胡 凱 蘇玥寧 馮 琳,3,4 劉 揚,3,4 姜維丹,3,4 吳 培,3,4 姜 俊,3,4 周小秋,3,4*
(1.四川農(nóng)業(yè)大學(xué)動物營養(yǎng)研究所,成都 611130;2.成都農(nóng)業(yè)科技職業(yè)學(xué)院畜牧獸醫(yī)分院,成都 611130;3.魚類營養(yǎng)與安全生產(chǎn)四川省高校重點實驗室,成都 611130;4.動物抗病營養(yǎng)教育部重點實驗室,成都 611130)
80%賴氨酸硫酸鹽與98%賴氨酸鹽酸鹽對生長中期草魚生長性能、消化吸收能力和消化器官生長發(fā)育影響的比較研究
胡 凱1,2蘇玥寧1馮 琳1,3,4劉 揚1,3,4姜維丹1,3,4吳 培1,3,4姜 俊1,3,4周小秋1,3,4*
(1.四川農(nóng)業(yè)大學(xué)動物營養(yǎng)研究所,成都 611130;2.成都農(nóng)業(yè)科技職業(yè)學(xué)院畜牧獸醫(yī)分院,成都 611130;3.魚類營養(yǎng)與安全生產(chǎn)四川省高校重點實驗室,成都 611130;4.動物抗病營養(yǎng)教育部重點實驗室,成都 611130)
本試驗通過比較80%賴氨酸硫酸鹽[80%L-Lys·H2SO4,簡稱80賴氨酸(80-Lys)]與98%賴氨酸鹽酸鹽[98%L-Lys·HCl,簡稱98賴氨酸(98-Lys)]對生長中期草魚生長性能、消化吸收能力和消化器官生長發(fā)育的影響,探討80-Lys和98-Lys在草魚上的生物效價并確定以80-Lys為賴氨酸(Lys)添加形式時飼料中Lys的適宜含量。選擇初始體重為275.80 g左右的健康草魚540尾,隨機分成6組(每組3個重復(fù),每個重復(fù)30尾魚),分別飼喂Lys含量為0.8%(基礎(chǔ)飼料)、1.0%、1.2%、1.4%和1.6%的添加80-Lys的飼料及Lys含量為1.2%的添加98-Lys的飼料60 d。結(jié)果表明:與基礎(chǔ)飼料相比,飼料中添加適宜水平的80-Lys使飼料Lys含量達(dá)到1.2%時可顯著提高生長中期草魚的增重率(WGR),特定生長率(SGR),采食量(FI),全腸脂肪酶、淀粉酶活力,肝胰臟谷草轉(zhuǎn)氨酶(GOT)和谷丙轉(zhuǎn)氨酶(GPT)活力,前、中、后腸堿性磷酸酶(AKP)、肌酸激酶(CK)活力,肝體指數(shù)與腸體指數(shù)以及前、后腸皺襞高度(P<0.05),顯著降低血清GOT和GPT活力(P<0.05),且80-Lys對上述指標(biāo)的作用效果顯著優(yōu)于98-Lys(P<0.05);此外,還可顯著提高生長中期草魚的飼料效率(FE),全腸胰蛋白酶活力,前、中、后腸Na+,K+-ATP酶(Na+,K+-ATPase)和γ-谷胺酰轉(zhuǎn)肽酶(γ-GT)活力,腸長與腸長指數(shù)以及中腸皺襞高度(P<0.05),但80-Lys對上述指標(biāo)的作用效果與98-Lys差異不顯著(P>0.05)。由此得出,與98-Lys相比,80-Lys能更有效地提高生長中期草魚的消化吸收能力,進而促進其生長。以80-Lys為Lys添加形式,以SGR和FE為標(biāo)識,生長中期草魚(276~667 g)飼料中Lys的最適含量分別為1.31%(占飼料蛋白質(zhì)的4.68%)和1.27%(占飼料蛋白質(zhì)的4.54%)。
80%賴氨酸硫酸鹽;98%賴氨酸鹽酸鹽;草魚;生長性能;消化吸收能力
試驗用80-Lys和98-Lys均由長春大成實業(yè)集團有限公司提供。以大米蛋白粉、豆粕、棉籽粕、菜籽粕為主要蛋白質(zhì)源配制基礎(chǔ)飼料,向基礎(chǔ)飼料中添加80-Lys使試驗飼料中Lys含量分別為0.8%(基礎(chǔ)飼料)、1.0%、1.2%、1.4%和1.6%,向基礎(chǔ)飼料中添加98-Lys使試驗飼料中Lys含量為1.2%(滿足草魚生長需要[17])。所有飼料通過添加甘氨酸(Gly)平衡蛋白質(zhì)水平,試驗飼料組成及營養(yǎng)水平見表1。參考Feng等[18]的方法分析試驗飼料氨基酸組成,列于表2。
表1 試驗飼料組成及營養(yǎng)水平(風(fēng)干基礎(chǔ))
續(xù)表1項目ItemsLys含量Lyscontent/%80?Lys組80?Lysgroups0.81.01.21.41.698?Lys組98?Lysgroup1.2賴氨酸預(yù)混料Lyspremix2)5.005.005.005.005.005.00蛋氨酸Met(98%)0.310.310.310.310.310.31氯化膽堿Cholinechloride(60%)0.500.500.500.500.500.50乙氧基喹啉Ethoxyquin(30%)0.050.050.050.050.050.05合計Total100.00100.00100.00100.00100.00100.00營養(yǎng)水平Nutrientlevels3)粗蛋白質(zhì)CP27.9927.9427.8927.8327.7827.91粗脂肪EE6.056.056.056.056.056.05n?3多不飽和脂肪酸n?3PUFA0.510.510.510.510.510.51n?6多不飽和脂肪酸n?6PUFA1.001.001.001.001.001.00有效磷AP0.840.840.840.840.840.84
1)維生素預(yù)混料和礦物質(zhì)預(yù)混料均參照Xu等[19]配制。Vitamin premix and mineral premix were prepared according to Xu, et al[19].
2)每千克賴氨酸預(yù)混料中含有Contained the following per kg of lysine premix:80賴氨酸 80-Lys,0(0.8% 80-Lys組 0.8% 80-Lys group)、59.55(1.0% 80-Lys組 1.0% 80-Lys group)、119.10(1.2% 80-Lys組 1.2% 80-Lys group)、178.65(1.4% 80-Lys組 1.4% 80-Lys group)、238.20(1.6% 80-Lys組 1.6% 80-Lys group)、0 g(1.2% 98-Lys組 1.2% 98-Lys group);98賴氨酸 98-Lys,0(0.8% 80-Lys組0.8% 80-Lys group)、0(1.0% 80-Lys組 1.0% 80-Lys group)、0(1.2% 80-Lys組 1.2% 80-Lys group)、0(1.4% 80-Lys組 1.4% 80-Lys group)、0(1.6% 80-Lys組 1.6% 80-Lys group)、101.88 g(1.2% 98-Lys組 1.2% 98-Lys group);甘氨酸 Gly, 165.13(0.8% 80-Lys組 0.8% 80-Lys group)、123.85(1.0% 80-Lys組 1.0% 80-Lys group)、82.57(1.2% 80-Lys組 1.2% 80-Lys group)、41.28(1.4% 80-Lys組 1.4% 80-Lys group)、0(1.6% 80-Lys組 1.6% 80-Lys group)、82.56 g(1.2% 98-Lys組 1.2% 98-Lys group);其余用玉米淀粉補足 the rest was corn gluten meal complement。
3)粗蛋白質(zhì)為測定值,其他營養(yǎng)水平根據(jù)NRC(2011)[17]飼料分析值計算得出。CP was a measured value, while the other nutrient levels were calculated according to feed analysis values of NRC (2011)[17].
表2 試驗飼料氨基酸組成
續(xù)表2項目ItemsLys含量Lyscontent/%80?Lys組80?Lysgroups0.81.01.21.41.698?Lys組98?Lysgroup1.2色氨酸Try0.310.370.350.350.380.34纈氨酸Val1.541.571.551.561.531.53非必需氨基酸Non?essentialaminoacids谷氨酸Glu5.665.685.665.645.625.65半胱氨酸Cys0.580.580.570.550.560.56脯氨酸Pro2.182.192.202.182.142.12天門冬氨酸Asp2.162.182.222.202.232.23絲氨酸Ser1.441.441.381.381.421.40丙氨酸Ala1.461.491.481.401.491.46酪氨酸Tyr1.151.131.141.161.151.17甘氨酸Gly1.841.711.571.431.291.52
飼養(yǎng)試驗在四川農(nóng)業(yè)大學(xué)水生動物營養(yǎng)研究室大邑研究基地進行,采用網(wǎng)箱養(yǎng)殖。草魚購回經(jīng)4周馴養(yǎng)后開始正式飼養(yǎng)試驗。選擇初始體重為(275.80±0.64) g的健康草魚540尾,隨機分成6組,每組3個重復(fù),每個重復(fù)30尾魚,以重復(fù)為單位放入1.4 m×1.4 m×1.4 m的網(wǎng)箱中,組間初始體重差異不顯著(P>0.05)。各組分別飼喂添加80-Lys和98-Lys的飼料60 d。飼養(yǎng)管理參照本實驗室前期研究建立的管理模式[20]進行,即每天定點投喂4次,每次投喂30 min后收集剩料并烘干稱重。定期觀察草魚健康狀況、換水及常規(guī)殺蟲殺菌。試驗期間水溫為(28±2) ℃,pH維持在7.2±0.2,養(yǎng)殖水體中溶解氧濃度大于6 mg/L。
在生長試驗起始和結(jié)束時分別以網(wǎng)箱為單位稱量試驗魚體重,用以計算體增重(weight gain,WG)、增重率(weight gain rate,WGR)、特定生長率(specific growth rate,SGR);記錄每日投餌量,收集殘餌并稱重,用以計算采食量(feed intake,F(xiàn)I)、飼料效率(feed efficiency,F(xiàn)E)。正式試驗期間記錄各組試驗魚死亡數(shù),用以計算成活率(survival rate,SR)。飼養(yǎng)試驗結(jié)束后,每組隨機選擇15尾生長中期草魚,參照Geraylou等[21]描述的方法用對氨基苯甲酸對試驗魚進行麻醉,隨后參考Huang等[22]描述的方法對試驗魚稱重、測量體長以及采血,迅速分離肝胰臟和腸道并稱重,測量腸長后定位分離前、中、后腸,再用液氮速凍后及時送超低溫冰箱(-80 ℃)保存,用于實驗室分析。每組另隨機選擇6尾試驗魚,參照Lin等[23]描述的方法測量其腸道皺襞高度。全腸胰蛋白酶、糜蛋白酶、脂肪酶、淀粉酶活力,前、中、后腸堿性磷酸酶(alkaline phosphatase,AKP)、肌酸激酶(creatine kinase,CK)、Na+,K+-ATP酶(Na+,K+-ATPase)、γ-谷胺酰轉(zhuǎn)肽酶(γ-glutamyltransferase,γ-GT)活力的測定均參照Li等[24]描述的方法進行。血清、肝胰臟谷草轉(zhuǎn)氨酶(glutamic oxalacetic transaminase,GOT)和谷丙轉(zhuǎn)氨酶(glutamate pyruvate transaminase,GPT)活力的測定參照唐凌等[25]描述的方法進行。
WGR=[WG(g)/初始體重(g)]×100;SGR={[ln終末體重(g)-ln初始體重(g)]/試驗天數(shù)(d)}×100;FI=總投餌量(g)-總殘餌量(g);FE=[WG(g)/攝食量(g)]×100;SR={[初始魚總數(shù)(尾)-死亡魚數(shù)(尾)]/初始魚總數(shù)(尾)}×100;肝體指數(shù)(hepatosomatic index,HSI)=[肝胰臟重(g)/體重(g)]×100;腸體指數(shù)(intestosomatic index,ISI)=[腸重(g)/體重(g)]×100;腸長指數(shù)(relative gut length,RGL)=[腸長(cm)/體長(cm)]×100。
試驗數(shù)據(jù)用平均值±標(biāo)準(zhǔn)差表示,采用SPSS 18.0統(tǒng)計軟件進行統(tǒng)計分析。對不同Lys含量的80-Lys組的試驗數(shù)據(jù)進行單因素方差分析,并結(jié)合Duncan氏法進行多重比較,以P<0.05作為差異顯著水平,對統(tǒng)計學(xué)差異顯著的指標(biāo)進行回歸分析。對飼料中Lys含量相同的80-Lys(1.2% Lys)組與98-Lys(1.2% Lys)組試驗數(shù)據(jù)進行t檢驗,以檢驗不同處理之間的差異顯著性,差異顯著水平為P<0.05。
由表3可知,飼喂添加80-Lys和98-Lys的飼料的生長中期草魚的SR均為100%。生長中期草魚的終末體重、WG、WGR、SGR、FI、FE先隨著飼料中80-Lys添加水平的增加而顯著升高(P<0.05),在飼料中Lys含量為1.2%時均達(dá)到最大值,而后均隨著飼料中80-Lys添加水平的進一步增加而顯著降低(P<0.05)。在飼料中Lys含量均為1.2%的條件下,80-Lys組與98-Lys組相比,生長中期草魚的FBW、WG、WGR、SGR、FI均顯著升高(P<0.05),而FE和成活率則差異不顯著(P>0.05)。
以80-Lys作為Lys的添加形式,分別對飼料中Lys含量(x)和生長中期草魚的WG(yWG)、WGR(yWGR)、SGR(ySGR)、FI(yFI)、FE(yFE)進行回歸分析,得到的回歸方程分別為yWG=-431.56x2+1 132.06x-367.88(R2=0.869,P<0.01)、yWGR=-157.13x2+412.08x-134.38(R2=0.867,P<0.01)、ySGR=-1.20x2+3.15x-0.64(R2=0.884,P<0.01)、yFI=-370.60x2+1 009.99x-33.30(R2=0.895,P<0.01)、yFE=-0.38x2+0.97x-0.05(R2=0.795,P<0.01),分別以SGR和FE為標(biāo)識,通過二次曲線分析確定的生長中期草魚(276~667 g)飼料的Lys最適含量分別為1.31%和1.27%(圖1)。
表3 80-Lys和98-Lys對生長中期草魚生長性能的影響
同行數(shù)據(jù)肩標(biāo)不同小寫字母表示80-Lys組間差異顯著(P<0.05),肩標(biāo)不同大寫字母表示80-Lys(1.2% Lys)組與98-Lys(1.2% Lys)組差異顯著(P<0.05)。下表同。
In the same row, values with different small letter superscripts are significantly different among 80-Lys groups (P<0.05), and with different capital letter superscripts are significantly different between the 80-Lys (1.2% Lys) group and 98-Lys (1.2% Lys) group (P<0.05). The same as below.
由表4可知,飼料中添加不同水平的80-Lys對生長中期草魚全腸糜蛋白酶活力的影響不顯著(P>0.05)。隨飼料中80-Lys添加水平的增加,生長中期草魚全腸胰蛋白酶活力先顯著升高(P<0.05),在飼料中Lys含量為1.2%時達(dá)到最大值,而后隨著飼料中80-Lys添加水平的進一步增加而顯著降低(P<0.05)。不同添加水平的80-Lys對生長中期草魚全腸脂肪酶和淀粉酶活力的影響與胰蛋白酶相似。在飼料中Lys含量均為1.2%的條件下,80-Lys組與98-Lys組相比,生長中期草魚全腸脂肪酶和淀粉酶活力顯著升高(P<0.05),而糜蛋白酶活力則顯著降低(P<0.05),胰蛋白酶活力差異不顯著(P>0.05)。
圖1 飼料中Lys含量(以80-Lys作為Lys的添加形式)與生長中期草魚特定生長率(A)或飼料效率(B)的二次曲線分析
表4 80-Lys和98-Lys對生長中期草魚腸道消化酶活力的影響
由表5可知,生長中期草魚前、中、后腸AKP活力先隨飼料中80-Lys添加水平的增加而顯著升高(P<0.05),均在飼料中Lys含量為1.2%時達(dá)到最大值,而后隨著飼料中80-Lys添加水平的進一步增加而顯著降低(P<0.05)。飼料中添加不同水平的80-Lys對生長中期草魚前、中、后腸CK活力,中、后腸γ-GT活力影響的變化趨勢與前、中、后腸AKP相似。1.2% 80-Lys組生長中期草魚前、中腸Na+,K+-ATPase活力均顯著高于0.8%(基礎(chǔ)飼料)、1.4%和1.6% 80-Lys組(P<0.05),但與1.0% 80-Lys組差異不顯著(P>0.05)。1.2% 80-Lys組生長中期草魚后腸Na+,K+-ATPase活力與前腸γ-GT活力顯著高于0.8%、1.0%和1.6% 80-Lys組(P<0.05),但與1.4% 80-Lys組差異不顯著(P>0.05)。在飼料中Lys含量均為1.2%的條件下,80-Lys組與98-Lys組相比,生長中期草魚前、中、后腸AKP和CK活力均顯著升高(P<0.05),而前、中、后腸Na+,K+-ATPase和γ-GT活力則差異不顯著(P>0.05)。
以80-Lys作為Lys的添加形式,分別對飼料中Lys含量(x)和生長中期草魚的前(yAKPPI)、中(yAKPMI)、后腸AKP活力(yAKPDI),后腸CK活力(yCKDI)以及中(yγ-GTMI)、后腸γ-GT活力(yγ-GTDI)進行回歸分析,得到的回歸方程分別為yAKPPI=-453.81x2+1 077.45x-487.36(R2=0.910,P<0.01)、yAKPMI=-612.86x2+1 499.27x-765.68(R2=0.971,P<0.01)、yAKPDI=-285.55x2+692.07x-352.23(R2=0.740,P<0.01)、yCKDI=-154.54x2+353.64x-96.88(R2=0.709,P<0.01)、yγ-GTMI=-185.1x2+469.02x-201.25(R2=0.748,P<0.01)、yγ-GTDI=-225.14x2+574.93x-275.62(R2=0.716,P<0.01)。
表5 80-Lys和98-Lys對生長中期草魚腸道刷狀緣酶活力的影響
由表6可知,生長中期草魚血清GOT和GPT活力隨飼料中80-Lys添加水平的增加先降低后升高,在飼料中Lys含量為1.2%時其血清GOT和GPT活力最低,其中GOT活力顯著低于其他各組(P<0.05),GPT活力顯著低于除1.0% 80-Lys組外的其他各組(P<0.05)。飼料中添加不同水平的80-Lys對生長中期草魚肝胰臟GPT活力影響的變化趨勢與血清GOT和GPT活力的變化趨勢相反,以1.2% 80-Lys組肝胰臟GPT活力最高,顯著高于其他各組(P<0.05)。1.2%和1.4% 80-Lys組生長中期草魚肝胰臟GOT活力顯著高于0.8%、1.0%和1.6% 80-Lys組(P<0.05),且1.2%和1.4% 80-Lys組間差異不顯著(P>0.05)。在飼料中Lys含量均為1.2%的條件下,80-Lys組與98-Lys組相比,生長中期草魚血清GOT和GPT活力均顯著降低(P<0.05),而肝胰臟GOT和GPT活力則顯著升高(P<0.05)。
以80-Lys作為Lys的添加形式,分別對飼料中Lys含量(x)和生長中期草魚的肝胰臟(y肝胰臟GOT)和血清GOT活力(y血清GOT)進行回歸分析,得到的回歸方程分別為y肝胰臟GOT=-9.077x2+22.851x-7.002(R2=0.751,P<0.01)、y血清GOT=5.119x2-12.069x+8.289(R2=0.786,P<0.01)。
表680-Lys和98-Lys對生長中期草魚血清、肝胰臟GOT和GPT活力的影響
Table 6 Effects of 80-Lys and 98-Lys on GOT and GPT activities in serum and hepatopancreas of young grass carp (Ctenopharyngodonidella)
項目ItemsLys含量Lyscontent/%80?Lys組80?Lysgroups0.81.01.21.41.698?Lys組98?Lysgroup1.2血清Serum/(U/mL)谷草轉(zhuǎn)氨酶GOT1.85±1.50c1.45±1.15b0.96±0.65aA1.56±1.36b2.03±1.70d1.33±0.71B谷丙轉(zhuǎn)氨酶GPT0.79±0.56b0.67±0.63a0.63±0.62aA0.83±0.67bc0.89±0.70c0.88±0.80B肝胰臟Hepatopancreas/(U/mg)谷草轉(zhuǎn)氨酶GOT5.61±2.42a6.45±5.10b7.48±1.98cB8.49±6.91c6.22±4.19b6.41±4.04A谷丙轉(zhuǎn)氨酶GPT6.04±2.04a6.19±4.42a7.03±5.51bB5.77±4.51a5.59±2.45a6.06±3.07A
由表7可知,生長中期草魚肝胰臟重隨飼料中80-Lys添加水平的增加先升高后降低,在飼料中Lys含量為1.2%時達(dá)到最高值,顯著高于其他各組(P<0.05)。飼料中添加不同水平的80-Lys對生長中期草魚腸長、腸長指數(shù)、腸重、腸體指數(shù)以及前、中、后腸皺襞高度影響的變化趨勢與肝胰臟重相似。1.2% 80-Lys組生長中期草魚肝體指數(shù)顯著高于0.8%、1.4%和1.6% 80-Lys組(P<0.05),但與1.0% 80-Lys組差異不顯著(P>0.05)。在飼料中Lys含量均為1.2%的條件下,80-Lys組與98-Lys組相比,生長中期草魚肝胰臟重、肝體重指數(shù)、腸重、腸體指數(shù)以及前、中、后腸皺襞高度均顯著升高(P<0.05),而腸長、腸長指數(shù)則差異不顯著(P>0.05)。
以80-Lys作為Lys的添加形式,分別對飼料中Lys含量(x)和生長中期草魚的肝胰臟重(y肝胰臟重)、腸重(y腸重)以及前(y前腸皺襞高度)、中(y中腸皺襞高度)、后腸皺襞高度(y后腸皺襞高度)進行回歸分析,得到的回歸方程分別為y肝胰重=-33.67x2+86.87x-35.32(R2=0.769,P<0.01)、y腸重=-40.92x2+101.02x-45.91(R2=0.795,P<0.01)、y前腸皺襞高度=-2 041.28x2+4 946.26x-1 691.77(R2=0.771,P<0.01)、y中腸皺襞高度=-1 070.57x2+2 616.35x-462.67(R2=0.790,P<0.01)、y后腸皺襞高度=-1 451.31x2+3 558.72x-1 128.55(R2=0.753,P<0.01)。
Lys是魚類重要的必需氨基酸[26]。本試驗結(jié)果表明:飼料中80-Lys的添加顯著提高了生長中期草魚的終末體重、WG、WGR和SGR,且飼料中Lys含量與生長中期草魚的生長指標(biāo)呈顯著二次相關(guān),說明添加適宜水平的80-Lys可以促進生長中期草魚的生長。此外,與98-Lys比較,在飼料Lys含量均為1.2%的條件下,80-Lys對生長中期草魚的促生長作用優(yōu)于98-Lys。雖然目前未見80-Lys在魚類上的研究報道,但本試驗結(jié)果與其他形式Lys在其他生長階段草魚或其他魚上的研究結(jié)果類似,如生長后期草魚(L-Lys·H2SO4,Lys含量=51%)[1]、草魚幼魚(晶體L-Lys)[27-28]、建鯉(Cyprinuscarpiovar. Jian,包被Lys,Lys含量=70.04%)[2]、尼羅羅非魚(L-Lys)[5]、太平洋鲅(Polydactylussexfilis,L-Lys)[3]、石斑魚(Epinepheluscoioides,L-Lys·HCl)[29]、大菱鲆(Scophthalmusmaximus,L-Lys·HCl)[30]、大黃魚(PseudosciaenacroceaR.,L-Lys·HCl)[4]等。然而,關(guān)于飼料中添加晶體L-Lys對草魚生長性能的影響也存在不一致的報道,有研究則顯示飼料中添加晶體L-Lys對草魚幼魚終末體重及WGR沒有顯著影響[31]。其不一致的原因可能是由于本試驗增加了投喂頻率,提高了氨基酸吸收的同步性,進而提高了生長中期草魚對80-Lys及98-Lys的利用效率。魚類的生長依賴于營養(yǎng)物質(zhì)的攝入,而飼料中必需氨基酸的含量與動物的FI密切相關(guān)[2,32],因此,飼料中添加80-Lys的促生長作用可能與其調(diào)節(jié)魚類FI有關(guān)。本研究結(jié)果表明:隨著飼料中80-Lys添加水平的增加,生長中期草魚的FI和FE先升高后降低,在飼料中Lys含量均為1.2%時達(dá)到最大值。在飼料中Lys含量均為1.2%的條件下,與98-Lys組比較,80-Lys組生長中期草魚的FI顯著提高。Wang等[27]在草魚幼魚上的研究結(jié)果與本試驗有相似,即在飼料中添加適宜水平的晶體L-Lys,草魚幼魚的FE顯著提高。這些結(jié)果說明,80-Lys可通過提高魚類的FI和FE促進生長,且作用效果優(yōu)于98-Lys。以80-Lys為Lys添加形式,分別以SGR和FE為標(biāo)識,生長中期草魚(276~667 g)飼料中Lys的最適含量分別為1.31%(占飼料蛋白質(zhì)的4.68%)和1.27%(占飼料蛋白質(zhì)的4.54%)。
表7 80-Lys和98-Lys對生長中期草魚肝胰臟和腸道生長發(fā)育的影響
魚類消化吸收能力的強弱是影響魚類FI和FE的重要因素[24]。魚類腸道內(nèi)消化酶的活力是反映魚類消化能力的重要指標(biāo)[33]。本試驗結(jié)果表明:飼料中添加適宜水平的80-Lys可顯著提高生長中期草魚全腸胰蛋白酶、脂肪酶和淀粉酶的活力。在飼料中Lys含量均為1.2%的條件下,與98-Lys比較,80-Lys可顯著提高生長中期草魚全腸脂肪酶和淀粉酶活力,顯著降低糜蛋白酶活力,胰蛋白酶活力則無顯著變化。目前,關(guān)于80-Lys對魚類消化能力影響的研究未見報道,但在其他形式的Lys上有相關(guān)報道。本實驗室前期在L-Lys·H2SO4(Lys含量=51%)對生長后期草魚腸道消化酶活力上的研究結(jié)果[1]與本試驗結(jié)果相似。研究發(fā)現(xiàn),飼料中添加適宜水平的L-Lys·HCl可顯著提高鳡魚(Elopichthysbambusa)幼魚腸道蛋白酶活力[34]。但是,本試驗中飼料中80-Lys添加水平對生長中期草魚胰蛋白酶活力沒有產(chǎn)生顯著影響,與L-Lys·H2SO4(Lys含量=51%)在生長后期草魚上的研究結(jié)果[1]存在差異。其可能原因為,本試驗飼料基于商業(yè)飼料,其基礎(chǔ)飼料中Lys含量(0.8%)可能已滿足生長中期草魚糜蛋白酶合成、分泌和酶原激活的需要。Lys影響魚類消化酶活力可能與消化酶的分泌和釋放有關(guān)。在金黃色石斑魚上的研究發(fā)現(xiàn)Lys可作為魚類胰腺釋放胰蛋白酶原的刺激物[35]。這些結(jié)果說明,80-Lys可能比98-Lys能更有效地提高魚類消化脂肪和淀粉的能力,進而比98-Lys能更有效地提高魚類的FI,促進生長。
魚類腸道也是其營養(yǎng)物質(zhì)吸收的主要場所,其對營養(yǎng)物質(zhì)的吸收與腸道刷狀緣酶活力密切相關(guān)[24]。AKP是一種膜結(jié)合蛋白,可以分解正磷酸單酯為機體的磷代謝和核酸代謝提供磷酸基團,在生物體內(nèi)分布廣泛。分布于動物腸道上皮刷狀緣細(xì)胞表面的腸型堿性磷酸酶(IAKP)與維生素D、鈣、氨基酸、膽固醇、脂類和葡萄糖等多種營養(yǎng)物質(zhì)吸收有關(guān)[36-37]。CK為催化肌酸和ATP偶聯(lián)的促ATP生成酶,可為動物腸道內(nèi)為營養(yǎng)物質(zhì)的吸收提供能量[38]。Na+,K+-ATPase直接影響動物腸道營養(yǎng)物質(zhì)主動轉(zhuǎn)運過程的能量供給,參與大多數(shù)氨基酸和葡萄糖的吸收[39]。γ-GT是谷氨酸循環(huán)的關(guān)鍵酶,能促進氨基酸向細(xì)胞內(nèi)轉(zhuǎn)運,為蛋白質(zhì)生物合成提供原料[40]。因此,常用腸道AKP、CK、Na+,K+-ATPase和γ-GT活力反映動物對營養(yǎng)物質(zhì)的吸收能力。本試驗結(jié)果表明,飼料中添加適宜水平的80-Lys可顯著提高生長中期草魚前、中、后腸AKP、CK、Na+,K+-ATPase和γ-GT活力,與本實驗室前期以L-Lys·H2SO4(Lys含量=51%)作為Lys添加形式在生長后期草魚上的研究結(jié)果[1]類似。然而,在飼料中Lys含量均為1.2%的條件下,與98-Lys相比,80-Lys僅顯著提高了生長中期草魚前、中、后腸AKP和CK活力。這些結(jié)果說明,80-Lys可能通過提高魚類腸道刷狀緣酶AKP和CK活力增強其腸道對營養(yǎng)物質(zhì)的吸收,且與98-Lys相比,80-Lys更有效。
GOT和GPT是魚體內(nèi)氨基酸代謝的重要酶類,魚類肝臟GOT和GPT活力是反映魚類肝臟氨基酸代謝的重要指標(biāo)[41]。本試驗結(jié)果表明,隨著飼料中80-Lys添加水平的增加,生長中期草魚肝胰臟GOT和GPT活力也隨之提高,當(dāng)飼料Lys含量分別為1.4%和1.2%時,生長中期草魚肝胰臟GOT和GPT活力分別達(dá)到最高,說明飼料中適宜添加水平的80-Lys增強了生長中期草魚肝臟氨基酸的代謝作用。此外,在飼料中Lys含量均為1.2%的條件下,與98-Lys比較,80-Lys提高了生長中期草魚肝胰臟氨基酸的代謝作用。關(guān)于Lys對水生動物肝臟GOT和GPT活力影響的研究有少量報道。研究顯示,飼料中添加適宜水平的L-Lys·H2SO4(Lys含量=51%)可顯著提高生長后期草魚肝胰臟GOT活力[1],飼料中添加適宜水平的L-Lys可顯著提高三疣梭子蟹(Portunustrituberculatus)肝胰腺GOT和GPT活力[42]。在幼建鯉上的研究發(fā)現(xiàn),肝胰臟GOT活力與魚體蛋白質(zhì)沉積率呈顯著正相關(guān)[43]。徐靜[44]研究表明,適宜水平的蛋白質(zhì)可能通過增強生長中期草魚肝胰臟氨基酸的代謝,提高其對飼料蛋白質(zhì)的利用率。因此,80-Lys可能比98-Lys能更有效地提高氨基酸的代謝,增強飼料蛋白質(zhì)的利用率,進而促進魚體生長,但其具體作用機制需要進一步研究。
肝胰臟和腸道是魚類最重要的消化吸收及營養(yǎng)物質(zhì)代謝器官,魚類消化吸收能力及氨基酸代謝與其消化器官的生長發(fā)育密切相關(guān)。本試驗結(jié)果表明,飼料中添加適宜水平的80-Lys能顯著增加生長中期草魚肝胰重、肝體指數(shù)、腸重、腸體脂數(shù)和腸長指數(shù)。此外,在飼料中Lys含量均為1.2%的條件下,與98-Lys組相比,80-Lys組生長中期草魚肝胰重、肝體指數(shù)、腸重和腸體指數(shù)顯著提高。在草魚幼魚上的研究發(fā)現(xiàn),飼料添加適宜水平的晶體L-Lys后草魚幼魚的肝體指數(shù)顯著提高[27],與本試驗結(jié)果相似。腸道皺襞高度是反映魚類腸道生長發(fā)育及其腸道吸收面積的另一重要指標(biāo),與魚類的吸收能力密切相關(guān)。本試驗結(jié)果表明,飼料中添加適宜水平的80-Lys可顯著提高生長中期草魚前、中、后腸的皺襞高度,且在飼料中Lys含量均為1.2%的條件下80-Lys組生長中期草魚前、后腸的皺襞高度顯著高于98-Lys組。此外,肝臟細(xì)胞結(jié)構(gòu)功能正常是魚類消化和營養(yǎng)物質(zhì)代謝的重要保障[45]。細(xì)胞通透性變化是細(xì)胞損傷的標(biāo)志之一,胞漿酶GOT和GPT釋放量可以反映出胞內(nèi)酶的滲漏性,為肝細(xì)胞受損的特征性酶譜[46]。本試驗結(jié)果表明,飼料中添加適宜水平的80-Lys可顯著降低生長中期草魚血清GOT和GPT活力,且在飼料中Lys含量均為1.2%的條件下,與98-Lys組相比,80-Lys組生長中期草魚血清GOT和GPT活力顯著降低。相似的研究表明,飼料中添加適宜水平的L-Lys·HCl顯著降低鳡魚幼魚血清GOT和GPT活力[34]。這些結(jié)果說明,80-Lys可能比98-Lys能更有效地促進魚類消化器官的生長發(fā)育,增加魚類腸道吸收面積,保障魚類肝臟細(xì)胞的結(jié)構(gòu)功能正常,但其具體作用方式有待研究。
① 與98-Lys相比,80-Lys能更有效地提高生長中期草魚的生長性能。
② 與98-Lys相比,80-Lys能更有效地保護生長中期草魚肝胰臟結(jié)構(gòu)完整性,增加腸道吸收面積,促進消化器官生長發(fā)育,提高消化吸收能力,進而增加FI,促進其生長。
③ 以80-Lys作為Lys的添加形式,以SGR和FE為標(biāo)識,生長中期草魚(276~667 g)飼料中賴氨酸的最適含量分別為1.31%(占飼料蛋白質(zhì)的4.68%)和1.27%(占飼料蛋白質(zhì)的4.54%)。
[1] LI X Y,TANG L,HU K,et al.Effect of dietary lysine on growth,intestinal enzymes activities and antioxidant status of sub-adult grass carp (Ctenopharyngodonidella)[J].Fish Physiology and Biochemistry,2014,40(3):659-671.
[2] ZHOU X Q,ZHAO C R,JIANG J,et al.Dietary lysine requirement of juvenile Jian carp (Cyprinuscarpiovar. Jian)[J].Aquaculture Nutrition,2008,14(5):381-386.
[3] DENG D F,DOMINY W,JU Z Y,et al.Dietary lysine requirement of juvenile Pacific threadfin (Polydactylussexfilis)[J].Aquaculture,2010,308(1/2):44-48.
[4] ZHANG C X,AI Q H,MAI K S,et al.Dietary lysine requirement of large yellow croaker,PseudosciaenacroceaR[J].Aquaculture,2008,283(1/2/3/4):123-127.
[5] MICHELATO M,DE OLIVEIRA VIDAL L,XAVIER T O,et al.Dietary lysine requirement to enhance muscle development and fillet yield of finishing Nile tilapia[J].Aquaculture,2016,457:124-130.
[6] ZHOU F,SHAO Q J,XIAO J X,et al.Effects of dietary arginine and lysine levels on growth performance,nutrient utilization and tissue biochemical profile of black sea bream,Acanthopagrusschlegelii,fingerlings[J].Aquaculture,2011,319(1/2):72-80.
[7] ZHOU X Q,ZHAO C R,LIN Y.Compare the effect of diet supplementation with uncoated or coated lysine on juvenile Jian carp (Cyprinuscarpiovar. Jian)[J].Aquaculture Nutrition,2007,13(6):457-461.
[8] 朱進龍,臧建軍,曾祥芳,等.80賴氨酸與70賴氨酸和98賴氨酸對生長肥育豬飼喂效果的比較研究[J].中國畜牧雜志,2014,50(21):27-31.
[9] NIU J,CHEN X,LIN H Z,et al.Comparison ofL-lysine·HCl andL-lysine sulphate in the feed ofPenaeusmonodonand re-evaluation of dietary lysine requirement forP.monodon[J].Aquaculture Research,2017,48(1):134-148.
[10] 趙金鑫,李小勤,彭松,等.斑點叉尾鲖對不同形式賴氨酸利用的比較研究[J].水生生物學(xué)報,2016,40(1):19-26.
[11] RODEHUTSCORD M,BORCHERT F,GREGUS Z,et al.Availability and utilisation of free lysine in rainbow trout (Oncorhynchusmykiss):2.Comparison ofL-lysine·HCl and L-lysine sulphate[J].Aquaculture,2000,187(1/2):177-183.
[12] SMIRICKY-TJARDES M R,MAVROMICHALIS I,ALBIN D M,et al.Bioefficacy ofL-lysine sulfate compared with feed-gradeL-lysine·HCl in young pigs[J].Journal of Animal Science,2004,82(9):2610-2614.
[13] AHMAD G,MUSHTAQ T,MIRZA M A,et al.Comparative bioefficacy of lysine fromL-lysine hydrochloride orL-lysine sulfate in basal diets containing graded levels of canola meal for female broiler chickens[J].Poultry Science,2007,86(3):525-530.
[14] ANDERSON L C,LEWIS A J,PEO E R,Jr.,et al.Effect of various dietary arginine:lysine ratios on performance,carcass composition and plasma amino acid concentrations of growing-finishing swine[J].Journal of Animal Science,1984,58(2):362-368.
[15] ALAM M S,TESHIMA S I,ISHIKAWA M,et al.Effects of dietary arginine and lysine levels on growth performance and biochemical parameters of juvenile Japanese flounderParalichthysolivaceus[J].Fisheries Science,2002,68(3):509-516.
[16] 農(nóng)業(yè)部漁業(yè)漁政管理局.中國漁業(yè)統(tǒng)計年鑒2016[M].北京:中國農(nóng)業(yè)出版社,2016.
[17] NRC.Nutrient requirements of fish and shrimp[S].Washington,D.C.:National Academies Press,2011.
[18] FENG L,LUO J B,JIANG W D,et al.Changes in barrier health status of the gill for grass carp (Ctenopharyngodonidella) during valine deficiency:regulation of tight junction protein transcript,antioxidant status and apoptosis-related gene expression[J].Fish & Shellfish Immunology,2015,45(2):239-249.
[19] XU H J,JIANG W D,FENG L,et al.Dietary vitamin C deficiency depressed the gill physical barriers and immune barriers referring to Nrf2,apoptosis,MLCK,NF-κB and TOR signaling in grass carp (Ctenopharyngodonidella) under infection ofFlavobacteriumcolumnare[J].Fish & Shellfish Immunology,2016,58:177-192.
[20] XU H J,JIANG W D,FENG L,et al.Dietary vitamin C deficiency depresses the growth,head kidney and spleen immunity and structural integrity by regulating NF-κB,TOR,Nrf2,apoptosis and MLCK signaling in young grass carp (Ctenopharyngodonidella)[J].Fish & Shellfish Immunology,2016,52:111-138.
[21] GERAYLOU Z,SOUFFREAU C,RURANGWA E,et al.Effects of dietary arabinoxylan-oligosaccharides (AXOS) and endogenous probiotics on the growth performance,non-specific immunity and gut microbiota of juvenile Siberian sturgeon (Acipenserbaerii)[J].Fish & Shellfish Immunology,2013,35(3):766-775.
[22] HUANG S S Y,STRATHE A B,WANG W F,et al.Selenocompounds in juvenile white sturgeon:evaluating blood,tissue,and urine selenium concentrations after a single oral dose[J].Aquatic Toxicology,2012,109:158-165.
[23] LIN Y,ZHOU, X Q.Dietary glutamine supplementation improves structure and function of intestine of juvenile Jian carp (Cyprinuscarpiovar. Jian)[J].Aquaculture,2006,256(1/2/3/4):389-394.
[24] LI S Q,FENG L,JIANG W D,et al.Deficiency of dietary niacin decreases digestion and absorption capacities via declining the digestive and brush border enzyme activities and downregulating those enzyme gene transcription related to TOR pathway of the hepatopancreas and intestine in young grass carp (Ctenopharyngodonidella)[J].Aquaculture Nutrition,2016,22(6):1267-1282.
[25] 唐凌,孫崇巖,鄺聲耀,等.晶體色氨酸和包膜色氨酸對幼建鯉生長性能、蛋白質(zhì)代謝及消化吸收能力影響的比較[J].動物營養(yǎng)學(xué)報,2014,26(2):411-419.
[26] NGUYEN L,DAVIS D A.Comparison of crystalline lysine and intact lysine used as a supplement in practical diets of channel catfish (Ictaluruspunctatus) and Nile tilapia (Oreochromisniloticus)[J].Aquaculture,2016,464:331-339.
[27] WANG S,LIU Y J,TIAN L X,et al.Quantitative dietary lysine requirement of juvenile grass carpCtenopharyngodonidella[J].Aquaculture,2005,249(1/2/3/4):419-429.
[28] GAN L,LIU Y J,TIAN L X,et al.Effects of dissolved oxygen and dietary lysine levels on growth performance,feed conversion ratio and body composition of grass carp,Ctenopharyngodonidella[J].Aquaculture Nutrition,2013,19(6):860-869.
[29] LUO Z,LIU Y J,MAI K S,et al.QuantitativeL-lysine requirement of juvenile grouperEpinepheluscoioides[J].Aquaculture Nutrition,2006,12(3):165-172.
[30] PERES H,OLIVA-TELES A.Lysine requirement and efficiency of lysine utilization in turbot (Scophthalmusmaximus) juveniles[J].Aquaculture,2008,275(1/2/3/4):283-290.
[31] 劉永堅,田麗霞,劉棟輝,等.實用飼料補充結(jié)晶或包膜賴氨酸對草魚生長、血清游離氨基酸和肌肉蛋白質(zhì)合成率的影響[J].水產(chǎn)學(xué)報,2002,26(3):252-258.
[32] TOME D.Protein,amino acids and the control of food intake[J].British Journal of Nutrition,2004,92(S1):S27-S30.
[33] RAY A K,GHOSH K,RING? E.Enzyme-producing bacteria isolated from fish gut:a review[J].Aquaculture Nutrition,2012,18(5):465-492.
[34] 楊威,樊啟學(xué),宗克金,等.鳡幼魚對晶體氨基酸的利用效果及賴氨酸需求量的研究[J].動物營養(yǎng)學(xué)報,2012,24(7):1255-1263.
[35] NAZ M,TüRKMEN M.Changes in the digestive enzymes and hormones of gilthead seabream larvae (Sparusaurata,L.1758) fed onArtemianauplii enriched with free lysine[J].Aquaculture International,2009,17(6):523-535.
[37] 張繼平,林建成,謝進金,等.草魚堿性磷酸酶的分離純化與部分性質(zhì)研究[J].廈門大學(xué)學(xué)報:自然科學(xué)版,2005,44(5):684-687.
[38] YUAN J,FENG L,JIANG W D,et al.Effects of dietary vitamin K levels on growth performance,enzyme activities and antioxidant status in the hepatopancreas and intestine of juvenile Jian carp (Cyprinuscarpiovar. Jian)[J].Aquaculture Nutrition,2016,22(2):352-366.
[39] ALMANSA E,SANCHEZ J,COZZI S,et al.Segmental heterogeneity in the biochemical properties of the Na+-K+-ATPase along the intestine of the gilthead seabream (SparusaurataL.)[J].Journal of Comparative Physiology B,2001,171(7):557-567.
[40] KOVACS-NOLAN J,RUPA P,MATSUI T,et al.InVitroandexvivouptake of glutathione (GSH) across the intestinal epithelium and fate of oral GSH afterinvivosupplementation[J].Journal of Agricultural and Food Chemistry,2014,62(39):9499-9506.
[41] ABDEL-TAWWAB M,AHMAD M H,KHATTAB Y A E,et al.Effect of dietary protein level,initial body weight,and their interaction on the growth,feed utilization,and physiological alterations of Nile tilapia,Oreochromisniloticus(L.)[J].Aquaculture,2010,298(3/4):267-274.
[42] JIN M,WANG M Q,HUO Y W,et al.Dietary lysine requirement of juvenile swimming crab,Portunustrituberculatus[J].Aquaculture,2015,448:1-7.
[43] 何偉.吡哆醇對幼建鯉消化吸收能力和免疫能力的影響[D].碩士學(xué)位論文.雅安:四川農(nóng)業(yè)大學(xué),2008.
[44] 徐靜.蛋白對生長中期草魚生產(chǎn)性能、腸道、機體和鰓健康及肌肉品質(zhì)的作用及其作用機制[D].碩士學(xué)位論文.雅安:四川農(nóng)業(yè)大學(xué),2016.
[45] WU P,LIU Y,JIANG W D,et al.A Comparative study on antioxidant system in fish hepatopancreas and intestine affected by choline deficiency:different change patterns of varied antioxidant enzyme genes and Nrf2 signaling factors[J].PLoS One,2017,12(1):e169888.
[46] 姚仕彬,葉元土,蔡春芳,等.酵母培養(yǎng)物水溶物對離體草魚腸道黏膜細(xì)胞生長及細(xì)胞膜完整性的影響[J].動物營養(yǎng)學(xué)報,2014,26(11):3478-3484.
AComparativeStudy:Effectsof80%L-lysine·H2SO4and98%L-lysine·HClonGrowthPerformance,DigestionandAbsorptionCapacitiesandGrowthDevelopmentofDigestiveOrgansofYoungGrassCarp(Ctenopharyngodonidella)
HU Kai1,2SU Yuening1FENG Lin1,3,4LIU Yang1,3,4JIANG Weidan1,3,4WU Pei1,3,4JIANG Jun1,3,4ZHOU Xiaoqiu1,3,4*
(1.AnimalNutritionInstitute,SichuanAgriculturalUniversity,Chengdu611130,China; 2.DepartmentofAnimalandVeterinaryScience,ChengduAgriculturalCollege,Chengdu611130,China; 3.FishNutritionandSafetyProductionUniversityKeyLaboratoryofSichuanProvince,SichuanAgriculturalUniversity,Chengdu611130,China; 4.KeyLaboratoryforAnimalDisease-ResistanceNutritionofChinaMinistryofEducation,SichuanAgriculturalUniversity,Chengdu611130,China)
This study aimed to compare the effects of 80%L-lysine·H2SO4(80-lysine) and 98%L-lysine·HCl (98-lysine) on growth performance, digestion and absorption capacities and growth development of digestive organs of young grass carp (Ctenopharyngodonidella), to explore the biological values of 98-lysine and 98-lysine, and to determine the optimum dietary lysine content using 80-lysine as the supplemental form of lysine. A total of 540 grass carp with an initial body weight about 275.80 g were randomly divided into 6 groups with 3 replicates each and 30 fish per replicate. Fish in 6 groups were fed adding 80-lysine diets containing 0.8% (basal diet), 1.0%, 1.2%, 1.4% and 1.6% lysine and adding 98-lysine diet containing 1.2% lysine for 60 d, respectively. The results showed as follows: compared with the basal diet, dietary lysine content reached 1.2% by adding suitable level of 80-lysine could significantly increase the weight gain rate (WGR), specific growth rate (SGR), feed intake (FI), the activities of lipase, amylase in total intestine, the activities of glutamic oxalacetic transaminase (GOT) and glutamate pyruvate transaminase (GPT) in hepatopancreas, the activities of alkaline phosphatase (AKP) and creatine kinase (CK)in proximal intestine (PI), mid intestine (MI) and distal intestine (DI), hepatosomatic index (HSI), intestosomatic index (ISI) and the fold height of PI and DI (P<0.05), and significantly decrease the activities of GOT and GPT in serum (P<0.05); the effects of 80-lysine on these parameters were better than 98-lysine (P<0.05). Moreover, compared with the basal diet, dietary lysine content reached 1.2% by adding suitable level of 80-lysine could significantly increase the feed efficiency (FE), total intestine trypsin activity, the activities of Na+, K+-ATPase and γ-glutamyltransferase (γ-GT) in PI, MI and DI, intestinal length, relative gut length (RGL) and fold height in MI (P<0.05); however, compared with 98-lysine, no significant effects of 80-lysine were observed on these parameters (P>0.05). In conclusion, 80-lysine is more effective than 98-lysine for improving growth, and digestion and absorption capacities of young grass carp. Using 80-lysine as the supplemental form of lysine, the optimum dietary lysine content for young grass carp (276 to 667 g) base on SGR and FE is 1.31% (4.68% of dietary protein) and 1.27% (4.54% of dietary protein), respectively.[ChineseJournalofAnimalNutrition,2017,29(12):4372-4385]
80%L-lysine·H2SO4; 98%L-lysine·HCl; grass carp (Ctenopharyngodonidella); growth performance; digestion and absorption capacities
10.3969/j.issn.1006-267x.2017.12.018
S963
A
1006-267X(2017)12-4372-14
2017-05-05
四川省重大科技成果轉(zhuǎn)化示范(2015CC0011);四川省青年創(chuàng)新團隊(2017TD0002)
胡 凱(1981—),男,四川雅安人,博士,從事動物營養(yǎng)與飼料科學(xué)研究。E-mail: linaturehu@126.com
*通信作者:周小秋,教授,博士生導(dǎo)師,E-mail: zhouxq@sicau.edu.cn
*Corresponding author, professor, E-mail: zhouxq@sicau.edu.cn
(責(zé)任編輯 菅景穎)