陳祥龍 張兵志 馮輔周
摘要: 排列熵能夠有效監(jiān)測(cè)振動(dòng)信號(hào)中的動(dòng)力學(xué)突變,衡量振動(dòng)信號(hào)的復(fù)雜度,在旋轉(zhuǎn)機(jī)械狀態(tài)監(jiān)測(cè)中獲得成功的應(yīng)用。將排列熵應(yīng)用于滾動(dòng)軸承故障特征提取中,并針對(duì)排列熵對(duì)振動(dòng)信號(hào)幅值不敏感,無法反映振動(dòng)信號(hào)中局部能量分布差異的問題,利用濾波信號(hào)的歸一化瞬時(shí)能量改進(jìn)排列熵,提出一種基于改進(jìn)排列熵的滾動(dòng)軸承故障特征提取方法。仿真和試驗(yàn)數(shù)據(jù)分析結(jié)果表明,該方法能夠有效識(shí)別滾動(dòng)軸承共振頻帶,準(zhǔn)確提取滾動(dòng)軸承故障特征。
關(guān)鍵詞: 故障診斷; 滾動(dòng)軸承; 排列熵; 特征提取
中圖分類號(hào):TH165+.3; TH133.33 文獻(xiàn)標(biāo)志碼: A 文章編號(hào): 1004-4523(2018)05-0902-07
DOI:10.16385/j.cnki.issn.1004-4523.2018.05.021
引 言
滾動(dòng)軸承是機(jī)械設(shè)備最容易發(fā)生失效的部位之一,及時(shí)有效地提取滾動(dòng)軸承故障特征,確保機(jī)械設(shè)備連續(xù)可靠運(yùn)行,避免因突發(fā)故障造成不必要的損失,是機(jī)械設(shè)備狀態(tài)監(jiān)測(cè)和故障診斷的研究重點(diǎn)[1]。當(dāng)滾動(dòng)軸承發(fā)生局部故障時(shí),軸承會(huì)以一定的故障通過頻率產(chǎn)生具有共振頻率調(diào)制特征的循環(huán)瞬態(tài)故障沖擊,在振動(dòng)信號(hào)中表現(xiàn)出幅值調(diào)制特點(diǎn)。包絡(luò)分析能夠用于解調(diào)故障特征,但是如何準(zhǔn)確識(shí)別滾動(dòng)軸承共振頻帶是包絡(luò)分析能夠有效提取滾動(dòng)軸承故障特征的關(guān)鍵[2]。
Antoni等[3-5]最早利用譜峭度(Spectral kurtosis)檢測(cè)滾動(dòng)軸承振動(dòng)信號(hào)中的瞬態(tài)故障沖擊成分,提出了峭度譜(Kurtogram),自適應(yīng)確定共振頻帶并包絡(luò)解調(diào)故障特征;張龍等[6]考慮瞬態(tài)沖擊周期性發(fā)生的特點(diǎn),提出了基于包絡(luò)譜峰值因子和復(fù)Morlet小波濾波的最優(yōu)共振頻帶確定方法;Tse等[7-8]定義了包絡(luò)功率譜的稀疏度指標(biāo),結(jié)合Morlet小波濾波和遺傳算法,確定滾動(dòng)軸承的最優(yōu)共振頻帶;Li等[9-10]提出多指標(biāo)融合以及頻譜細(xì)分合并確定滾動(dòng)軸承最優(yōu)共振頻帶,提高了最優(yōu)共振頻帶識(shí)別的魯棒性。
信息熵能夠定量評(píng)價(jià)信息系統(tǒng)中的不確定性和復(fù)雜性,在機(jī)械設(shè)備狀態(tài)監(jiān)測(cè)和故障診斷領(lǐng)域獲得廣泛應(yīng)用。秦娜等[11]提出基于小波信息熵等信息測(cè)度和樣本熵等復(fù)雜性測(cè)度的高速列車轉(zhuǎn)向架故障特征提取及退化狀態(tài)評(píng)估方法;朱可恒等[12]提出了結(jié)合IMF包絡(luò)樣本熵與SVM的滾動(dòng)軸承故障診斷方法;馮輔周等[13]提出基于排列熵的振動(dòng)信號(hào)突變檢測(cè)方法;郝旺身等[14]提出全矢數(shù)據(jù)融合和排列熵的齒輪故障特征提取方法;Antoni等[15]通過構(gòu)造包絡(luò)信息負(fù)熵和包絡(luò)譜信息負(fù)熵,分別提出了包絡(luò)負(fù)熵信息譜以及包絡(luò)譜負(fù)熵信息譜,用于準(zhǔn)確識(shí)別滾動(dòng)軸承振動(dòng)信號(hào)中的瞬態(tài)沖擊特征。
綜上所述,尋找一種或多種能夠穩(wěn)健識(shí)別振動(dòng)信號(hào)中瞬態(tài)沖擊成分的檢測(cè)指標(biāo),確定滾動(dòng)軸承共振頻帶,關(guān)系到滾動(dòng)軸承故障特征提取的準(zhǔn)確性和魯棒性。利用排列熵檢測(cè)振動(dòng)信號(hào)動(dòng)力學(xué)突變的特點(diǎn),本文將排列熵應(yīng)用于滾動(dòng)軸承故障特征提取中,并針對(duì)排列熵對(duì)振動(dòng)信號(hào)幅值不敏感,導(dǎo)致其無法準(zhǔn)確反映滾動(dòng)軸承振動(dòng)信號(hào)在不同濾波頻帶中的能量分布問題,提出了一種基于濾波信號(hào)歸一化瞬時(shí)能量的改進(jìn)排列熵,用于穩(wěn)健識(shí)別滾動(dòng)軸承共振頻帶。
1 排列熵的基本原理
排列熵(Permutation Entropy,PE)是由Christoph Bandt等提出的一種基于時(shí)間序列各元素統(tǒng)計(jì)屬性的平均熵參數(shù),其利用一種較為簡便的方法,衡量一維時(shí)間序列復(fù)雜度[16]。排列熵對(duì)信號(hào)的變化具有較高的敏感性,可以放大系統(tǒng)的弱變信號(hào),并有效檢測(cè)復(fù)雜系統(tǒng)的動(dòng)力學(xué)突變。
選擇窄帶濾波帶寬fb=300 Hz,沿頻率軸以50 Hz為步長設(shè)置復(fù)Morlet小波濾波中心頻率,分別利用排列熵和改進(jìn)排列熵檢測(cè)濾波信號(hào)中的瞬態(tài)沖擊特征,搜索包含瞬態(tài)沖擊特征的軸承固有共振中心頻率?;谂帕徐氐玫降墓舱裰行念l率結(jié)果如圖4(a)所示,圖中疑似存在兩處較明顯的排列熵值極小值,然而基于排列熵得到的信息譜曲線波動(dòng)較大,難以選擇某一極小值作為軸承固有共振中心頻率;基于改進(jìn)排列熵得到的共振中心頻率結(jié)果如圖4(b)所示,圖中在4050 Hz處存在一處極大值,且與軸承固有共振中心頻率基本一致。因此可以選擇中心頻率4050 Hz,帶寬300 Hz作為軸承的固有共振頻帶,并利用復(fù)Morlet小波濾波得到濾波信號(hào)及其頻譜和包絡(luò)譜,如圖5所示。
從圖5中可以看出,基于本文提出改進(jìn)排列熵識(shí)別的滾動(dòng)軸承固有共振頻帶,雖然在時(shí)域及頻域上其窄帶濾波信號(hào)瞬態(tài)沖擊特征并不明顯,但是在包絡(luò)譜中能夠清晰地識(shí)別出軸承內(nèi)圈故障特征頻率fBPFI=100 Hz及其三次諧頻,因此改進(jìn)排列熵能夠有效提取出滾動(dòng)軸承的故障特征,驗(yàn)證了本文提出方法的有效性。
3.2 滾動(dòng)軸承試驗(yàn)臺(tái)數(shù)據(jù)分析
采集某型變速箱滾動(dòng)軸承振動(dòng)數(shù)據(jù),進(jìn)一步驗(yàn)證本文提出方法的有效性,變速箱試驗(yàn)裝置組成示意圖如圖6所示。
該變速箱輸出軸支撐軸承為深溝球軸承,振動(dòng)傳感器安裝在對(duì)應(yīng)輸出軸軸承徑向光滑的機(jī)體位置。采用電火花加工法在新軸承的外圈設(shè)置尺寸微小的點(diǎn)狀缺陷,模擬軸承外圈點(diǎn)蝕剝落故障,采集滾動(dòng)軸承振動(dòng)信號(hào)和輸出軸轉(zhuǎn)速信號(hào)。設(shè)置采樣頻率12 kHz,試驗(yàn)時(shí)的輸出軸轉(zhuǎn)頻為fr=29.5 Hz,滾動(dòng)軸承外圈故障特征頻率fBPFO=106 Hz。一組滾動(dòng)軸承外圈故障振動(dòng)信號(hào)如圖7所示。其中圖7(a)是該信號(hào)的時(shí)域波形,圖7(b)和(c)分別是該信號(hào)的頻譜和平方包絡(luò)譜。從圖7(b)和(c)中很難直接提取出任何故障特征信息。
利用本文提出的方法分析該外圈故障振動(dòng)信號(hào),分析結(jié)果如圖8所示。圖8(a)為復(fù)Morlet小波帶通濾波中心頻率對(duì)應(yīng)的改進(jìn)排列熵值,圖中具有最大改進(jìn)排列熵值的共振中心頻率位于fc=3450 Hz處,對(duì)應(yīng)的濾波信號(hào)如圖8(b)所示;濾波信號(hào)的包絡(luò)分析結(jié)果如圖8(c)所示,從圖中能夠清晰地提取出滾動(dòng)軸承外圈故障振動(dòng)信號(hào)的轉(zhuǎn)頻fr、故障特征頻率fBPFO及其倍頻。因此基于改進(jìn)排列熵能夠有效提取滾動(dòng)軸承的故障特征頻率,驗(yàn)證了該方法的有效性。
4 結(jié) 論
(1)排列熵雖然能夠有效監(jiān)測(cè)振動(dòng)信號(hào)中的動(dòng)力學(xué)突變,衡量振動(dòng)信號(hào)的復(fù)雜度,定量反映振動(dòng)信號(hào)的總體平均分布特征,但是對(duì)信號(hào)局部能量分布差異不夠敏感,無法準(zhǔn)確反映振動(dòng)信號(hào)中的瞬態(tài)沖擊特征;
(2)基于濾波信號(hào)歸一化瞬時(shí)能量提出的改進(jìn)排列熵,能夠克服排列熵對(duì)振動(dòng)信號(hào)幅值不敏感,無法準(zhǔn)確反映信號(hào)中局部能量分布差異的問題,準(zhǔn)確識(shí)別振動(dòng)信號(hào)中的瞬態(tài)沖擊特征;
(3)將改進(jìn)排列熵與復(fù)Morlet小波濾波相結(jié)合,能夠準(zhǔn)確識(shí)別包含滾動(dòng)軸承瞬態(tài)沖擊特征的最優(yōu)共振頻帶,準(zhǔn)確提取出滾動(dòng)軸承故障特征。
參考文獻(xiàn):
[1] Smith W A, Randall R B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study[J]. Mechanical Systems and Signal Processing,2015, 64-65: 100—131.
[2] Chen X, Feng F, Zhang B. Weak fault feature extraction of rolling bearings based on an improved kurtogram[J]. Sensors,2016, 16(9): 1482.
[3] Antoni J. The spectral kurtosis: a useful tool for characterising non-stationary signals[J]. Mechanical Systems and Signal Processing,2006, 20(2): 282—307.
[4] Antoni J, Randall R B. The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines[J]. Mechanical Systems and Signal Processing,2006, 20(2): 308—331.
[5] Antoni J. Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing,2007, 21(1): 108—124.
[6] 張 龍, 熊國良, 黃文藝. 復(fù)小波共振解調(diào)頻帶優(yōu)化方法和新指標(biāo)[J]. 機(jī)械工程學(xué)報(bào),2015,51(3): 129-138.
Zhang Long, Xiong Guoliang, Huang Wenyi. New procedure and index for the parameter optimization of complex wavelet based resonance demodulation[J]. Journal of Mechanical Engineering, 2015, 51(3): 129—138.
[7] Tse P W, Wang D. The automatic selection of an optimal wavelet filter and its enhancement by the new sparsogram for bearing fault detection[J]. Mechanical Systems and Signal Processing,2013, 40(2): 520—544.
[8] Tse P W, Wang D. The design of a new sparsogram for fast bearing fault diagnosis: Part 1 of the two related manuscripts that have a joint title as “Two automatic vibration-based fault diagnostic methods using the novel sparsity measurement-Parts 1 and 2”[J]. Mechanical Systems and Signal Processing,2013, 40(2): 499—519.
[9] Li C, Liang M, Wang T. Criterion fusion for spectral segmentation and its application to optimal demodulation of bearing vibration signals[J]. Mechanical Systems and Signal Processing,2015, 64-65: 132—148.
[10]李 川,朱榮榮,楊 帥. 基于多指標(biāo)模糊融合的滾動(dòng)軸承診斷的最優(yōu)頻帶解調(diào)方法[J]. 機(jī)械工程學(xué)報(bào),2015,51(7): 107—114.
Li Chuan,Zhu Rongrong,Yang Shuai.Optimal frequency band demodulation for fault diagnosis of rolling element bearings based on fuzzy fusion of multiple criteria[J].Journal of Mechanical Engineering, 2015,51 (7): 107—114.
[11]秦 娜. 高速列車轉(zhuǎn)向架故障的信息熵測(cè)度特征分析方法研究[D]. 成都:西南交通大學(xué), 2014.
Qin Na. Research on high-speed train bogie fault data feature analysis method based on information entropy measurement[D].Chengdu: Southwest Jiaotong University, 2014.
[12]朱可恒. 滾動(dòng)軸承振動(dòng)信號(hào)特征提取及診斷方法研究[D]. 大連:大連理工大學(xué), 2013.
Zhu Keheng. Research on vibration signal based on rolling element bearing feature extraction and fault diagnosis method[D]. Dalian: Dalian University of Technology, 2013.
[13]馮輔周,饒國強(qiáng),司愛威,等. 排列熵算法研究及其在振動(dòng)信號(hào)突變檢測(cè)中的應(yīng)用[J]. 振動(dòng)工程學(xué)報(bào),2012,25(2): 221—224.
Feng Fuzhou, Rao Guoqiang, Si Aiwei, et al. Research and application of the arithmetic of PE in testing the sudden change of vibration signal[J]. Journal of Vibration Engineering,2012,25(2):221—224.
[14]郝旺身,王洪明,董辛?xí)F,等. 基于全矢排列熵的齒輪故障特征提取方法研究[J]. 振動(dòng)與沖擊,2016,(11): 224—228.
Hao Wangshen, Wang Hongming, Dong Xinmin, et al. Gear fault feature extraction based on full vector permutation entropy[J]. Journal of Vibration and Shock,2016,(11): 224—228.
[15]Antoni J. The infogram: Entropic evidence of the signature of repetitive transients[J]. Mechanical Systems and Signal Processing,2016, 74: 73—94.
[16]馮輔周,司愛威,江鵬程. 小波相關(guān)排列熵和HMM在故障預(yù)測(cè)中的應(yīng)用[J]. 振動(dòng)工程學(xué)報(bào),2013,26(2): 269—276.
Feng Fuzhou, Si Aiwei, Jiang Pengcheng. Application of wavelet correlation permutation entropy and hidden Markov model to fault prognostic[J]. Journal of Vibration Engineering,2013,26(2): 269—276.
[17]Borghesani P, Pennacchi P, Chatterton S. The relationship between kurtosis-and envelope-based indexes for the diagnostic of rolling element bearings[J]. Mechanical Systems and Signal Processing,2014, 43(1-2): 25—43.
[18]王宏超,陳 進(jìn),董廣明. 基于最小熵解卷積與稀疏分解的滾動(dòng)軸承微弱故障特征提取[J]. 機(jī)械工程學(xué)報(bào),2013, 49(1): 88—94.
Wang Hongchao, Chen Jin, Dong Guangming. Fault diagnosis method for rolling bearing′s weak fault based on minimum entropy deconvolution and sparse decomposition[J]. Journal of Mechanical Engineering,2013, 49(1): 88—94.
Abstract: The permutation entropy can be used to efficiently detect the dynamic mutation and measure the complexity of 1-Dimensional time series. It has been successfully applied to condition detection of revolving machinery. This study proposes a method that applies permutation entropy into fault feature extraction of rolling bearings. However, permutation entropy is not sensitive to the amplitude of vibration signals and cannot reflect the difference of local energy distribution of vibration signals. Therefore, the permutation entropy is improved by utilizing the normalized instantaneous energy and a novel fault feature extraction method is proposed by the improved permutation entropy. The analysis results demonstrate that the proposed fault feature extraction method can effectively identity the resonant frequency band and extract fault features.
Key words: fault diagnosis; rolling bearing; permutation entropy; fault feature extraction
作者簡介:陳祥龍(1989—),男,博士,講師。電話:18801066586;E-mail: chenchendeplace@163.com
通訊作者:馮輔周(1971—),男,博士,教授,博士生導(dǎo)師。電話:(010)66718514;E-mail: fengfuzhou@tsinghua.org.cn