劉品一,黃麗麗,徐運(yùn)
腦小血管?。╟erebral small vessel disease,CSVD)是由大腦的小動脈(直徑40~200 μm)、穿支動脈、毛細(xì)血管及小靜脈等小血管的各種結(jié)構(gòu)或功能性的病變所導(dǎo)致的臨床、認(rèn)知、影像學(xué)及病理表現(xiàn)的綜合征[1-3]。CSVD不但占卒中的20%~30%,更顯著地提高了未來卒中的發(fā)病率[4]。近年來,CSVD因其發(fā)病的隱匿性及臨床表現(xiàn)的多樣性越來越引起學(xué)者的關(guān)注,2008年世界卒中日主題就是“小卒中,大問題”[5]。有研究發(fā)現(xiàn),在一個平均年齡為(62±9)歲的群體研究中,1/10的參與者經(jīng)磁共振成像(magnetic resonance imaging,MRI)后發(fā)現(xiàn)存在亞臨床腦梗死[5-6]。許多研究也發(fā)現(xiàn),隨著年齡的增長,隱匿性卒中(又稱靜息性卒中)的發(fā)病率隨之增加[6],導(dǎo)致許多老年人出現(xiàn)急性卒中、認(rèn)知功能損害、記憶力下降、構(gòu)音障礙、抑郁、步態(tài)不穩(wěn)、泌尿系統(tǒng)障礙、癡呆等癥狀[2,7-8],極大地增加了社會經(jīng)濟(jì)負(fù)擔(dān)。但是CSVD的病因至今不明,臨床上病理學(xué)檢查有所發(fā)現(xiàn)時常常已是疾病的終末期,而CSVD的微血管損傷往往先于腦實質(zhì)的損傷,因此,明確CSVD腦微循環(huán)相關(guān)性的病理生理機(jī)制并加以干預(yù)具有重要意義。
CSVD在臨床上有多種分類方法。由于活體上難以直接觀察CSVD的發(fā)生及變化,因此,臨床上多以神經(jīng)影像學(xué)特征作為CSVD的觀察指標(biāo),可分為腔隙性梗死(lacunar infarction,LI)、腦白質(zhì)高信號(white matter hyperintensities,WMH)、腦微出血(cerebral microbleed,CMB)、血管周圍間隙擴(kuò)大(enlarged perivascular spaces,EPVS)和腦萎縮(cerebral atrophy)[2]。按CSVD的動脈病理學(xué)分類見表1[1]。散發(fā)型和遺傳性CSVD則是按照其遺傳特征進(jìn)行的分類。
腦微循環(huán)即腦的微動脈和微靜脈之間的血液循環(huán),其基本功能是完成血液和組織之間的物質(zhì)交換。
腦部微小動脈有兩種血管來源,一種是蛛網(wǎng)膜下隙的軟腦膜動脈分支的終末動脈支,另一種是直接來源于大血管的供應(yīng)腦深部的穿支動脈支。這兩種動脈系統(tǒng)相向而行,分別穿透腦皮質(zhì)層和深部髓質(zhì),在皮質(zhì)下白質(zhì)的深處匯合,形成分水嶺區(qū)[1]。此處的小動脈均為終末支,無吻合支,且血管密度低,故極易發(fā)生局部的循環(huán)缺血和低灌注[3],急性缺血易發(fā)生腔隙性梗死或CMB,慢性則可導(dǎo)致腦白質(zhì)病變。終末微動脈的血流形成毛細(xì)血管網(wǎng),經(jīng)毛細(xì)血管后微靜脈匯入硬膜下靜脈竇[1]。
腦小動脈有其獨有的循環(huán)特點[3]:①大腦幾乎沒有能量儲備功能,故腦血流量對其影響大。雖然人腦只占了體重的2%,但消耗了心排血量的20%來維持正常腦功能[9]。但是人腦缺乏能量儲備功能,故必須依靠持續(xù)性的血流灌注來提供所需的葡萄糖、氧氣及其他營養(yǎng)物質(zhì)[10]。靜止時腦血流量(cerebral blood flow,CBF)的決定因素有灌注壓、自動調(diào)節(jié)機(jī)制、血管對二氧化碳分壓的反應(yīng)性。腦微循環(huán)中多種細(xì)胞,包括星形膠質(zhì)細(xì)胞、血管平滑肌細(xì)胞、內(nèi)皮細(xì)胞和周細(xì)胞等在維持組織灌注壓和血流動力學(xué)穩(wěn)定方面發(fā)揮重要作用[7],使微循環(huán)的血流量與組織代謝水平相一致。②日?;顒又心X動脈壓的波動范圍大,大腦血管的自動調(diào)節(jié)機(jī)制可在一定的動脈壓范圍內(nèi)保持腦血流的相對恒定。③腦微循環(huán)有其獨特的結(jié)構(gòu)即血腦屏障(blood-brain barrier,BBB),BBB由內(nèi)皮細(xì)胞、緊密連接蛋白及基底膜構(gòu)成。在毛細(xì)血管水平,BBB的完整性與周細(xì)胞、血管周星形膠質(zhì)細(xì)胞等也密切相關(guān)。
表1 腦小血管病的動脈病因?qū)W分類
3.1 小動脈硬化與栓塞 Fisher[11-13]最早提出CVSD的發(fā)病與小動脈硬化與栓塞有關(guān),他發(fā)現(xiàn)CSVD最常見的病理學(xué)改變?yōu)樾用}(直徑為40~200 μm)的彌漫性病變,表現(xiàn)為小動脈硬化、脂質(zhì)透明樣變及纖維素樣壞死。另外,在Fisher進(jìn)行病理學(xué)檢查的10例腔隙性梗死患者中,有6例梗死可歸因于穿支動脈的粥樣斑塊,2例歸因于脂質(zhì)透明樣變,2例歸因于栓塞[13]。盡管如此,有一系列的隊列研究和meta分析表明,只有10%~15%的腔隙性梗死和少數(shù)的WMH是由栓子引起[14-16]。此外,將栓子注入實驗?zāi)P偷念i動脈后發(fā)現(xiàn),只有極少數(shù)(<6%)的栓子進(jìn)入穿支動脈[17-18]。與非腔隙性缺血性卒中相比,腔隙性卒中與常見栓子來源(如心房顫動或同側(cè)近端頸動脈狹窄)的相關(guān)性更弱[14-15]。
高脂血癥、高血壓、吸煙、糖尿病等危險因素被認(rèn)為與小動脈硬化發(fā)病密切相關(guān)。小動脈硬化的病理特征為中膜平滑肌細(xì)胞的丟失,纖維、玻璃樣物質(zhì)沉積,管壁增厚,管腔狹窄,并可繼發(fā)血栓形成加重狹窄甚至閉塞。血管管腔狹窄使腦白質(zhì)處于慢性低灌注狀態(tài),最終導(dǎo)致少突膠質(zhì)細(xì)胞死亡,即有髓神經(jīng)纖維退化[1]。這一缺血機(jī)制已通過動物實驗得以證實[19-20]。這種腦白質(zhì)損傷被認(rèn)為是一種不完全性梗死或選擇性壞死[21]。此外,F(xiàn)isher[11-12]提出急性血管閉塞可導(dǎo)致局部急性缺血和完全性組織壞死,即腔隙性梗死。但是,這一假說尚未得到證實[22-23]。
另外,小動脈硬化時,血管壁中膜的平滑肌細(xì)胞丟失,可導(dǎo)致血管彈性降低[24-25]。因此,腦小血管的舒縮功能受到影響,即自動調(diào)節(jié)機(jī)制受損,進(jìn)而抑制了栓子清除能力,使腦血流量失控,最終引發(fā)栓塞[26-27]。類似的,由于血管彈性降低,小動脈搏動減弱,而細(xì)胞間液引流需要依靠鄰近小動脈搏動所產(chǎn)生的擠壓作用,因此細(xì)胞間液引流出現(xiàn)障礙,細(xì)胞間液對腦細(xì)胞具有毒性作用,可導(dǎo)致白質(zhì)疏松及脫髓鞘病變,在影像學(xué)上表現(xiàn)為WMH及血管周圍間隙擴(kuò)大[28-31]。
3.2 內(nèi)皮細(xì)胞功能障礙與BBB破壞 雖然小動脈硬化、栓塞可引起CSVD相關(guān)的病理生理改變,但這通常發(fā)生在CSVD的后期,無法反映CSVD早期的病理生理變化[2]。一些學(xué)者認(rèn)為內(nèi)皮細(xì)胞功能障礙及BBB破壞是CSVD早期腦損害的潛在機(jī)制[32]。血漿內(nèi)的有害成分可通過受損的內(nèi)皮及BBB溢出管腔,進(jìn)而導(dǎo)致血管壁肌細(xì)胞的損傷以及周圍腦實質(zhì)的彌漫性損害[33]。釓增強(qiáng)MRI顯示腔隙性卒中患者的BBB通透性大于皮質(zhì)卒中患者,WMH處通透性大于腦白質(zhì)正常處[34-35]。盡管磁共振(magnetic resonance,MR)監(jiān)測到的釓信號很低,但這依然能夠表明隨著年齡增長及血管周圍間隙數(shù)量增多,BBB通透性增加[34]。另外,通過對腦組織的組織病理學(xué)檢查可以發(fā)現(xiàn)CSVD的嚴(yán)重程度與血管外的血漿蛋白(如纖維蛋白原、白蛋白、免疫球蛋白G)有關(guān)[36-37],但也有部分研究并未發(fā)現(xiàn)其中的關(guān)系[38-39]。
高血壓是CSVD最常見的危險因素,而內(nèi)皮細(xì)胞功能障礙是其中的一個重要環(huán)節(jié)[40]。自發(fā)性高血壓大鼠(spontaneously hypertensive rats,SHRs)和易卒中自發(fā)性高血壓大鼠(stroke-prone SHRs,SHR-SPs)都表現(xiàn)出內(nèi)皮細(xì)胞功能障礙,如磷酸化內(nèi)皮一氧化氮(nitric oxide,NO)合成酶表達(dá)下調(diào)及BBB破壞[41]。SHRs與SHR-SPs的高血壓水平相似,但腦白質(zhì)損傷程度不同[42]。在高血壓發(fā)病前,SHR-SPs就已經(jīng)出現(xiàn)內(nèi)皮、基質(zhì)蛋白、膠質(zhì)細(xì)胞及髓鞘受損,這些都是CSVD發(fā)病的基礎(chǔ),而高血壓會使損傷進(jìn)一步加重[43-44]。另外,一項關(guān)于CSVD的MRI研究表明,不僅高血壓可以作為輕度卒中患者WMH損傷的預(yù)測指標(biāo),食鹽量亦獨立于高血壓與WMH有關(guān)[40]。眾所周知,高血壓可分為鹽抵抗性高血壓和鹽敏感性高血壓,后者更易出現(xiàn)內(nèi)皮細(xì)胞功能障礙,通常表現(xiàn)為內(nèi)皮依賴性血管舒張受限[45]。此外,食鹽量與炎癥反應(yīng)有關(guān),SHR-SPs攝鹽后腦組織與血清內(nèi)的內(nèi)皮細(xì)胞表達(dá)的炎癥指標(biāo),即內(nèi)皮細(xì)胞選擇素顯著上升,但SHRs并未發(fā)生改變[46]。高血壓、高鹽飲食等危險因素可直接或間接地影響內(nèi)皮功能,繼而破壞BBB,最終導(dǎo)致血管周圍間隙擴(kuò)大,CMB及腦白質(zhì)改變[33]。
炎癥與CSVD之間也存在著關(guān)聯(lián)性[47-48]。炎癥反應(yīng)可通過激活的單核巨噬細(xì)胞分泌的新蝶呤和細(xì)胞因子作用于內(nèi)皮細(xì)胞,進(jìn)而破壞BBB[47,49-50]。而感染則是引起這種炎癥反應(yīng)的因素之一。Nakano等[51]發(fā)現(xiàn)變形鏈球菌的一個特定菌株是SHR-SPs及光化學(xué)誘導(dǎo)大腦中動脈閉塞小鼠發(fā)生腦出血的潛在危險因素。導(dǎo)致腦出血的變形鏈球菌菌株可在其細(xì)胞表面表達(dá)膠原結(jié)合蛋白,進(jìn)而緊密黏附于受損血管表面暴露的膠原纖維,最終抑制血小板的激活,導(dǎo)致腦出血[51]。一項基于人群的研究表明膠原結(jié)合蛋白陽性變形鏈球菌與CMB的關(guān)聯(lián)性很強(qiáng)(OR=14.4)[52]。兩項研究結(jié)果相符。另外,Pussinen等[53]發(fā)現(xiàn)牙齦卟啉單胞菌與缺血性卒中相關(guān)。牙齦卟啉單胞菌黏附并感染內(nèi)皮細(xì)胞,這樣不僅可以使內(nèi)皮黏附分子表達(dá)上調(diào),促進(jìn)單核巨噬細(xì)胞浸潤,還可以產(chǎn)生牙齦素(半胱氨酸蛋白酶),從而激活血小板上的蛋白酶激活受體-1和-4,誘導(dǎo)血小板的聚集[54-55]。總之,口腔內(nèi)的細(xì)菌不僅可以通過調(diào)節(jié)血小板的聚集,還可以通過炎癥反應(yīng)破壞BBB來引起CSVD相關(guān)的病理生理改變。這一機(jī)制被稱為“腦-口腔軸”[56]。這可能是因為口腔與腦位置鄰近,口腔內(nèi)的細(xì)菌可以通過血液循環(huán)到達(dá)腦的相應(yīng)位置并導(dǎo)致疾病的發(fā)生[56]。
心血管危險因素可以通過大動脈與小動脈間的相互作用同時損傷大、小動脈[57-58]。但大動脈病變究竟能否導(dǎo)致CSVD的發(fā)生還有待進(jìn)一步研究[56]。利用微彈簧圈造成小鼠雙側(cè)頸總動脈狹窄,由此建立慢性低灌注及認(rèn)知障礙的動物模型[59]。這一模型可以出現(xiàn)以BBB破壞為特征的腦白質(zhì)損傷[60]。手術(shù)造成雙側(cè)頸總動脈狹窄2 h后,血流動力學(xué)發(fā)生改變,內(nèi)皮細(xì)胞緊密連接開放,而基質(zhì)金屬蛋白酶-2(matrix metalloproteinase-2,MMP-2)抑制劑可以抑制這一過程[61-62]。MMP-2是一種細(xì)胞外基質(zhì)降解酶,可以降解緊密連接蛋白ZO-1、claudin-5及封閉蛋白,從而導(dǎo)致BBB破壞[63]。MMP-2在SHR-SPs體內(nèi)的表達(dá)水平上調(diào),而且在人體內(nèi)與WMH有關(guān)[64-65]。這些數(shù)據(jù)表明,大動脈狹窄所致低灌注狀態(tài)可通過MMP-2在毛細(xì)血管水平損傷內(nèi)皮細(xì)胞[56]。BBB功能障礙可導(dǎo)致蛋白質(zhì)(如蛋白酶及免疫球蛋白)及液體滲漏,最終導(dǎo)致與腦白質(zhì)損傷相關(guān)的病理改變,如脫髓鞘和膠質(zhì)增生[32,66]。盡管如此,并沒有證據(jù)能夠直接證明頸動脈狹窄與CSVD相關(guān)。
上文已介紹BBB由內(nèi)皮細(xì)胞、周細(xì)胞、星形膠質(zhì)細(xì)胞、少突膠質(zhì)細(xì)胞等成分構(gòu)成。它們對維持正常的BBB起著十分重要的作用。但是周細(xì)胞、星形膠質(zhì)細(xì)胞及少突膠質(zhì)細(xì)胞與CSVD發(fā)病的關(guān)系尚未明晰。一項關(guān)于伴有皮質(zhì)下梗死和白質(zhì)腦病的常染色體顯性遺傳性腦小動脈(cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy,CADASIL)的研究發(fā)現(xiàn)致病基因NOTCH3在周細(xì)胞中特異性表達(dá),這提示周細(xì)胞與內(nèi)皮細(xì)胞的相互作用可能與CSVD的發(fā)病相關(guān)[67]。一些研究報道血小板源性生長因子受體-β(platelet-derived growth factor receptor-β,PDGFR-β)陽性周細(xì)胞的數(shù)量在CADASIL患者的腦白質(zhì)中增多[68-69]。因為周細(xì)胞可控制神經(jīng)血管功能,其丟失可能預(yù)示著神經(jīng)退行性病變,PDGFR-β陽性周細(xì)胞數(shù)量的增多可能與慢性低灌注狀態(tài)下的代償機(jī)制有關(guān)[70]。另外,最近有研究表明,星形膠質(zhì)細(xì)胞分泌的腦源性神經(jīng)營養(yǎng)因子(brain-derived neurotrophic factor,BDNF)能夠在腦白質(zhì)缺血損傷期間促進(jìn)少突膠質(zhì)前體細(xì)胞的成熟[71]。膠質(zhì)細(xì)胞與內(nèi)皮細(xì)胞的相互作用能夠在生理及病理狀態(tài)下影響B(tài)BB[72]。少突膠質(zhì)前體細(xì)胞與周細(xì)胞能夠通過基膜相互黏附、相互作用,從而促進(jìn)其增殖與分化[73]。以上的數(shù)據(jù)表明BBB的各個成分并非獨立存在,它們可以相互作用,相互影響。如果各個成分
間的相互關(guān)系受到破壞,則可能會導(dǎo)致BBB功能障礙,從而誘發(fā)CSVD,而這其中的機(jī)制還有待進(jìn)一步研究。
3.3 腦血流低灌注 Nakane等[74]的研究發(fā)現(xiàn),靜息性腦梗死患者的腦血流量較正常對照組明顯降低,但較癥狀性腦梗死患者高。一項定量磁共振灌注成像研究也發(fā)現(xiàn),在腦白質(zhì)損害患者中,其白質(zhì)病變區(qū)域的腦血流量較白質(zhì)正常區(qū)域顯著降低[75]。這些結(jié)果都表明腦微循環(huán)低灌注在CSVD的發(fā)病機(jī)制中有重要的意義。腦低灌注的原因有血管痙攣,小動脈硬化時平滑肌細(xì)胞的丟失、管壁的增厚所導(dǎo)致的自動調(diào)節(jié)機(jī)制的損害等[76],而血流低灌注通過多種機(jī)制導(dǎo)致CSVD病變:①通過血管內(nèi)皮的損害導(dǎo)致BBB的功能障礙:低灌注導(dǎo)致MMP-2的增加,降解緊密連接蛋白[56,61],導(dǎo)致緊密連接的開放,BBB的結(jié)構(gòu)破壞、滲透性增加。②一氧化氮合酶的乙?;篐attori等[62]發(fā)現(xiàn)沉默信息調(diào)節(jié)因子2相關(guān)酶I(SIRT1)-一氧化氮合酶(NOS)-NO軸參與調(diào)節(jié)腦內(nèi)生理性能量的平衡,SIRT1過表達(dá)模型中其脫乙?;饔?,激活了NOS,合成NO調(diào)節(jié)腦血流量,使低灌注狀態(tài)下仍能保持腦血流量的穩(wěn)定。也為CSVD的治療提供了新策略。③神經(jīng)膠質(zhì)細(xì)胞的激活:Shibata等[77]發(fā)現(xiàn)在雙側(cè)頸動脈狹窄(bilateral carotid artery stenosis,BCAS)的鼠模型中,腦白質(zhì)病變區(qū)激活的小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞有明顯的增殖。Holland等[60]同樣發(fā)現(xiàn)BCAS模型鼠在第6個月時膠質(zhì)纖維酸性蛋白陽性的星形膠質(zhì)細(xì)胞的數(shù)量有顯著的增加。神經(jīng)膠質(zhì)細(xì)胞的激活常伴隨星形膠質(zhì)細(xì)胞終足的水通道蛋白AQP4的重新分布:血管內(nèi)AQP4的數(shù)量有明顯的下降而血管外實質(zhì)內(nèi)的AQP4則顯著升高。④少突膠質(zhì)細(xì)胞的凋亡:在人腦的發(fā)育過程中,室周的腦白質(zhì)最易在妊娠的23周到32周因低氧缺血而發(fā)生損害,即所謂的腦室周圍白質(zhì)疏松(periventricular leukomalacia,PVL),其主要的血管因素是此階段腦供血機(jī)制的不成熟和腦血流自動調(diào)節(jié)機(jī)制的易損性,但其細(xì)胞層面的機(jī)制猶未可知。由于PVL導(dǎo)致了慢性髓鞘形成的紊亂,故Back等[78]考慮少突膠質(zhì)細(xì)胞為缺血損傷的靶細(xì)胞。進(jìn)一步的實驗研究發(fā)現(xiàn),少突膠質(zhì)細(xì)胞系對低氧缺血的易損性為成熟依賴性,其中晚期的少突膠質(zhì)細(xì)胞祖細(xì)胞為導(dǎo)致PVL的主要高危階段,而未成熟少突膠質(zhì)細(xì)胞則對低氧缺血有一定的抵抗力,這也可以解釋為何妊娠30周后PVL的發(fā)病率明顯下降,因為此階段正好是晚期少突膠質(zhì)祖細(xì)胞發(fā)生分化而白質(zhì)中未成熟少突膠質(zhì)細(xì)胞增加至3倍的時期。晚期少突膠質(zhì)祖細(xì)胞的凋亡主要與遠(yuǎn)端細(xì)胞色素C的釋放和半胱氨酸天冬氨酸蛋白酶-3(caspase-3)的活化有關(guān)[78]。⑤氧化應(yīng)激導(dǎo)致血管功能障礙[4]。⑥缺血繼發(fā)的炎癥反應(yīng),進(jìn)而導(dǎo)致血管內(nèi)皮的損傷或如上文所述的因炎癥而引起CSVD。⑦缺血引發(fā)淀粉樣腦血管病。
3.4 淀粉樣蛋白沉積 腦淀粉樣血管病是一種以皮質(zhì)及腦膜間隙動脈、小動脈、靜脈、毛細(xì)血管壁的中膜或外膜發(fā)生淀粉樣蛋白沉積為特征的疾病[1]。它與CSVD有一定關(guān)聯(lián),可表現(xiàn)為CMB及WMH[79]。在疾病早期,淀粉樣蛋白沉積可導(dǎo)致血管壁增厚,管腔狹窄,進(jìn)展期管壁變薄,管腔擴(kuò)張,嚴(yán)重時可出現(xiàn)小動脈瘤[80-82]。因此,腦淀粉樣血管病可影響血流灌注,從而造成皮質(zhì)下腦白質(zhì)損傷以及組織結(jié)構(gòu)的改變[83-86]。另外,對于腦淀粉樣血管病患者而言,血管壁越厚,CMB風(fēng)險越高[87]。這其中的機(jī)制還尚未明晰。但是,K?vari等[88]發(fā)現(xiàn)CMB常發(fā)生于額葉及頂葉,而腦淀粉樣血管病常發(fā)生于枕葉;CMB常累及深部動脈及小動脈,而腦淀粉樣血管病常侵犯皮質(zhì),主要是軟腦膜動脈及其淺表皮質(zhì)分支。這些證據(jù)對腦淀粉樣血管病與CMB的相關(guān)性提出了質(zhì)疑。由此可見,淀粉樣蛋白沉積與CSVD的關(guān)系還有待進(jìn)一步研究。
3.5 靜脈膠原性疾病 靜脈膠原性疾病是指靜脈或小靜脈壁的膠原成分增多,導(dǎo)致管壁增厚、管腔狹窄,甚至閉塞[1,89]。高血壓及年齡增長可能與其發(fā)病相關(guān)[89-90]。Moody等[91]發(fā)現(xiàn)靜脈膠原性疾病常發(fā)生于側(cè)腦室周圍,且與腦白質(zhì)疏松有關(guān)。另外,一項與腦白質(zhì)疏松部位深髓靜脈相關(guān)的影像學(xué)研究表明大腦深部靜脈缺血與WMH有關(guān)[92]。腦白質(zhì)疏松可偶爾出現(xiàn)于側(cè)腦室周圍以外的區(qū)域,如皮質(zhì)附近。在這種情況下,相比于側(cè)腦室周圍,靜脈膠原性疾病更多地出現(xiàn)于腦白質(zhì)疏松部位[89]。這也支持了靜脈膠原性疾病與腦白質(zhì)疏松有關(guān)的結(jié)論。靜脈狹窄可導(dǎo)致靜脈壓增高,從而引起慢性缺血、靜脈回流障礙、細(xì)胞間液重吸收障礙及腦水腫[91]。細(xì)胞間液體可對細(xì)胞及髓鞘產(chǎn)生毒性作用,導(dǎo)致退行性病變、脫髓鞘及膠質(zhì)增生,在影像學(xué)上表現(xiàn)為WMH[91]。
如上文所述,CSVD可有不同的影像學(xué)表現(xiàn)。影像學(xué)檢查,尤其是MRI是診斷CSVD最重要的檢查手段之一。相比MRI,計算機(jī)斷層掃描(computed tomography,CT)僅在鑒別診斷方面有一定的臨床意義。但是,常規(guī)的影像學(xué)檢查無法提供與CSVD時腦微循環(huán)改變相關(guān)的信息。因此,我們需要特殊的影像學(xué)及實驗室檢查手段來觀察腦微循環(huán)的改變。
4.1 腦血流動力學(xué)檢查 腦血流量降低、腦血管反應(yīng)性及其自動調(diào)節(jié)功能受損與CSVD發(fā)病相關(guān)[74-76]。MR灌注成像技術(shù)在腦血流動力學(xué)的檢測中有著廣泛的應(yīng)用。MR灌注成像技術(shù)可分為內(nèi)源性示蹤技術(shù)和外源性示蹤技術(shù)。外源性示蹤技術(shù)是指將示蹤劑(如釓)以靜脈注射的方式注入體內(nèi),通過觀察示蹤劑通過組織信號變化的情況,檢測不同的血流動力學(xué)指標(biāo),如腦血容量、腦血流速度及平均通過時間[93]。內(nèi)源性示蹤技術(shù),即動脈自旋標(biāo)記技術(shù)(arterial spin labeling,ASL),是一種以動脈血中的質(zhì)子作為示蹤劑,從而獲得腦血流量的定性或定量圖像的無創(chuàng)性技術(shù)[93]。與MR灌注成像技術(shù)類似,正電子發(fā)射型計算機(jī)斷層成像技術(shù)(positron emission tomography,PET)利用正電子核素標(biāo)記的示蹤劑(如15O-H2O、18F-FDG)進(jìn)行腦成像,進(jìn)而評估腦血流量[93-94]。PET具有空間分辨率高、靈敏度高的特點,因此被認(rèn)為是檢測腦血流量的“金標(biāo)準(zhǔn)”,但其高昂的檢查費(fèi)用限制了它在臨床的應(yīng)用[93,95]。另外,經(jīng)顱多普勒超聲在評價腦血管反應(yīng)性及其自動調(diào)節(jié)功能方面應(yīng)用較廣[93]。
4.2 內(nèi)皮細(xì)胞及BBB功能檢查 內(nèi)皮細(xì)胞功能障礙可導(dǎo)致血管壁通透性增高,BBB破壞,血管內(nèi)的血漿蛋白因而可以滲出血管壁,然后進(jìn)入腦脊液中。所以,檢測腦脊液/人血白蛋白比值是評估內(nèi)皮細(xì)胞功能及BBB完整性最為經(jīng)典的檢查手段[93]。與健康人群相比,CSVD及出現(xiàn)腦白質(zhì)不同程度改變的患者的腦脊液/人血白蛋白比值上高[96-98]。除此以外,一種名為二乙烯三胺五乙酸釓(gadolinium diethylene triamine pentaacetic acid,GD-DTPA)的造影劑也被用于評估BBB的通透性[93]。一項有關(guān)血管性認(rèn)知障礙的研究表明,WMH區(qū)域與造影劑高通透區(qū)域之間有重疊,這提示血管源性水腫可導(dǎo)致繼發(fā)性缺氧,從而引起腦白質(zhì)病變[99]。在CSVD的發(fā)病過程中,一些與內(nèi)皮細(xì)胞損傷及BBB破壞的生物學(xué)標(biāo)記物表達(dá)上調(diào),如細(xì)胞間黏附分子-1(intercellular cell adhesion molecule-1,ICAM-1)、組織金屬蛋白酶抑制劑-1(tissue inhibitors of metalloproteinases,TIMP-1)、基質(zhì)金屬蛋白酶-9(matrix metalloproteinase-9,MMP-9)等[100-101]。但是這些指標(biāo)尚未納入臨床檢查的范圍,更具特異性及臨床意義的標(biāo)記物還有待發(fā)現(xiàn)。
目前人們對CSVD的了解主要來源于影像學(xué)檢查,但影像學(xué)改變并不能反映CSVD早期的病理生理改變。近年來,微循環(huán)障礙,特別是內(nèi)皮細(xì)胞及BBB功能障礙被認(rèn)為在腦小血管的發(fā)病過程中發(fā)揮著至關(guān)重要的作用。各種血管性危險因素、炎癥、感染、大動脈病變均可損傷內(nèi)皮細(xì)胞功能,進(jìn)而影響B(tài)BB的完整性,從而導(dǎo)致CSVD的發(fā)生及相應(yīng)的影像學(xué)改變[56]。但其中具體的分子機(jī)制還有待進(jìn)一步闡明。另外,在靜脈膠原性疾病及腦淀粉樣血管病中,血管壁膠原成分增多、淀粉樣蛋白沉積則是引起腦組織損傷的主要因素[1]。針對這些危險因素和已知發(fā)病機(jī)制中的重要環(huán)節(jié),我們可采取相應(yīng)的預(yù)防措施(如控制血壓、低鹽飲食、預(yù)防感染)并發(fā)展具有特異性的靶向治療方法。有研究發(fā)現(xiàn),MMP抑制劑可以抑制細(xì)胞外基質(zhì)的降解,減輕血管內(nèi)皮細(xì)胞的炎癥反應(yīng),從而使BBB的完整性得到恢復(fù)[102]。目前腦微循環(huán)的臨床檢查不多,主要是通過影像學(xué)技術(shù)檢測腦血流動力學(xué)的改變,其中ASL等無創(chuàng)性檢查將在未來受到更多的關(guān)注。此外,更具特異性的生物標(biāo)記物將有助于醫(yī)學(xué)科研工作者評估內(nèi)皮細(xì)胞及BBB的功能并在疾病早期及時采取干預(yù)措施。
1 Pantoni L.Cerebral small vessel disease:from pathogenesis and clinical characteristics to therapeutic challenges[J].Lancet Neurol,2010,9:689-701.
2 Wardlaw JM,Smith C,Dichgans M.Mechanisms of sporadic cerebral small vessel disease:insights from neuroimaging[J].Lancet Neurol,2013,12:483-497.
3 Joutel A,F(xiàn)araci FM.Cerebral small vessel disease:insights and opportunities from mouse models of collagen IV-related small vessel disease and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy[J].Stroke,2014,45:1215-1221.
4 De Silva TM,Miller AA.Cerebral small vessel disease:targeting oxidative stress as a novel therapeutic strategy?[J].Front Pharmacol,2016,7:61.
5 Hachinski V.World Stroke Day 2008:"little strokes,big trouble"[J].Stroke,2008,39:2407-2420.
6 Thompson CS,Hakim AM.Living beyond our physiological means:small vessel disease of the brain is an expression of a systemic failure in arteriolar function:a unifying hypothesis[J].Stroke,2009,40:e322-330.
7 Craggs LJ,Yamamoto Y,Deramecourt V,et al.Microvascular pathology and morphometrics of sporadic and hereditary small vessel diseases of the brain[J].Brain Pathol,2014,24:495-509.
8 LADIS Study Group.2001-2011:adecade of the LADIS (Leukoaraiosis And DISability) Study:what have we learned about white matter changes and smallvessel disease?[J].Cerebrovasc Dis,2011,32:577-588.
9 Attwell D,Buchan AM,Charpak S,et al.Glial and neuronal control of brain blood flow[J].Nature,2010,468:232-243.
10 De Silva TM,F(xiàn)araci FM.Microvascular dysfunction and cognitive impairment[J].Cell Mol Neurobiol,2016,36:241-258.
11 Fisher CM.Lacunes:small,deep cerebral infarcts[J].Neurology,1965,15:774-784.
12 Fisher CM.Lacunar strokes and infarcts:a review[J].Neurology,1982,32:871-876.
13 Fisher CM.Lacunar infarcts-a review[J].Cerebrovasc Dis,1991,1:311-320.
14 Mead GE,Lewis SC,Wardlaw JM,et al.Severe ipsilateral carotid stenosis and middle cerebral artery disease in lacunar ischaemic stroke:innocent bystanders?[J].J Neurol,2002,249:266-271.
15 Jackson CA,Hutchison A,Dennis MS,et al.Differing risk factor profiles of ischemic stroke subtypes:evidence for a distinct lacunar arteriopathy?[J].Stroke,2010,41:624-629.
16 Potter GM,Doubal FN,Jackson CA,et al.Lack of association of white matter lesions with ipsilateral carotid artery stenosis[J].Cerebrovasc Dis,2012,33:378-384.
17 Macdonald RL,Kowalczuk A,Johns L.Emboli enter penetrating arteries of monkey brain in relation to their size[J].Stroke,1995,26:1247-1250;discussion 1250-1251.
18 Bailey EL,McCulloch J,Sudlow C,et al.Potential animal models of lacunar stroke:a systematic review[J].Stroke,2009,40:e451-458.
19 Pantoni L,Garcia JH,Gutierrez JA.Cerebral white matter is highly vulnerable to ischemia[J].Stroke,1996,27:1641-1646;discussion 1647.
20 Petito CK,Olarte JP,Roberts B,et al.Selective glial vulnerability following transient global ischemia in rat brain[J].J Neuropathol Exp Neurol,1998,57:231-238.
21 Brun A,Englund E.A white matter disorder in dementia of the Alzheimer type:a pathoanatomical study[J].Ann Neurol,1986,19:253-262.
22 Millikan C,F(xiàn)utrell N.The fallacy of the lacune hypothesis[J].Stroke,1990,21:1251-1257.
23 Boiten J,Lodder J.Lacunar infarcts.Pathogenesis and validity of the clinical syndromes[J].Stroke,1991,22:1374-1378.
24 Lee HY,Oh BH.Aging and arterial stiffness[J].Circ J,2010,74:2257-2262.
25 Poels MM,Zaccai K,Verwoert GC,et al.Arterial stiffness and cerebral small vessel disease:the Rotterdam Scan Study[J].Stroke,2012,43:2637-2642.
26 Caplan LR,Hennerici M.Impaired clearance of emboli(washout) is an important link between hypoperfusion,embolism,and ischemic stroke[J].Arch Neurol,1998,55:1475-1482.
27 Diehl RR.Cerebral autoregulation studies in clinical practice[J].Eur J Ultrasound,2002,16:31-36.
28 Silberberg DH,Manning MC,Schreiber AD.Tissue culture demyelination by normal human serum[J].Ann Neurol,1984,15:575-580.
29 Lammie GA,Brannan F,Wardlaw JM.Incomplete lacunar infarction (Type Ib lacunes)[J].Acta Neuropathol,1998,96:163-171.
30 Schley D,Carare-Nnadi R,Please CP,et al.Mechanisms to explain the reverse perivascular transport of solutes out of the brain[J].J Theor Biol,2006,238:962-974.
31 Weller RO,Djuanda E,Yow HY,et al.Lymphatic drainage of the brain and the pathophysiology of neurological disease[J].Acta Neuropathol,2009,117:1-14.
32 Wardlaw JM,Sandercock PA,Dennis MS,et al.Is breakdown of the blood-brain barrier responsible for lacunar stroke,leukoaraiosis,and dementia?[J].Stroke,2003,34:806-812.
33 Hainsworth AH,Oommen AT,Bridges LR.Endothelial cells and human cerebral small vessel disease[J].Brain Pathol,2015,25:44-50.
34 Wardlaw JM,Doubal F,Armitage P,et al.Lacunar stroke is associated with diffuse blood-brain barrier dysfunction[J].Ann Neurol,2009,65:194-202.
35 Topakian R,Barrick TR,Howe FA,et al.Blood-brain barrier permeability is increased in normal-appearing white matter in patients with lacunar stroke and leucoaraiosis[J].J Neurol Neurosurg Psychiatry,2010,81:192-197.
36 Tomimoto H,Akiguchi I,Suenaga T,et al.Alterations of the blood-brain barrier and glial cells in white-matter lesions in cerebrovascular and Alzheimer's disease patients[J].Stroke,1996,27:2069-2074.
37 Utter S,Tamboli IY,Walter J,et al.Cerebral small vessel disease-induced apolipoprotein E leakage is associated with Alzheimer disease and the accumulation of amyloid beta-protein in perivascular astrocytes[J].J Neuropathol Exp Neurol,2008,67:842-856.
38 Young VG,Halliday GM,Kril JJ.Neuropathologic correlates of white matter hyperintensities[J].Neurology,2008,71:804-811.
39 Viggars AP,Wharton SB,Simpson JE,et al.Alterations in the blood brain barrier in ageing cerebral cortex in relationship to Alzheimer-type pathology:a study in the MRC-CFAS population neuropathology cohort[J].Neurosci Lett,2011,505:25-30.
40 Heye AK,Thrippleton MJ,Chappell FM,et al.Blood pressure and sodium:Association with MRI markers in cerebral small vessel disease[J].J Cereb Blood Flow Metab,2016,36:264-274.
41 FredrikssonK,Nordborg C,Kalimo H,et al.Cerebral microangiopathy in stroke-prone spontaneously hypertensive rats.An immunohistochemical and ultrastructural study[J].Acta Neuropathol,1988,75:241-252.
42 Lin JX,Tomimoto H,Akiguchi I,et al.White matter lesions and alteration of vascular cell composition in the brain of spontaneously hypertensive rats[J].Neuroreport,2001,12:1835-1839.
43 Bailey EL,Wardlaw JM,Graham D,et al.Cerebral small vessel endothelial structural changes predate hypertension in stroke-prone spontaneously hypertensive rats:a blinded,controlled immunohistochemical study of 5- to 21-week-old rats[J].Neuropathol Appl Neurobiol,2011,37:711-726.
44 Bailey EL,McBride MW,Beattie W,et al.Differential gene expression in multiple neurological,inflammatory and connective tissue pathways in a spontaneous model of human small vessel stroke[J].Neuropathol Appl Neurobiol,2014,40:855-872.
45 Bragulat E,de la Sierra A,Antonio MT,et al.Endothelial dysfunction in salt-sensitive essential hypertension[J].Hypertension,2001,37:444-448.
46 Ma XJ,Cheng JW,Zhang J,et al.E-selectin deficiency attenuates brain ischemia in mice[J].CNS Neurosci Ther,2012,18:903-908.
47 Rouhl RP,Damoiseaux JG,Lodder J,et al.Vascular inflammation in cerebral small vessel disease[J].Neurobiol Aging,2012,33:1800-1806.
48 Aribisala BS,Wiseman S,Morris Z,et al.Circulating inflammatory markers are associated with magnetic resonance imaging-visible perivascular spaces but not directly with white matter hyperintensities[J].Stroke,2014,45:605-607.
49 Abbott NJ.In flammatory mediators and modulation of blood-brain barrier permeability[J].Cell Mol Neurobiol,2000,20:131-147.
50 Leong XF,Ng CY,Badiah B,et al.Association between hypertension and periodontitis:possible mechanisms[J].Scientific World Journal,2014,2014:768237.
51 Nakano K,Hokamura K,Taniguchi N,et al.The collagen-binding protein of Streptococcus mutans is involved in haemorrhagic stroke[J].Nat Commun,2011,2:485.
52 Miyatani F,Kuriyama N,Watanabe I,et al.Relationship between Cnm-positive Streptococcus mutans and cerebral microbleeds in humans[J].Oral Dis,2015,21:886-893.
53 Pussinen PJ,Alfthan G,Jousilahti P,et al.Systemic exposure to Porphyromonas gingivalis predicts incident stroke[J].Atherosclerosis,2007,193:222-228.
54 Lourbakos A,Yuan YP,Jenkins AL,et al.Activation of protease-activated receptors by gingipains from Porphyromonas gingivalis leads to platelet aggregation:a new trait in microbial pathogenicity[J].Blood,2001,97:3790-3797.
55 Walter C,Zahlten J,Schmeck B,et al.Porphyromonas gingivalis strain-dependent activation of human endothelial cells[J].Infect Immun,2004,72:5910-5918.
56 Ihara M,Yamamoto Y.Emerging evidence for pathogenesis of sporadic cerebral small vessel disease[J].Stroke,2016,47:554-560.
57 Laurent S,Briet M,Boutouyrie P.Large and small artery cross-talk and recent morbidity-mortality trials in hypertension[J].Hypertension,2009,54:388-392.
58 Scuteri A,Nilsson PM,Tzourio C,et al.Microvascular brain damage with aging and hypertension:pathophysiological consideration and clinical implications[J].J Hypertens,2011,29:1469-1477.
59 Bink DI,Ritz K,Aronica E,et al.Mouse models to study the effect of cardiovascular risk factors on brain structure and cognition[J].J Cereb Blood Flow Metab,2013,33:1666-1684.
60 Holland PR,Searcy JL,Salvadores N,et al.Gliovascular disruption and cognitive deficits in a mouse model with features of small vessel disease[J].J Cereb Blood Flow Metab,2015,35:1005-1014.
61 Nakaji K,Ihara M,Takahashi C,et al.Matrix metalloproteinase-2 plays a critical role in the pathogenesis of white matter lesions after chronic cerebral hypoperfusion in rodents[J].Stroke,2006,37:2816-2823.
62 Hattori Y,Okamoto Y,Maki T,et al.Silent information regulator 2 homolog 1 counters cerebral hypoperfusion injury by deacetylating endothelial nitric oxide synthase[J].Stroke,2014,45:3403-3411.
63 Feng S,Cen J,Huang Y,et al.Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins[J].PLoS One,2011,6:e20599.
64 Bailey EL,Smith C,Sudlow CL,et al.Is the spontaneously hypertensive stroke prone rat a pertinent model of sub cortical ischemic stroke? A systematic review[J].Int J Stroke,2011,6:434-444.
65 Corbin ZA,Rost NS,Lorenzano S,et al.White matter hyperintensity volume correlates with matrix metalloproteinase-2 in acute ischemic stroke[J].J Stroke Cerebrovasc Dis,2014,23:1300-1306.
66 Ihara M,Tomimoto H.Lessons from a mouse model characterizing features of vascular cognitive impairment with white matter changes[J].J Aging Res,2011,2011:978 761.
67 Armulik A,Abramsson A,Betsholtz C.Endothelial/pericyte interactions[J].Circ Res,2005,97:512-523.
68 Craggs LJ,Yamamoto Y,Ihara M,et al.White matter pathology and disconnection in the frontal lobe in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy(CADASIL)[J].Neuropathol Appl Neurobiol,2014,40:591-602.
69 Crag g s LJ,F(xiàn)enwick R,Oak ley A E,et a l.Immunolocalization of platelet-derived growth factor receptor-β (PDGFR-β) and pericytes in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL)[J].Neuropathol Appl Neurobiol,2015,41:557-570.
70 Bell RD,Winkler EA,Sagare AP,et al.Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging[J].Neuron,2010,68:409-427.
71 Miyamoto N,Maki T,Shindo A,et al.Astrocytes promote oligodendrogenesis after white matter damage via brain-derived neurotrophic factor[J].J Neurosci,2015,35:14 002-14 008.
72 Abbott NJ,R?nnb?ck L,Hansson E.Astrocyteendothelial interactions at the blood-brain barrier[J].Nat Rev Neurosci,2006,7:41-53.
73 Maki T,Maeda M,Uemura M,et al.Potential interactions between pericytes and oligodendrocyte precursor cells in perivascular regions of cerebral white matter[J].Neurosci Lett,2015,597:164-169.
74 Nakane H,Ibayashi S,F(xiàn)ujii K,et al.Cerebral blood flow and metabolism in patients with silent brain infarction:occult misery perfusion in the cerebral cortex[J].J Neurol Neurosurg Psychiatry,1998,65:317-321.
75 Markus HS,Lythgoe DJ,Ostegaard L,et al.Reduced cerebral blood flow in white matter in ischaemic leukoaraiosis demonstrated using quantitative exogenous contrast based perfusion MRI[J].J Neurol Neurosurg Psychiatry,2000,69:48-53.
76 Fu JH,Lu CZ,Hong Z,et al.Relationship between cerebral vasomotor reactivity and white matter lesions in elderly subjects without large artery occlusive disease[J].J Neuroimaging,2006,16:120-125.
77 Shibata M,Ohtani R,Ihara M,et al.White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion[J].Stroke,2004,35:2598-2603.
78 Back SA,Han BH,Luo NL,et al.Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia[J].J Neurosci,2002,22:455-463.
79 Smith EE,Greenberg SM.Beta-amyloid,blood vessels,and brain function[J].Stroke,2009,40:2601-2606.
80 Vinters HV.Cerebral amyloid angiopathy.A critical review[J].Stroke,1987,18:311-324.
81 Vonsattel JP,Myers RH,Hedley-Whyte ET,et al.Cerebral amyloid angiopathy without and with cerebral hemorrhages:a comparative histological study[J].Ann Neurol,1991,30:637-649.
82 Zekry D,Duyckaerts C,Belmin J,et al.Cerebral amyloid angiopathy in the elderly:vessel walls changes and relationship with dementia[J].Acta Neuropathol,2003,106:367-373.
83 Smith EE,Gurol ME,Eng JA,et al.White matter lesions,cognition,and recurrent hemorrhage in lobar intracerebral hemorrhage[J].Neurology,2004,63:1606-1612.
84 Gurol ME,Irizarry MC,Smith EE,et al.Plasma betaamyloid and white matter lesions in AD,MCI,and cerebral amyloid angiopathy[J].Neurology,2006,66:23-29.
85 Holland CM,Smith EE,Csapo I,et al.Spatial distribution of white-matter hyperintensities in Alzheimer disease,cerebral amyloid angiopathy,and healthy aging[J].Stroke,2008,39:1127-1133.
86 Viswanathan A,Patel P,Rahman R,et al.Tissue microstructural changes are independently associated with cognitive impairment in cerebral amyloid angiopathy[J].Stroke,2008,39:1988-1992.
87 Viswanathan A,Greenberg SM.Cerebral amyloid angiopathy in the elderly[J].Ann Neurol,2011,70:871-880.
88 K?vari E,Charidimou A,Herrmann FR,et al.No neuropathological evidence for a direct topographical relation between microbleeds and cerebral amyloid angiopathy[J].Acta Neuropathol Commun,2015,3:49.
89 Brown WR,Moody DM,Challa VR,et al.Venous collagenosis and arteriolar tortuosity in leukoaraiosis[J].J Neurol Sci,2002,203-204:159-163.
90 Zhou M,Mao L,Wang Y,et al.Morphologic changes of cerebral veins in hypertensive rats:venous collagenosis is associated with hypertension[J].J Stroke Cerebrovasc Dis,2015,24:530-536.
91 Moody DM,Brown WR,Challa VR,et al.Periventricular venous collagenosis:association with leukoaraiosis[J].Radiology,1995,194:469-476.
92 Yan S,Wan J,Zhang X,et al.Increased visibility of deep medullary veins in leukoaraiosis:a 3-T MRI study[J].Front Aging Neurosci,2014,6:144.
93 Pantoni L,Gorelick PB.Cerebral small vessel disease[M].Cambridge,United Kingdom:Cambridge University Press,2014.
94 van Golen LW,Kuijer JP,Huisman MC,et al.Quantification of cerebral blood flow in healthy volunteers and type 1 diabetic patients:comparison of MRI arterial spin labeling and [(15)O]H2O positron emission tomography (PET)[J].J Magn Reson Imaging,2014,40:1300-1309.
95 Feng CM,Narayana S,Lancaster JL,et al.CBF changes during brain activation:fMRI vs.PET[J].Neuroimage,2004,22:443-446.
96 Wallin A,Blennow K,F(xiàn)redman P,et al.Blood brain barrier function in vascular dementia[J].Acta Neurol Scand,1990,81:318-322.
97 Pantoni L,Inzitari D,Pracucci G,et al.Cerebrospinal fluid proteins in patients with leucoaraiosis:possible abnormalities in blood-brain barrier function[J].J Neurol Sci,1993,115:125-131.
98 Wallin A,Sj?gren M,Edman A,et al.Symptoms,vascular risk factors and blood-brain barrier function in relation to CT white-matter changes in dementia[J].Eur Neurol,2000,44:229-235.
99 Taheri S,Gasparovic C,Shah NJ,et al.Quantitative measurement of blood-brain barrier permeability in human using dynamic contrast-enhanced MRI with fast T1 mapping[J].Magn Reson Med,2011,65:1036-1042.
100 Hansson J,Vasan RS,?rnl?v J,et al.Biomarkers of extracellular matrix metabolism (MMP-9 and TIMP-1) and risk of stroke,myocardial infarction,and causespecific mortality:cohort study[J].PLoS One,2011,6:e16185.
101 Giwa MO,Williams J,Elderfield K,et al.Neuropathologic evidence of endothelial changes in cerebral small vessel disease[J].Neurology,2012,78:167-174.
102 Hu J,wanden Steen PE,Sang QX,et al.Matrix metalloproteinase inhibitors as therapy for in flammatory and vascular diseases[J].Nat Rev Drug Discov,2007,6:480-498.