767209.
[20] Lee S R,Pratt G A,Martinez F J,etal.Target Discrimination in Nonsense-Mediated mRNA Decay Requires Upf1 ATPase Activity[J].MolCell,2015,59(3):413-425.DOI:10.1016/j.molcel.2015.06.036.
[21] Kurosaki T,Li W,Hoque M,etal.A Post-translational Regulatory Switch on UPF1 Controls Targeted mRNA Degradation[J].GenesDev,2014,28(17):1900-1916.DOI:10.1101/gad.245506.114.
[22] Lasalde C,Rivera A V,Leon A J,etal.Identification and Functional Analysis of Novel Phosphorylation Sites in the RNA Surveillance Protein Upf1[J].NucleicAcidsRes,2014,42(3):1916-1929.DOI:10.1093/nar/gkt1049.
[23] Chen Y H,Su L H,Sun C H.Incomplete Nonsense-mediated mRNA Decay in Giardia Lamblia[J].InternationalJournalforParasitology,2008,38(11):1305-1317.DOI:10.1371/journal.pone.0003609.
[24] Delhi P,Queiroz R,Inchaustegui D,etal.Is There a Classical Nonsense-mediated Decay Pathway in Trypanosomes?[J].PLoSOne,2011,6(9):e25112.DOI:10.1371/journal.pone.0025112.
[25] Jaillon O,Bouhouche K,Gout J F,etal.Translational Control of Intron Splicing in Eukaryotes[J].Nature,2008,451(7176):359-362.DOI:10.1038/nature06495.
[26] Saul H,Elharrar E,Gaash R,etal.The Upstream Open Reading Frame of the Arabidopsis AtMHX Gene Has a Strong Impact on Transcript Accumulation Through the Nonsense-mediated mRNA Decay Pathway[J].PlantJ,2009,60(6):1031-1042.DOI:10.1111/j.1365-313X.2009.04021.x.
[27] Lynch M,Hong X,Scofield D G.NMD and the Evolution of Eukaryotic Gene Structure.In:Nonsense-MediatedmRNADecay,Edited by Maquat LE.Georgetown,Texas:Landes Bioscience;2006:197-211.
[28] Baldauf S L,Roger A J,Wenk-Siefert I,etal.A Kingdom-level Phylogeny of Eukaryotes based on Combined Protein Data[J].Science,2000,290(5493):972-977.
[29] Brogna S,McLeod T,Petric M.The Meaning of NMD:Translate or Perish[J].TrendsGenet,2016,32(7):395-407.DOI:10.1016/j.tig.2016.04.007.
[30] Zahdeh F,Carmel L.The Role of Nucleotide Composition in Premature Termination codon Recognition[J].BMCBioinformatics,2016,17(1):519.DOI:10.1186/s12859-016-1384-z.
[31] He F,Jacobson A.Nonsense-Mediated mRNA Decay:Degradation of Defective Transcripts Is Only Part of the Story[J].AnnuRevGenet,2015,49:339-366.DOI:10.1146/annurev-genet-112414-054639.
[32] Shoemaker C J,Green R.Kinetic Analysis Reveals the Ordered Coupling of Translation Termination and Ribosome Recycling in Yeast[J].ProcNatlAcadSciUSA,2011,108(51):E1392-1398.DOI:10.1073/pnas.1113956108.
[33] Serdar L D,Whiteside D L,Baker K E.ATP Hydrolysis by UPF1 is Required for Efficient Translation Termination at Premature Stop Codons[J].NatCommun, 2016,7:14021.DOI:10.1038/ncomms14021.
[34] Hug N,Longman D,Caceres J F.Mechanism and Regulation of the Nonsense-mediated Decay Pathway[J].NucleicAcidsRes,2016,44(4):1483-1495.DOI:10.1093/nar/gkw010.
[35] Melero R,Hug N,Lopez-Perrote A,etal.The RNA Helicase DHX34 Functions as a Scaffold for SMG1-mediated UPF1 Phosphorylation[J].NatCommun,2016,7:10585.DOI:10.1038/ncomms10585.
Mechanism and Evolution of Nonsense-mediated mRNA Decay
CHAI Baofeng,WANG Mei,SHI Wenxin,CHAI Yangli,Lü Jia
(Institute of Loess Plateau,Shanxi University,Taiyuan 030006,China)
The nonsense-mediated mRNA decay (NMD) pathway selectively degrades mRNAs harboring premature termination codons (PTCs),but also regulates the abundance of a large number of cellular physiological mRNAs. The core of NMD pathway is the recognition and degradation of nonsense mRNA,and the function and regulation mechanism of the key factors UPFs and SMGs becomes the focus of NMD research area. The mechanism of NMD is conserved in organisms,while have differences in organisms at different evolutionary status,indicating evolutionary characteristics of the NMD pathway. The most research progresses of NMD mechanism were made from high eukaryotes,but little is known in protozoan. The researches on the function and evolution of core components of NMD using model organisms will help us unveil the function and regulatory mechanism of NMD,and establish the NMD network in humans to provide the theoretical basis for prevention and treatment of genetic diseases and cancers.
NMD pathway;nonsense-mRNA recognition;core component;functional regulation;evolution
10.13451/j.cnki.shanxi.univ(nat.sci.).2017.03.032
2017-04-17;
2017-05-18
山西省回國(guó)留學(xué)人員科研資助項(xiàng)目(2014-重點(diǎn)1)
柴寶峰(1967-),男,博士,教授,從事分子生物學(xué)方面的研究。E-mail:bfchai@sxu.edu.cn
Q756
A
0253-2395(2017)03-0639-06