馬潔+++穆玉明
[摘要] 運用超聲靶向破壞微泡定位釋放技術(UTMD)最重要的是參數(shù)的優(yōu)化,應滿足既可以獲得高的轉染效率的同時又對大部分細胞沒有損害。目前許多研究都致力于將轉染率高、組織損傷小的轉染參數(shù)進行優(yōu)化,但影響轉染效果的因素有很多,如超聲強度,占空比,輻照時間,微泡濃度,微泡性質(zhì),質(zhì)粒濃度,不同細胞種類等,本文就目前UTMD技術促基因轉染最佳參數(shù)進行綜述,期望為UTMD更好的應用于基因治療提供研究基礎。
[關鍵詞] 超聲;微泡;轉染;參數(shù)
[中圖分類號] R445.1 [文獻標識碼] A [文章編號] 1673-7210(2017)09(b)-0033-04
Research progress of ultrasound-targeted microbubble destruction technology promoting gene transfection with optimal parameters
MA Jie MU Yuming
Department of Echocardiograrhy, First Affliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi 830011, China
[Abstract] The optimization of parameters is the most important in ultrasound-targeted microbubble destruction (UTMD), this parameter should achieve both high transfection efficiency while at the same time most of the cells without damage. At present, many studies have focused on optimizing the transfection parameters for those with high transfection efficiency and small tissue damage. However, there are many factors that affect the transfection effect, such asultrasound intensity, duty cycle, irradiation time, microbubble concentration, microbubble properties, plasmid concentration, different cell types. This article reviewes the best parameters of gene transfection in UTMD, and expectes to provide a basis for UTMD to be better applied to gene therapy.
[Key words] Ultrasound; Microbubbles; Transfection; Parameter
超聲靶向破壞微泡定位釋放技術(ultrasound-targeted microbubble destruction,UTMD)是一種新型的無創(chuàng)性基因轉移技術,UTMD介導的基因治療以其低免疫原性、非侵襲性、靶器官高度特異性以及可以增強大分子通過質(zhì)膜穿透能力等特點,可明顯提高基因轉染率。然而獲得較高的基因轉染率,需要對有關轉染參數(shù)進行系統(tǒng)研究并優(yōu)化,由于不同的轉染參數(shù)對不同組織細胞具有不同的生物學效應,而目前UTMD技術促進基因轉染尚無統(tǒng)一優(yōu)化的參數(shù)指標,因此,深入研究最佳轉染參數(shù)以提高基因轉染率成為目前的研究方向,本文就此問題進行綜述,期望為UTMD技術更好的運用于基因治療奠定基礎。
1 UTMD的概念
UTMD是指在體內(nèi)或體外以微泡作為基因載體,在合適的超聲輻照條件下,微泡逐漸或突然活化或爆破,產(chǎn)生一系列生物學效應,如一過性的使細胞膜通透性增加,從而促進靶基因或藥物進入感興趣細胞或組織[1-3],且不會干擾基因在細胞內(nèi)表達,是一種理想的基因載體傳遞方法[4-5]。研究表明超聲破壞微泡造影劑時,產(chǎn)生的機械作用和空化作用可以增加細胞膜的通透性、導致微血管破裂、內(nèi)皮細胞間隙增寬,從而促進外源性的目的基因進入靶細胞[6-7],增強目的基因的轉染及表達效率[8]。UTMD作為一種非侵襲性的靶向基因傳遞方法[9-10],具有運輸和釋放特殊物質(zhì)到靶組織和靶器官的潛力[11],可以改變局部微環(huán)境[12],可以促進干細胞歸巢[13],已成為一種極具潛力的基因傳遞方法。
2 UTMD促進基因轉染的機制
為了促進UTMD技術更好的發(fā)展,了解UTMD機制并分析其在超聲、微泡、細胞和組織中復雜的交互作用,才能更好地理解UTMD技術在基因轉染中的發(fā)展和作用[14-17]。UTMD技術的基本原理是在特定部位進行適當?shù)某曒椪?,攜帶目的基因的微泡在特定部位發(fā)生空化效應,使目的基因或藥物到達靶組織或細胞??栈浅曌饔糜谝后w和氣態(tài)夾雜物(空化核)之間的一種物理現(xiàn)象,有兩種類型的空化:穩(wěn)定空化和瞬時空化。在穩(wěn)定空化中,由于所施加的聲壓,空化核經(jīng)歷周期性和規(guī)則的變化;在瞬時空化的情況下,雖然空化核也受所施加的聲壓進行周期性變化,但空化核的體積會迅速增大,繼而猛烈地爆破[18]。微泡可以由脂質(zhì),白蛋白,糖類,生物相容性聚合物和其他材料組成[19-20],由于其反射超聲的物理特性,傳統(tǒng)上被作為超聲對比劑;微泡作為空化核可以在超聲波作用下擴張和收縮,當聲壓達到更高水平時就會發(fā)生破裂,因此微泡作為基因載體可以在感興趣的位點以高的局部濃度釋放,通過外源性給予超聲微泡來增加空化核的數(shù)目極大程度地增加了超聲輻照引起空化效應的可能性[21-22],UTMD通過空化效應可以增加細胞膜的通透性,增加基因轉染的有效性,是一種新穎的藥物和基因傳遞的方法。UTMD技術已廣泛應用于各種體內(nèi)和體外研究中[23-25],為靶向基因治療提供了一個極具前景的方式[26-27]。endprint
3 UTMD促骨髓干細胞及神經(jīng)干細胞基因轉染最佳參數(shù)的研究
UTMD的參數(shù)變化可以導致各種不同的聲孔效應,許多研究都致力于通過發(fā)現(xiàn)最佳參數(shù)來減低對細胞的毒性和增加轉染率,即基因轉染的最佳條件是使細胞膜的通透性在不引起細胞不可逆損傷的前提下盡可能的增大。干細胞在組織修復和器官再生的基因治療中具有很多優(yōu)勢,因此研究超聲輻照頻率、輻照強度、輻照時間、占空比、微泡濃度,通過固定其中某些參數(shù),尋找其他參數(shù)的最佳配比,提高干細胞的基因轉染率,為基因治療提供實驗基礎。Li等[28]利用UTMD技術介導增強型綠色熒光蛋白(pEGFP-HGF)標記的肝細胞生長因子(HGF)轉染鼠骨髓間充質(zhì)干細胞(BMSCs),固定超聲輻照頻率1 MHz,占空比10%,篩選出超聲輻照強度=0.6 W/cm2,微泡濃度=106/mL,輻照時間=30 s時,轉染率達最高水平且對BMSCs活力沒有影響。陳玲玲等[29]利用UTMD介導5-氮雜胞甘轉染人骨髓間質(zhì)干細胞(MSCs),固定超聲輻照頻率1 MHz,占空比50%,篩選出輻照強度為0.55 W/cm2,輻照時間為30 s,微泡數(shù)/干細胞數(shù)比值為50的最佳轉染參數(shù),此條件下MSCs的活性無明顯抑制且有一定的空化效應。研究發(fā)現(xiàn),微泡濃度不同對神經(jīng)干細胞存活率與基因轉染率的影響較大,固定超聲聲強1.5 W/cm2,照射時間60 s,占空比為10%,微泡濃度為20%,細胞存活率及基因轉染率較微泡濃度為10%、30%高,可作為神經(jīng)干細胞基因轉染的適宜條件[30]。
4 UTMD促腫瘤細胞基因轉染的最佳參數(shù)的研究
基因治療為目前一些無法治愈的疾病,如腫瘤、糖尿病、遺傳性疾病,提供了一種新的治療方法。有效的基因轉染也需要較高的質(zhì)粒濃度,通過優(yōu)化超聲參數(shù),微泡濃度,質(zhì)粒濃度等影響轉染率的因素,UTMD技術可提高腫瘤組織血管通透性,從而促進病變區(qū)域血藥濃度的上升及目的基因的表達,進而加強腫瘤治療效果。陳智毅等[31]選用 Ishikawa、Hela和MCF-7三種細胞系為研究對象,超聲強度為1.0 W/cm2,系統(tǒng)研究不同參數(shù)下的細胞活力及兩種DNA質(zhì)粒[紅色熒光蛋白質(zhì)粒(DsRed)和熒光素酶質(zhì)粒(pCMV-LUC)]的基因轉染情況,優(yōu)化UTMD的轉染條件(質(zhì)粒濃度、占空比、輻照時間),研究表明隨著質(zhì)粒濃度的增加,基因轉染率逐漸增高,當質(zhì)粒濃度達到30 μg/孔時目的基因轉染率達最高;20%占空比的轉染率顯著提高;輻照3 min時基因表達率最高,細胞存活率無明顯下降,為最佳輻照時間。何穎等[32]在超聲聯(lián)合脂氟顯微泡轉染HepG2細胞的參數(shù)優(yōu)化研究中發(fā)現(xiàn),超聲強度1.2 W/cm2、占空比為20%,輻照時間小于90 s時HepG2細胞轉染率相對較高;劉同剛等[33]研究發(fā)現(xiàn)在超聲聲強為2 W/cm2、占空比為20%、照射時間為60 s時,HepG2細胞的轉染率最高,這與何穎等的研究結果相同。馬少增等[34]用72只肝癌大鼠模型將UTMD技術進一步優(yōu)化,促進腫瘤靶區(qū)微血管通透性的提高,研究表明當微泡劑量為30 μL/kg聯(lián)合輻照時間10 min、機械指數(shù)=1.3可最大限度地提高腫瘤組織的血管通透性。
5 UTMD促其他種類細胞基因轉染的最佳參數(shù)的研究
UTMD技術運用于各種體內(nèi)體外實驗中,很多研究僅敘述了部分參數(shù),缺乏對轉染參數(shù)的系統(tǒng)性研究和優(yōu)化,通過對超聲參數(shù),微泡濃度,質(zhì)粒濃度,細胞狀態(tài)的全面優(yōu)化,在不同種類的細胞中均可獲得的較高的轉染率。Zhou等[35]利用UTMD技術介導hAng-1基因體外轉染293T細胞,超聲輻照頻率在0.5~2 MHz范圍內(nèi),通過測定細胞轉染率和細胞活力來測定最佳轉染參數(shù),研究表明,超聲輻射強度>1.5 W/cm2,輻照時間>30 s,微泡濃度>20%,hAng-1表達顯著下降,伴隨細胞死亡;質(zhì)粒濃度<15 μg/mL時,基因轉染水平較低;細胞處在懸浮狀態(tài)下,基因轉染率顯著增加。李銀鵬等[36]研究發(fā)現(xiàn)在相同轉染參數(shù)下,懸浮狀態(tài)細胞轉染率為(7.33±0.98)%。存活率為(90.37±1.80)%;貼壁狀態(tài)細胞轉染率為(1.56±0.81)%,存活率為(81.10±1.26)%;在懸浮狀態(tài)下,提高質(zhì)粒和微泡濃度,轉染率增至(15.63±1.81)%,且細胞生存率>80%,研究表明相同轉染條件下懸浮狀態(tài)細胞轉染率及存活率明顯優(yōu)于貼壁狀態(tài),并且通過優(yōu)化質(zhì)粒、微泡濃度可進一步提高基因轉染率和細胞存活率。目前大多數(shù)研究通過先固定某個轉染參數(shù),然后尋找與之相匹配的其他最適轉染參數(shù),以獲得較高的基因轉染率。丁尚偉等[37]在不固定單個參數(shù)的前提下,利用參數(shù)之間的相互組合,發(fā)現(xiàn)質(zhì)粒濃度固定為15 μg/mL、超聲輻照頻率為1 MHz、輻照強度為2.0 W/cm2、輻照時間45 s、微泡濃度30%,293T細胞的轉染效率最佳,細胞存活率最高。Li等[38]利用UTMD介導PHD2-shRNA轉染大鼠心肌細胞(H9C2),研究發(fā)現(xiàn)固定超聲頻率=1 MHz,占空比=20%,當超聲輻照強度為1.5 W/cm2,輻照時間為45 s,微泡濃度為300 μL/mL,質(zhì)粒濃度為15 μg/mL,轉染效果最佳并對H9C2細胞活力沒有影響。Shi等[39]通過UTMD在Tregs中評估了金屬蛋白酶組織抑制劑(Timp3)小干擾RNA(siRNA)質(zhì)粒傳遞的適當參數(shù),研究表明超聲聯(lián)合微泡顯著提高了Tregs的轉染率;超聲和微泡均可影響Tregs增殖,Tregs轉染率最佳條件為10%微泡,暴露時間為150/180 s,超聲機械指數(shù)為1.4。
6 小結與展望
UTMD技術是一種介導基因轉染的有效方法,不同參數(shù)下轉染率差別較大,優(yōu)化參數(shù)有利于促進基因轉染。就如其他新穎的基因治療方法一樣,UTMD技術也面臨著諸多挑戰(zhàn),超聲空化現(xiàn)象可以提高基因的轉染效率但也會導致細胞毒性效應,可以損傷血管內(nèi)皮和其他組織細胞,導致毛細血管破裂出血[40]、細胞溶解[41]、激活血小板[42],導致腎臟損傷[43],目前大多數(shù)體外實驗或動物模型實驗中UTMD技術的研究尚處在實驗階段,不同微泡、質(zhì)粒、細胞及超聲轉染參數(shù)的轉染率差異較大,最佳轉染參數(shù)有待進一步優(yōu)化,以尋求最佳的轉染條件的統(tǒng)一標準,增強目的基因轉染率。相信隨著細胞生物學、干細胞組織工程和生物工程等多學科的發(fā)展,UTMD技術促基因轉染將會為臨床帶來更為廣闊的前景,并可安全、有效地應用于臨床治療中。endprint
[參考文獻]
[1] Horie S,Watanabe Y,Chen R,et al. Development of localized gene delivery using a dual-intensity ultrasound system in the bladder [J]. Ultrasound Med Biol,2010,36(11):1867-1875.
[2] Smith DA,Vaidya SS,Kopechek JA,et al. Ultrasound-triggered release of recombinant tissue-type plasminogen activator from echogenic liposomes [J]. Ultrasound Med Biol,2010,36(1):145-157.
[3] Yoon CS,Park JH. Ultrasound-mediated gene delivery [J]. Expert Opin Drug Deliv,2010,7(3):321-330.
[4] Ling ZY,Shu SY,Zhong SG,et al. Ultrasound targeted microbubble destruction promotes angiogenesis and heart function by inducing myocardial microenvironment change [J]. Ultrasound Med Biol,2013,39(11):2001-2010.
[5] 蘇高峰,穆玉明.超聲及微泡介導的基因載體的進展[J].中國醫(yī)藥導報,2016,13(12):36-39.
[6] Delalande A,Kotopoulis S,Postema M,et al. Sonoporation: Mechanistic insights and ongoing challenges for gene transfer [J]. Gene,2013,525(2):191-199.
[7] 李紅麗,杜聯(lián)芳.超聲微泡造影劑聲諾維與基因轉染的研究[J].臨床超聲醫(yī)學雜志,2009,11(1):37-39.
[8] Geis NA,Katus HA,Bekeredjian R. Microbubbles as a vehicle for gene and drug delivery:current clinical implications and future perspectives [J]. Curr Pharm Des,2012, 18(15):2166-2183.
[9] Wan C,Qian J,Li F,et al. Ultrasound-targeted microbubble destruction enhances polyethylenimine-mediated gene transfection in vitro in human retinal pigment epithelial cells and in vivo in rat retina [J]. Mol Med Rep,2015,12(2):1246-1253.
[10] Kopechek JA,Carson AR,Mctiernan CF,et al. Ultrasound targeted microbubble destruction-mediated delivery of a transcription factor decoy inhibits stat3 signaling and tumor growth [J]. Theranostics,2015,5(12):1378-1387.
[11] Xiang X,Tang Y,Leng Q,et al. Targeted gene delivery to the synovial pannus in antigen-induced arthritis by ultrasound-targeted microbubble destruction in vivo [J]. Ultrasonics,2016,65:304-314.
[12] Xue Y,Yang G,Wang C,et al. Effects of shRNA-Mediated SOX9 inhibition on cell proliferation and apoptosis in human HCC cell line Hep3B mediated by ultrasound-targeted microbubble destruction (UTMD) [J]. Cell Biochem Biophys,2015,73(2):553–558.
[13] Xu YL,Gao YH,Zheng L,et al. Myocardium-targeted transplantation of mesenchymal stem cells by diagnostic ultrasound-mediated microbubble destruction improves cardiac function in myocardial infarction of New Zealand rabbits [J]. Int J Cardiol,2010,138(2):182-195.
[14] Liang HD,Tang J,Halliwell M. Sonoporation,drug delivery,and gene therapy [J]. Proc Inst Mech Eng H,2010,224(2):343-361.endprint
[15] Kimmel E. Cavitation bioeffects [J]. Crit Rev Biomed Eng,2006,34(2):105-161.
[16] Tinkov S,Bekeredjian R,Winter G,et al. Microbubbles as ultrasound triggered drug carriers [J]. JPharmSci,2009, 98(6):1935-1961.
[17] Mayer CR,Geis NA,Katus HA,et al. Ultrasound targeted microbubble destruction for drug and gene delivery [J]. Expert Opin Drug Deliv,2008,5(10):1121-1138.
[18] Miller MW,Miller DL,Brayman AA. A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective [J]. Ultrasound Med Biol,1996,22(9):1131-1154.
[19] Stride E. Physical Principles of microbubbles for ultrasound imaging and therapy [J]. Front Neurol Neurosci,2015,27(S2):11-22.
[20] Lentacker I,Wang N,Vandenbroucke R E,et al. Ultrasound exposure of lipoplex loaded microbubbles facilitates direct cytoplasmic entry of the lipoplexes [J]. Mol Pharm,2009,6(2):457-467.
[21] Yoshida T,Kondo T,Ogawa R,et al. Combination of doxorubicin and low-intensity ultrasound causes a synergistic enhancement in cell killing and an additive enhancement in apoptosis induction in human lymphoma U937 cells [J]. Cancer Chemother Pharmacol,2008,61(4):559-567.
[22] Danno D,Kanno M,F(xiàn)ujimoto S,et al. Effects of ultrasound on apoptosis induced by anti-CD20 antibody in CD20-positive B lymphoma cells [J]. Ultrason Sonochem,2008,15(4):463-471.
[23] Escoffre JM,Zeghimi A,Novell A,et al. In vivo gene delivery by sonoporation: recent progress and prospects [J]. Curr Gene Ther,2013,13(1):2-14.
[24] Tomizawa M,Shinozaki F,Motoyoshi Y,et al. Sonoporation: Gene transfer using ultrasound [J]. World J Methodol,2013,3(4):39-44.
[25] Delalande A,Leduc C,Midoux P,et al. Efficient gene delivery by sonoporation is associated with microbubble entry into cells and the clathrin-dependent endocytosis pathway [J]. Ultrasound Med Biol,2015,41(7):1913-1926.
[26] Deshpande N,Needles A,Willmann JK. Molecular ultras?鄄ound imaging:current status and future directions [J]. Clin Radiol,2010,65(7):567-581.
[27] Delalande A,Postema M,Mignet N,et al. Ultrasound and microbubble-assisted gene delivery: recent advances and ongoing challenges [J]. Ther Deliv,2012,3(10):1199-1215.
[28] Li P,Gao Y,Liu Z,et al. DNA Transfection of bone marrow stromal cells using microbubble-mediated ultrasound and polyethylenimine:an in vitro study [J]. Cell Biochem Biophys,2013,66(3):775-786.
[29] 陳玲玲,尹立雪.超聲輻照微泡介導5-氮雜胞苷誘導人骨髓間充質(zhì)干細胞心肌樣分化的實驗研究[J].中華超聲影像學雜志,2013,22(11):991-996.endprint
[30] 陳蕓,宮琳,萬圣祥,等.不同微泡濃度對NT-3基因轉染神經(jīng)干細胞的影響[J].中國介入影像與治療學,2012, 9(7):544-547.
[31] 陳智毅,謝明星,王新房,等.超聲介導微泡破裂增強體外基因轉染的方法學研究[J].中國醫(yī)學影像技術,2008, 24(9):1337-1340.
[32] 何穎,卓忠雄,王龔,等. 超聲聯(lián)合脂氟顯微泡轉染HepG2細胞的參數(shù)優(yōu)化[J].中華超聲影像學雜志,2013,22(4):344-348.
[33] 劉同剛,沙凱輝,李云華,等.超聲靶向微泡破裂介導EGFP質(zhì)粒轉染肝癌細胞的研究[J].肝膽外科雜志,2012, 20(3):215-217.
[34] 馬少增,程建中.不同參數(shù)對低頻診斷超聲聯(lián)合微泡輻照下腫瘤血管通透性的影響[J].國際醫(yī)藥衛(wèi)生導報,2016, 22(24):3747-3749.
[35] Zhou Q,Chen J L,Chen Q,et al. Optimization of transfection parameters for ultrasound/SonoVue microbubble-mediated hAng-1 gene delivery in vitro [J]. Mol Med Rep,2012,6(6):1460-1464.
[36] 李銀鵬,朱惠明,張園等.超聲靶向微泡破碎介導EGFP基因轉染肝癌細胞的影響因素研究[J].生物醫(yī)學工程研究,2012,31(2):99-102,106.
[37] 丁尚偉,張艷容,孫振興,等.超聲輻照參數(shù)對體外基因轉染效果的影響[J].中國介入影像與治療學,2014,11(5):306-310.
[38] Li Z,Sun Z,Ren P,et al. Ultrasound-targeted microbubble destruction (UTMD) Assisted delivery of shRNA against PHD2 into H9C2 Cells [J]. PLoS One,2015,10(8):C24-C24.
[39] Shi C,Zhang Y,Yang H,et al. Combined effect of ultrasound/SonoVue microbubble on CD4+ CD25+ regulatory T cells viability and optimized parameters for its transfection [J]. Ultrasonics,2015,62:97.
[40] Carstensen EL,Gracewski S,Dalecki D. The search for cavitation in vivo ultrasound in medicine and biology [J]. Ultrasound Med Biol,2000,26(9):1377–1385.
[41] Miller DL,Quddus J. Lysis and sonoporation of epidermoid and phagocytic monolayer cells by diagnostic ultrasound activation of contrast agent gas bodies [J]. Ultrasound Med Biol,2001,27(8):1107-1113.
[42] Poliachik SL,Chandler WL,Mourad PD,et al. Activation,aggregation and adhesion of platelets exposed to high-intensity focused ultrasound [J]. Ultrasound Med Biol,2001, 27(11):1567-1576.
[43] Buiochi EB,Miller RJ,Hartman E,et al. Transthoracic cardiac ultrasonic stimulation induces a negative chronotropic effect [J]. IEEE Trans Ultrason Ferroelectr Freq Control,2012,59(12):2655-2661.
(收稿日期:2017-06-12 本文編輯:蘇 暢)endprint