杜杰
(咸寧市中心醫(yī)院 湖北科技學(xué)院附屬第一醫(yī)院 神經(jīng)內(nèi)科,湖北 咸寧 437100)
·論著·
黃芪總苷和人參皂苷降低缺血性腦卒中患者腦脊液中谷氨酸、磷酸化Tau
杜杰
(咸寧市中心醫(yī)院 湖北科技學(xué)院附屬第一醫(yī)院 神經(jīng)內(nèi)科,湖北 咸寧 437100)
目的通過觀察黃芪總苷和人參皂苷對缺血性腦卒中誘發(fā)的缺血缺氧強(qiáng)應(yīng)激后老年受試者谷氨酸濃度和Tau超磷酸化的影響,探討兩者對Tau超磷酸化的調(diào)節(jié),并比較其作用途徑,以期為改善缺血性腦卒中誘發(fā)的認(rèn)知障礙的機(jī)制提供研究思路。方法采用2×3析因設(shè)計:即缺血性腦卒中(無卒中、缺血性腦卒中)和藥物(靜脈注射生理鹽水、人參皂苷、黃芪總苷)的所有組合。干預(yù)后取腦脊液,HPLC測Glu含量,Western- blotting測p- AT8Ser202和GSK- 3β1H8含量。結(jié)果缺血性腦卒中可增加腦脊液內(nèi)谷氨酸的濃度(P<0.05);黃芪總苷可降低缺血性腦卒中誘發(fā)的過度升高的谷氨酸濃度,且兩者有相減效果(P<0.05);而人參皂苷對腦脊液中谷氨酸的濃度無明顯影響(P>0.05)。缺血性腦卒中可增加腦脊液內(nèi)p- AT8Ser202以及促進(jìn)Tau超磷酸化的調(diào)控蛋白GSK- 3β1H8的表達(dá)(P<0.05);黃芪總苷和人參皂苷可減緩腦脊液內(nèi)p- AT8Ser202及促進(jìn)其磷酸化的GSK- 3β1H8表達(dá)上調(diào)(P<0.05);兩者效果相似且和缺血性腦卒中誘發(fā)的缺血缺氧強(qiáng)應(yīng)激的影響呈相減效果(P<0.05)。結(jié)論黃芪總苷和人參皂苷可降低缺血性腦卒中患者腦脊液中谷氨酸及磷酸化Tau濃度,緩解缺血性腦卒中誘發(fā)的缺血缺氧強(qiáng)應(yīng)激。
黃芪總苷; 人參皂苷; N- 甲基- D- 天冬氨酸受體; Tau; 缺血性腦卒中
缺血性腦卒中誘發(fā)的缺血缺氧強(qiáng)應(yīng)激可以造成腦脊液內(nèi)谷氨酸濃度的過度升高,而且該過程具有顯著的時效性和量效性。黃芪總苷作為天然的谷氨酸受體拮抗劑,其是否可以阻止“缺血性腦卒中誘發(fā)的缺血缺氧強(qiáng)應(yīng)激誘發(fā)腦脊液內(nèi)谷氨酸濃度的過度升高”該過程?故而,本研究探討人參皂苷及黃芪總苷對缺血性腦卒中誘發(fā)的老年受試者認(rèn)知狀況和Tau的磷酸化的影響,分析其機(jī)制。
篩選本院2013年1月至 2015年6月罹患缺血性腦卒中的老年受試者。入組標(biāo)準(zhǔn):年齡65歲至80歲的老年受試者,平均年齡(69.68±9.54);性別不拘,缺血性腦卒中受試者;ASA分級為Ⅰ或者Ⅱ級。排除標(biāo)準(zhǔn):惡性腫瘤受試者;肝腎功能不全疾者;精神病患者。醫(yī)學(xué)倫理學(xué)問題:受試者及家屬簽署同意參與研究的同意書(包括同意人體靜脈注射用藥);依據(jù)臨床指南的相關(guān)原則充分保障受試者的治療安全;對患者診療記錄進(jìn)行保密,保護(hù)受試者的隱私權(quán)。本研究共篩選缺血性腦卒中老年受試者24例(男性12例、女性12例)和健康老年受試者24例(男性12例、女性12例)。
1.2.1 研究對象分組和干預(yù)[1- 4]通過隨機(jī)數(shù)字發(fā)生器將受試者隨機(jī)分為6個試驗組(n=8):S組,即空白對照組(2 ml 生理鹽水iv)、M組,即人參皂苷組(2 ml人參皂苷 5 mg·kg-1iv)、D組,即黃芪總苷組(5 ml黃芪總苷40 mg·kg-1iv)、SE組,即缺血性腦卒中組(缺血性腦卒中受試者; 2 ml 生理鹽水iv)、ME組,缺血性腦卒中實施人參皂苷治療組(缺血性腦卒中受試者;2 ml 人參皂苷5 mg·kg-1iv)、DE組,即缺血性腦卒中實施黃芪總苷治療組(缺血性腦卒中受試者;5 ml黃芪總苷40 mg·kg-1iv)。
1.2.2 取材 治療72 h后緩慢抽取取受試者腦脊液2 ml,進(jìn)行15 min的離心處理(注:轉(zhuǎn)速設(shè)定為12000 rpm,有效離心半徑為 15 cm)。腦脊液進(jìn)行稱重,然后使用錫箔紙來進(jìn)行標(biāo)記和包裹,標(biāo)本放置在液氮罐之中,經(jīng)過12 h之后將標(biāo)本轉(zhuǎn)移至- 80 ℃保存。
1.2.3 高效液相色譜法(High Performance Liquid Chromatography,HPLC)檢測Glu含量[5]。 配制濃度分別為0.15、0.30、0.735、1.47、2.94、3.675、5.88 mg/l的Glu溶液。應(yīng)用外標(biāo)法進(jìn)行定量分析,得到Glu標(biāo)準(zhǔn)曲線方程。血清4 ℃ 3000 r/min離心5 min,取24 μl 在進(jìn)樣瓶中加入衍生試劑12 μl、四硼酸鈉緩沖液(pH 9.18)960 μl,混勻,梯度洗脫,測Glu 含量。
1.2.4 Western- blotting法檢測p- AT8Ser202(Ser202位點過磷酸化的Tau)、糖原合成酶激酶- 3β1H8(Glycogen synthase kinase- 3β1H8,GSK- 3β1H8)蛋白在受試?yán)夏晔茉囌吣X脊液內(nèi)的含量[6](1)目標(biāo)蛋白的提?。喝∈茉?yán)夏晔茉囌叩哪X脊液200 mg,加Western裂解液10 ml·mg-1,勻漿、破碎、冰浴、離心,提蛋白。(2)目標(biāo)蛋白的定量:測定蛋白濃度,調(diào)其濃度一致。(3)凝膠電泳的實施:標(biāo)本15μl上樣, GAPDH為標(biāo)定,電泳。(4)濕法轉(zhuǎn)膜的實施:轉(zhuǎn)膜,封閉,漂洗。(5)發(fā)光顯影的實施:使用ECL試劑盒進(jìn)行目標(biāo)蛋白的印記顯影。在檢測前夕再配制適量ECL化學(xué)發(fā)光試劑盒A液和B液,在20 ℃環(huán)境之中放置以備使用。使用二抗進(jìn)行孵育并且進(jìn)行多次洗滌之后,再使用平頭鑷把膜取出,繼而使用吸水紙吸去多余的液體(注意不要接觸到膜有蛋白的一面),繼而顯影定影和圖像分析。
受試者缺血性腦卒中誘發(fā)的缺血缺氧強(qiáng)應(yīng)激上調(diào)谷氨酸濃度(F=265.564,P=0.000),黃芪總苷下調(diào)谷氨酸濃度(F=20.435,P=0.000),老年受試者缺血性腦卒中和黃芪總苷存在顯著的交互效應(yīng)(F=12.494,P=0.000)(表1)。
組別谷氨酸含量(0.15g/gprot)S組7.29±1.15#⊕SE組25.21±4.75#⊕M組7.88±0.94#⊕ME組23.44±4.52#⊕D組6.24±0.99#⊕DE組14.22±2.36#⊕F值107.446P值0.000
注:#無卒中者和缺血性腦卒中者相比較,其差異有統(tǒng)計學(xué)意義,即P<0.001
注:?生理鹽水、人參皂苷和黃芪總苷等處理措施間比較,其差異有統(tǒng)計學(xué)意義,即P<0.001
受試者缺血性腦卒中誘發(fā)的缺血缺氧強(qiáng)應(yīng)激上調(diào)p- AT8Ser202和GSK- 3β1H8表達(dá):(p- AT8Ser202:F=262.199,P=0.000)(GSK- 3β1H8:F=39.084,P=0.000);而人參皂苷和黃芪總苷下調(diào)p- AT8Ser202和GSK- 3β1H8表達(dá)(p- AT8Ser202:F=69.384,P=0.000)(GSK- 3β1H8:F=69.941,P=0.000);兩因素存在交互效應(yīng)(p- AT8Ser202:F=3.610,P=0.036)(GSK- 3β1H8:F=7.566,P=0.002),即人參皂苷和黃芪總苷能夠使得老年受試者缺血性腦卒中誘發(fā)腦脊液中磷酸化Tau的增加幅度減緩,其調(diào)控蛋白可能為GSK- 3β1H8。(圖1;表2、3)
Tau參與保持微管間的恰當(dāng)距離,進(jìn)而可影響神經(jīng)元的軸突運輸能力,其若發(fā)生過度磷酸化則能夠使Tau的空間結(jié)構(gòu)產(chǎn)生錯誤折疊,繼而誘發(fā)學(xué)習(xí)和記憶等腦功能損害。老年受試者缺血性腦卒中誘發(fā)的缺血缺氧強(qiáng)應(yīng)激后出現(xiàn)腦功能損害與過高濃度的谷氨酸介導(dǎo)的神經(jīng)元興奮性毒性反應(yīng)相關(guān),因其可誘發(fā)氧化應(yīng)激反應(yīng),造成神經(jīng)元可塑性障礙;同時過高濃度的谷氨酸還能引發(fā)去極化,導(dǎo)致神經(jīng)元凋亡甚至死亡。
谷氨酸是重要的神經(jīng)元興奮性遞質(zhì),其是學(xué)習(xí)和記憶等腦功能所必備的前提條件,但若谷氨酸過多生成和釋放,則其能夠過度谷氨酸受體,繼而引發(fā)谷氨酸介導(dǎo)的神經(jīng)元興奮性毒性反應(yīng)。本試驗發(fā)現(xiàn)老年受試者缺血性腦卒中誘發(fā)的缺血缺氧強(qiáng)應(yīng)激后腦脊液內(nèi)的谷氨酸濃度顯著上調(diào),同時伴有認(rèn)知狀況下降。本研究發(fā)現(xiàn),使用谷氨酸受體的拮抗劑之后,可以顯著緩解谷氨酸介導(dǎo)的神經(jīng)元毒性反應(yīng)所誘發(fā)的學(xué)習(xí)記憶障礙,該發(fā)現(xiàn)結(jié)果與以往試驗相似。
圖1p-AT8Ser202和p-GSK-3β1H8蛋白在老年受試者腦脊液中的含量(WB)
組別p-AT8Ser199/202蛋白含量(WB,吸光度值)S組649.13±107.68#⊕SE組1291.88±136.46#⊕M組341.50±66.78#⊕ME組808.13±121.07#⊕D組336.25±57.56#⊕DE組789.25±147.75#⊕F值101.112P值0.000
注:#無卒中者和缺血性腦卒中者相比較,其差異有統(tǒng)計學(xué)意義,即P<0.001
注:?生理鹽水、人參皂苷和黃芪總苷等處理措施間比較,其差異有統(tǒng)計學(xué)意義,即P<0.001
組別GSK-3β1H8蛋白含量(WB,吸光度值)S組454.88±104.69#⊕SE組674.50±77.24#⊕M組298.88±54.61#⊕ME組365.88±30.82#⊕D組296.25±54.37#⊕DE組360.13±36.51#⊕F值22.800P值0.000
注:#無卒中者和缺血性腦卒中者相比較,其差異有統(tǒng)計學(xué)意義,即P<0.001
注:?生理鹽水、人參皂苷和黃芪總苷等處理措施間比較,其差異有統(tǒng)計學(xué)意義,即P<0.001
黃芪總苷和人參皂苷能夠緩解老年受試者缺血性腦卒中誘發(fā)的缺血缺氧強(qiáng)應(yīng)激導(dǎo)致的學(xué)習(xí)和記憶等腦功能損害,機(jī)制與減弱興奮毒性具有密切關(guān)系,推測其機(jī)制如下:①黃芪總苷和人參皂苷抑制谷氨酸合成。②黃芪總苷和人參皂苷抑制谷氨酸釋放:ⅰ黃芪總苷和人參皂苷能夠抑制鈉通道,繼而降低應(yīng)激導(dǎo)致的神經(jīng)元細(xì)胞膜的去極化狀態(tài),最終使得腦脊液內(nèi)谷氨酸的釋放量顯著減少;ⅱ黃芪總苷和人參皂苷能夠抑制一氧化氮合酶的活性,從而抑制腦脊液內(nèi)谷氨酸的釋放。③黃芪總苷和人參皂苷能夠保護(hù)Na+/H+交換體活性,繼而谷氨酸的轉(zhuǎn)運速率。
認(rèn)知狀況異常與Tau的磷酸化程度相關(guān)[7- 10],即Tau磷酸化愈高則認(rèn)知狀況越差。推測其分子機(jī)制,Tau發(fā)生變性(如其空間結(jié)構(gòu)發(fā)生錯誤折疊)時,Tau失去其微管結(jié)合能力,造成神經(jīng)元軸突運輸障礙。受試?yán)夏晔茉囌吣X脊液內(nèi)的總Tau在老年受試者缺血性腦卒中應(yīng)激干預(yù)的前后沒有顯著變化,在諸磷酸化位點之中,pAT8Ser202位點的磷酸化與老年受試者缺血性腦卒中應(yīng)激干預(yù)的關(guān)系緊密。研究者分析其原因,這一現(xiàn)象應(yīng)與Ser202位點位于Tau的微管結(jié)合區(qū)有密切關(guān)系,因這一位點與Tau和微管的結(jié)合活性關(guān)系密切。糖原合成酶激酶- 3 (glycogen synthase kinase- 3,GSK- 3β)蛋白是最強(qiáng)的Tau磷酸化激酶(phosphorylating kinase)[11- 16],催化Tau諸多位點發(fā)生磷酸化反應(yīng)[17- 20]。本研究結(jié)果顯示,老年受試者缺血性腦卒中誘發(fā)的缺血缺氧強(qiáng)應(yīng)激后受試新生老年受試者腦脊液內(nèi)的谷氨酸的濃度顯著升高,而且腦脊液內(nèi)的磷酸化Tau蛋白(p- AT8Ser202)的含量亦明顯上調(diào),即老年受試者缺血性腦卒中誘發(fā)的缺血缺氧強(qiáng)應(yīng)激可誘發(fā)明顯的神經(jīng)元損傷[21, 22]。本研究發(fā)現(xiàn)Tau磷酸化程度的關(guān)鍵調(diào)控蛋白GSK- 3β1H8在老年受試者缺血性腦卒中誘發(fā)的缺血缺氧強(qiáng)應(yīng)激后與磷酸化Tau(p- AT8Ser202)同時上調(diào),而且在黃芪總苷和谷氨酸受體的拮抗劑作用下與磷酸化Tau(p- AT8Ser202)同時回調(diào)。
本研究揭示,黃芪總苷和人參皂苷能夠降低老年受試者缺血性腦卒中誘發(fā)的缺血缺氧強(qiáng)應(yīng)激后腦脊液內(nèi)過度升高的谷氨酸濃度,而且能夠使調(diào)節(jié)Tau磷酸化程度的關(guān)鍵蛋白GSK- 3β1H8表達(dá)降低,繼而緩解Tau的過度磷酸化程度,最終改善老年受試者缺血性腦卒中誘發(fā)的缺血缺氧強(qiáng)應(yīng)激后的受試對象的認(rèn)知狀況。據(jù)此,研究者推測黃芪總苷和人參皂苷能夠從以下方面中斷老年受試者缺血性腦卒中誘發(fā)的缺血缺氧強(qiáng)應(yīng)激導(dǎo)致的Tau超磷酸化進(jìn)程:黃芪總苷和人參皂苷既能夠降低腦脊液內(nèi)谷氨酸的濃度,同時也能夠抑制調(diào)節(jié)Tau磷酸化程度的關(guān)鍵蛋白GSK- 3β的表達(dá)。
[1] 林也容,周龍,吳芳芳,等.急性胎兔缺血性腦卒中模型腦NO、iNOS和T- SOD變化試驗研究 [J].中國實用醫(yī)藥,2013,8(36):4- 6.
[2]吳希珠,鄭曉春,陳小琳,等.母體肢體缺血預(yù)處理對缺血性腦卒中胎鼠復(fù)氧后腦脊液神經(jīng)元凋亡的影響[J].中國病理生理雜志,2014,30(4):729- 732,750.
[3] 林也容,林進(jìn)皇,吳芳芳,等.急性胎兔缺血性腦卒中模型腦組織病理及NMDArl表達(dá)試驗研究 [J].中國醫(yī)藥科學(xué),2013,3(23):38- 41.
[4] 張華,盧敏,漆洪波,等.2脫氧葡萄糖誘導(dǎo)葡萄糖調(diào)節(jié)蛋白78表達(dá)上調(diào)對缺血性腦卒中胎鼠腦神經(jīng)元的保護(hù)作用 [J].中華婦產(chǎn)科雜志,2008,43(5):356- 360.
[5] SINGH M,KAMAL YT ,KHAN M A,et al.Matrix solid- Phase dispersion extraction and quantification of alpinetin in amomum seed using validated HPLC and HPTLC methods[J].Indian J Pharm Sci,2015,77(1):49- 54.
[6] GUO C,YIN Y,DUAN J,et al.Neuroprotective effect and underlying mechanism of sodium danshensu [3- (3,4- dihydroxyphenyl) lactic acid from Radix and Rhizoma Salviae miltiorrhizae = Danshen] against cerebral ischemia and reperfusion injury in rats[J].Phytomedicine,2015,22(2):283- 289.
[7] KEELEY R J,HONG NS,FISHER A,et al.Co- morbid beta- amyloid toxicity and stroke produce impairments in an ambiguous context task in rats without any impairment in spatial working memory [J].Neurobiol Learn Mem,2015,119(1):42- 51.
[8] KANAMARU T,KAMIMURA N,YOKOTA T,et al.Oxidative stress accelerates amyloid deposition and memory impairment in a double- transgenic mouse model of Alzheimer′s disease [J].Neurosci Lett,2015,587(12):126- 131.
[9] EGLI S C,HIRNI D I,TAYLOR K I,et al.Varying strength of cognitive markers and biomarkers to predict conversion and cognitive decline in an early- stage- enriched mild cognitive impairment sample [J].J Alzheimers Dis,2015,44(2):625- 633.
[10] WANG B,TANAKA K,JI B,et al.Low- dose total- body carbon- ion irradiations induce early transcriptional alteration without late Alzheimer′s disease- like pathogenesis and memory impairment in mice [J].J Neurosci Res,2014,92(7):915- 926.
[11] GUO L,HE P,NO Y R,et al.Krüppel- like factor 5 incorporates into the β- catenin/TCF complex in response to LPA in colon cancer cells [J].Cell Signal,2015,27(5):961- 968.
[12] KETTUNEN P,LARSSON S,HOLMGREN S,et al.Genetic variants of GSK3B are associated with biomarkers for Alzheimer′s disease and cognitive function [J].J Alzheimers Dis,2015,44(4):1313- 1322.
[13] DESAI S S,MODALI S D,PAREKH V I,et al.GSK- 3β protein phosphorylates and stabilizes HLXB9 protein in insulinoma cells to form a targetable mechanism of controlling insulinoma cell proliferation [J].J Biol Chem,2014,289(9):5386- 5398.
[14] SOKOLOSKY M,CHAPPELL W H,STADELMAN K,et al.Inhibition of GSK- 3β activity can result in drug and hormonal resistance and alter sensitivity to targeted therapy in MCF- 7 breast cancer cells [J].Cell Cycle,2014,13(5):820- 833.
[15] TYAGARAJAN S K,GHOSH H,YEVENES G E,et al.Extracellular signal- regulated kinase and glycogen synthase kinase 3β regulate gephyrin postsynaptic aggregation and GABAergic synaptic function in a calpain- dependent mechanism [J].J Biol Chem,2013,288(14):9634- 9647.
[16] MOORE S F,van den BOSCH M T,HUNTER R W,et al.Dual regulation of glycogen synthase kinase 3 (GSK3)α/β by protein kinase C (PKC)α and Akt promotes thrombin- mediated integrin αIIbβ3 activation and granule secretion in platelets [J].J Biol Chem,2013,288(6):3918- 3928.
[17] NIE H,XUE X,LI J,et al.Nitro- oleic acid attenuates OGD/R- triggered apoptosis in renal tubular cells via inhibition of Bax mitochondrial translocation in a PPAR- γ- dependent manner [J].Cell Physiol Biochem,2015,35(3):1201- 1218.
[18] IHARA M,ASANUMA H,YAMAZAKI S,et al.An interaction between GLP- 1 and adenosine contributes to cardioprotection of a dipeptidyl peptidase 4 inhibitor from myocardial ischemia/reperfusion injury[J].Am J Physiol Heart Circ Physiol,2015,308(10):H1287- 297.
[19] YE Z,XIA P,CHENG Z G,et al.Neuroprotection induced by sevoflurane- delayed post- conditioning is attributable to increased phosphorylation of mitochondrial GSK- 3β through the PI3K/Akt survival pathway [J].J Neurol Sci,2015,348(1- 2):216- 225.
[20] ZHANG P,LI S,GAO Y,et al.Novel benzothiazinones (BTOs) as allosteric modulator or substrate competitive inhibitor of glycogen synthase kinase 3β (GSK- 3β) with cellular activity of promoting glucose uptake [J].Bioorg Med Chem Lett,2014,24(24):5639- 5643.
[21] 梅濤,王蕾,徐立新,等.經(jīng)顱多普勒早期預(yù)警動脈瘤性蛛網(wǎng)膜下腔出血致延遲性腦缺血 [J].國際神經(jīng)病學(xué)神經(jīng)外科學(xué)雜志,2016,43(5):396- 398.
[22] 殷俊,李艷冰,沈琴,等.ERK和CREB磷酸化在硫氫化鈉對大鼠腦缺血再灌注神經(jīng)保護(hù)的機(jī)制探討 [J].國際神經(jīng)病學(xué)神經(jīng)外科學(xué)雜志,2015,42(3):223- 229.
AcomparativestudyoftheeffectoftotalsaponinsofAstragalusandPanaxginsengsaponinsontheimprovementofcognitiveimpairmentinelderlypatientswithischemicstroke
DuJie
(DepartmentofNeurology,TheFirstAffiliatedHospitalofHubeiScienceandTechnologyInstitute,XianningCentralHospital,Xianning437100,China)
Objective: To observe Astragalosides and N- methyl - D- aspartate receptor antagonists on the concentration of glutamate and the ultra phosphorylation of Tau in elderly subjects with ischemic stroke induced by ischemia and hypoxia stress and the regulation of phosphorylation of Tau, in order to improve the understanding ofthe mechanism of cognitive impairment induced by ischemic stroke.Methods2*3 factorial design was used in the design of ischemic stroke (2 levels: no stroke, ischemic stroke) and drugs (3 levels of normal saline, ginsenoside and Astragalus). After the intervention, the cerebrospinal fluid, HPLC and Glu were measured, and the contents of p- AT8Ser202 and GSK- 3 were measured by Western- blot. The content of 1H8 and were measured.ResultsIschemic stroke increased the concentration of glutamic acid in the cerebrospinal fluid (P<0.05). Astragalosides reduced ischemic stroke induced by excessive increase of glutamic acid concentration, and the effect of subtraction (P<0.05). While the concentration of ginsenoside did not significantly affect on the CSF glutamate (P<0.05). The expression of ischemic stroke could increased in the cerebrospinal fluid of p- AT8Ser202 and promote Tau phosphorylation in the regulation of protein GSK- 3 β1H8(P<0.05). Astragaloside and ginsenoside could reduce cerebrospinal fluid p- AT8Ser202 and promote GSK- 3 β1H8phosphorylation (P<0.05). Both effects were similar, and the effects of ischemia hypoxia and stress on ischemic stroke were subtracted (P<0.05).ConclusionTotal saponins of Astragalus and Panax ginseng saponins can improve the cognitive impairment in elderly patients with ischemic stroke by decreasing the concentration of glutamic acid and slowing down the Tau phosphorylation. Thus, it can alleviate the ischemic hypoxia and stress caused by ischemic stroke.
total saponins of astragalus; ginsenoside; N- methyl - D- aspartate receptor; Tau protein; ischemic stroke
2017- 04- 06
2017- 09- 06
杜杰(1981-),男,湖北漢川人,碩士研究生,主治醫(yī)師,主要研究方向:缺血性腦血管病介入方向。E- mail:dujiee@126.com
杜杰. 黃芪總苷和人參皂苷降低缺血性腦卒中患者腦脊液中谷氨酸、磷酸化Tau[J].東南大學(xué)學(xué)報:醫(yī)學(xué)版,2017,36(5):828- 832.
R151
A
1671- 6264(2017)05- 0828- 05
10.3969/j.issn.1671- 6264.2017.05.029
(本文編輯:孫茂民)