羅慧 楊光博 符鋒 孫洪濤 令狐海瑞
[摘要] 輕型顱腦創(chuàng)傷(mTBI)可導(dǎo)致大腦結(jié)構(gòu)或功能改變,表現(xiàn)為局灶性神經(jīng)、認(rèn)知或行為功能障礙。目前mTBI的診斷標(biāo)準(zhǔn)是非常有限的、可變的,且多基于主觀的自我報(bào)告,因此限制了臨床醫(yī)生的準(zhǔn)確診斷、治療方案制訂和預(yù)后評估等。高級神經(jīng)影像學(xué)技術(shù)的發(fā)展,使客觀化評估m(xù)TBI成為可能。本文將綜述幾項(xiàng)頗有前景的成像技術(shù)及其應(yīng)用,以了解mTBI后的大腦異常改變。這些成像方式包括理解大腦結(jié)構(gòu)和組織結(jié)構(gòu)、監(jiān)測局部血流、評估微出血、測量腦功能及代謝情況的技術(shù)。
[關(guān)鍵詞] 輕型顱腦創(chuàng)傷;神經(jīng)影像學(xué);診斷;大腦結(jié)構(gòu)
[中圖分類號] R651.1 [文獻(xiàn)標(biāo)識碼] A [文章編號] 1673-7210(2018)10(c)-0019-05
[Abstract] Mild traumatic brain injury (mTBI) can lead to changes in brain structure or function, manifested as focal neurological, cognitive or behavioral dysfunction. At present, the diagnostic criteria of mTBI is very limited, variable, and mostly based on subjective self-reporting, which limits the clinician's accurate diagnosis, treatment plan formulation, and prognostic evaluation. The development of advanced neuroimaging has made it possible to objectively evaluate mTBI. This article reviews several promising imaging techniques and their applications to understand abnormal brain changes after mTBI. These imaging modalities include understanding of brain structure and tissue structure, monitoring of local blood flow, assessment techniques for microbleeds, measurement of brain function, and metabolic techniques.
[Key words] Mild traumatic brain injury; Neuroimaging; Diagnosis; Cerebral structure
顱腦創(chuàng)傷(traumatic brain injury,TBI)所有年齡和嚴(yán)重程度類型的發(fā)病率為47.3/10萬~849/10萬[1],而輕型顱腦創(chuàng)傷(mTBI)占70%~90%[2]。計(jì)算機(jī)斷層掃描(CT)和常規(guī)磁共振成像(MRI)被用于mTBI檢查時(shí),僅約10%的CT掃描和30%的MRI掃描顯示異常,如硬膜下或蛛網(wǎng)膜下出血[3]。兩者均不能發(fā)現(xiàn)mTBI患者最常見的腦損傷——彌漫性軸索損傷[4],且不能提供與mTBI長期預(yù)后相關(guān)的準(zhǔn)確信息[4]。本文將綜述幾項(xiàng)頗有前景的成像技術(shù)及其應(yīng)用,以了解mTBI后的大腦異常改變。這些成像方式包括理解大腦結(jié)構(gòu)(高分辨率結(jié)構(gòu)MR成像)和組織結(jié)構(gòu)(擴(kuò)散張量成像)、監(jiān)測局部血流(動態(tài)磁敏度對比MR成像、動脈自旋標(biāo)記、單光子發(fā)射斷層成像)、評估微出血(敏感性加權(quán)成像)、測量腦功能(功能性磁共振成像)及代謝情況(正電子發(fā)射斷層掃描,磁共振波譜)的技術(shù)。
1 高分辨率結(jié)構(gòu)MR成像
基于T1加權(quán)像的MRI體積測量功能可以量化大腦結(jié)構(gòu)信息。迄今為止,如SPM和FreeSurfer 7等自動化軟件工具可基于全腦體素對感興趣區(qū)域或整個(gè)大腦進(jìn)行重建。大腦體積測量可以在不同項(xiàng)目、群體或個(gè)體的縱向進(jìn)行比較研究。研究證明,體積測量與認(rèn)知功能有關(guān)[5]、且可用于阿爾茨海默病[6]、帕金森病[7]等神經(jīng)退行性疾病的診斷和預(yù)后評估。Lewén等[8]研究發(fā)現(xiàn),小鼠TBI后第1天,撞擊區(qū)(皮質(zhì)頂部)皮層厚度顯著增加,21 d后皮質(zhì)厚度降低了15%~20%。Fineman等[9]研究顯示,嚙齒動物TBI后17 d,額葉及同側(cè)半球枕葉皮層變薄。以上研究結(jié)果表明,mTBI急性期皮質(zhì)水腫引起皮層厚度初始增加,隨后華勒變性和反應(yīng)性星形細(xì)胞增多,慢性期皮質(zhì)厚度降低。
Merkley等[10]研究證實(shí),兒童(9~16歲)TBI群體在傷后3年,額葉、頂葉、顳葉和枕葉皮質(zhì)明顯變薄,且證實(shí)了記憶功能和皮質(zhì)厚度之間的相關(guān)性。Tremblay等[11]研究進(jìn)一步表明,皮質(zhì)厚度下降與年齡、接觸式運(yùn)動腦震蕩及重復(fù)腦震蕩相關(guān),經(jīng)受腦震蕩和海馬體積之間呈顯著的負(fù)相關(guān)。TBI后皮質(zhì)厚底變薄的具體機(jī)制目前尚未完全清楚,可能與沃勒變性和星形細(xì)胞增生有關(guān)[5]。高分辨率結(jié)構(gòu)MR成像可能是評估m(xù)TBI后慢性階段的有效手段。然而,本文認(rèn)為仍需要進(jìn)一步研究開發(fā)此項(xiàng)技術(shù)以檢測mTBI后更為急性的腦部結(jié)構(gòu)性變化。
2 敏感度加權(quán)成像
敏感性加權(quán)成像(susceptibility weighted imaging,SWI)基于不同組織間的磁敏感性差異,使用特殊的梯度回波序列,將相位數(shù)據(jù)與幅度數(shù)據(jù)組合,從而提供圖像對比增強(qiáng)。SWI對大腦中的靜脈血、出血和鐵較敏感,故在顯示腦內(nèi)小靜脈及微出血方面優(yōu)于常規(guī)序列,SWI已被證明是鑒別mTBI所致微出血的有效技術(shù)[12]。
Hasiloglu等[13]采用SWI尋找到拳擊手微出血的客觀證據(jù)。Helmer等[14]采用了一種新的分析技術(shù)(即測量低強(qiáng)度負(fù)荷)來檢測冰球運(yùn)動員賽前、mTBI后72 h、2周和2個(gè)月的顱內(nèi)情況,結(jié)果顯示:所有運(yùn)動員都表現(xiàn)出微出血;男性的微出血量顯著高于女性。此研究中的方法提示,SWI新參數(shù)開發(fā)研究可有助于發(fā)現(xiàn)傳統(tǒng)分析技術(shù)尚不能觀察到的微妙變化。Ashwal等[15]研究報(bào)道,mTBI患者和兒童TBI患者大腦多部位的微量出血與神經(jīng)系統(tǒng)預(yù)后有關(guān)。因此,SWI亦可作為預(yù)測TBI后長期神經(jīng)功能預(yù)后的有效工具。
3 功能磁共振成像和和靜息狀態(tài)功能磁共振成像
功能磁共振成像(functional magnetic resonance imaging,fMRI)和靜息狀態(tài)功能磁共振成像(resting state functional magnetic resonance imaging,rsfMRI)通常使用血氧濃度相依對比來偵測大腦中的反應(yīng)區(qū)域。該技術(shù)可在受試者執(zhí)行任務(wù)時(shí)或當(dāng)他們處于靜息狀態(tài)時(shí)評估神經(jīng)元激活情況[16]。
Koerte等[16]研究報(bào)道,mTBI患者的大腦不同區(qū)域激活模式有所改變。McAllister等[17]對mTBI患者進(jìn)行了聽覺—言語和視覺—言語N-back任務(wù)測試,發(fā)現(xiàn)傷后1個(gè)月,mTBI患者在執(zhí)行中等難度任務(wù)時(shí)激活區(qū)域增多,在任務(wù)更加復(fù)雜時(shí)激活區(qū)域減少。McAllister等[18]的另一項(xiàng)隨訪1年的研究顯示,盡管腦震蕩后患者癥狀有所緩解,但患者右額葉表現(xiàn)出較明顯的激活狀態(tài)。這些結(jié)果表明,即使mTBI后癥狀消失,持續(xù)的大腦活動改變?nèi)钥娠@而易見。Smits等[19]研究發(fā)現(xiàn),mTBI后患有慢性腦震蕩后癥狀患者的N-back任務(wù)表現(xiàn)顯著降低,mTBI癥狀的嚴(yán)重程度與正常激活通路以外的非典型激活模式相關(guān)。這些研究結(jié)果提示,受損的大腦區(qū)域需要損傷較小或沒有損傷大腦區(qū)域的代償。Matthews等[20]對意識喪失與僅意識改變的mTBI患者進(jìn)行3年隨訪后發(fā)現(xiàn),意識喪失的患者左側(cè)額葉激活減少,且該區(qū)域的激活改變與所報(bào)告的癥狀相關(guān)。
靜息狀態(tài)下,大腦耗能仍然占身體總耗能的16%。rsfMRI可以檢測靜息狀態(tài)下大腦激活情況,各區(qū)域相關(guān)激活模式可解釋為“網(wǎng)絡(luò)”,且有證據(jù)表明它們的完整性和強(qiáng)度與行為和認(rèn)知功能相關(guān)[21]。因此,多項(xiàng)研究已開始運(yùn)用rsfMRI評估TBI預(yù)后:爆炸相關(guān)的TBI患者及mTBI患者的默認(rèn)模式網(wǎng)絡(luò)(default mode network,DMN)中斷[22];低波動振幅增加與TBI后慢性軸索損傷的神經(jīng)認(rèn)知功能預(yù)后更好有關(guān),DMN的節(jié)點(diǎn)增加可能為其他大腦區(qū)域喪失功能完整性后的補(bǔ)償機(jī)制[23]。mTBI的DMN和任務(wù)正向網(wǎng)絡(luò)連接可能中斷,這可能為患者記憶功能障礙的原因。Stevens等[24]報(bào)道,mTBI患者的視覺處理、運(yùn)動、認(rèn)知功能相關(guān)的功能網(wǎng)絡(luò)連接異常。因此,fMRI和rsfMRI在mTBI長期功能缺陷的診斷、預(yù)后和治療監(jiān)測方面有較好的應(yīng)用前景。
4 動態(tài)對比增強(qiáng)磁共振成像
動態(tài)對比增強(qiáng)磁共振成像(dynamic contrast enhanced-MRI,DCE-MRI)可以對病灶進(jìn)行增強(qiáng)顯示,檢測腦組織病灶形態(tài)學(xué)特征,還能通過造影劑的組織濃度時(shí)間曲線來動態(tài)量化腦血液動力學(xué)和局部腦血流量(cerebral blood flow,CBF)[25]。Liu等[26]研究發(fā)現(xiàn):①mTBI士兵多個(gè)腦區(qū)CBF減小,包括右前中央扣帶回,小腦左半球和左側(cè)楔葉;②小腦、右前扣帶CBF的改變和與神經(jīng)認(rèn)知功能和癥狀相關(guān)。Wei等[27]研究顯示,DCE-MRI可以準(zhǔn)確檢測血腦屏障(blood-brain barrier,BBB)完整性。
5 動脈自旋標(biāo)記
動脈自旋標(biāo)記(arterial spin labeling,ASL)是MR灌注成像的非侵入性方法,其利用動脈血中水質(zhì)子作為內(nèi)源性示蹤劑,待其流入成像層面,即對這種差異進(jìn)行測量成像[28]。Ge等[29]研究發(fā)現(xiàn),既往有mTBI病史(平均傷后24.6個(gè)月)的患者丘腦CBF減少,這與其神經(jīng)認(rèn)知預(yù)后相關(guān)。Kim等[30]研究證實(shí),具有中—重度TBI病史的患者全腦CBF降低,尤以后扣帶回皮質(zhì)和丘腦部位變化為著。目前對ASL技術(shù)改進(jìn)工作仍在不斷進(jìn)行使其更好地評估m(xù)TBI患者。
6 單光子發(fā)射計(jì)算機(jī)斷層
單光子發(fā)射計(jì)算機(jī)斷層掃描(single photon emission computed tomography,SPECT)利用圍繞患者的γ照相機(jī)探頭探測γ光子來確定注入體內(nèi)的放射性核素分布情況,由此量化局部CBF。由于SPECT使用的放射性藥物成本低、半衰期長、易于在臨床環(huán)境中使用,故其可在大多數(shù)醫(yī)院推廣使用。迄今為止,SPECT對mTBI的慢性階段研究屢有報(bào)道,但缺乏急性和亞急性期的研究。一些CT掃描正常的患者在SPECT中表現(xiàn)異常:部分大學(xué)橄欖球運(yùn)動員的額葉、前額葉和顳葉皮質(zhì)區(qū)域CBF降低[31];大學(xué)生足球運(yùn)動員在mTBI后1周,與認(rèn)知功能有關(guān)的背部中央皮質(zhì)和顳上溝的CBF降低,傷后1個(gè)月的背部中央皮質(zhì)CBF與mTBI嚴(yán)重程度和癥狀消退呈負(fù)相關(guān)[32];傷后記憶缺失持續(xù)時(shí)間>30 min的mTBI患者于當(dāng)日SPECT檢查中發(fā)現(xiàn)與CBF降低有關(guān)[33]。盡管目前觀點(diǎn)認(rèn)為SPECT中無陽性發(fā)現(xiàn)是預(yù)后較好的因素,但由于mTBI往往具有彌漫性和異質(zhì)性,SPECT可能會引入系統(tǒng)性誤差,且在臨床上使用缺乏敏感性,故單獨(dú)使用SPECT并不足以評估患有mTBI的患者。
7 彌散張量成像
彌散張量成像(diffusion tensor imaging,DTI)是一種先進(jìn)的MRI技術(shù),可通過測量腦中水分子的彌散特性來描述大腦微觀結(jié)構(gòu)[34]。DTI可以在每個(gè)體素中量化和標(biāo)示彌散張量。DTI常用參數(shù)是平均彌散系數(shù)(mean diffusivity,MD)和各向異性分?jǐn)?shù)(fractional anisotropy,F(xiàn)A)。FA和MD常常被認(rèn)為是負(fù)相關(guān)的。FA的減少被認(rèn)為反映了髓鞘、軸突膜的微觀損傷[35]。此外,徑向彌散系數(shù)(radial diffusivity,RD)可用于測量髓磷脂,軸向彌散系數(shù)(axial diffusivity,AD)可用于測量軸突彌散。Niogi等[35]研究發(fā)現(xiàn),mTBI患者鉤狀束中FA減少與記憶功能有關(guān),專注力與左前放射冠的FA降低相關(guān)。Koerte等[36]首次證實(shí),與非接觸運(yùn)動員相比,職業(yè)足球運(yùn)動員中非mTBI的運(yùn)動員中亦有白質(zhì)改變。這些結(jié)果表明,頭部遭受反復(fù)多次沖擊會對神經(jīng)結(jié)構(gòu)產(chǎn)生累積效應(yīng)。未來的研究方向應(yīng)聚焦于提高DTI在mTBI診斷中的靈敏度和特異性,包括三個(gè)重要的焦點(diǎn):DTI的技術(shù)改進(jìn),新穎的擴(kuò)散措施和創(chuàng)新分析技術(shù),例如高角度分辨率擴(kuò)散成像為更特異的測量方法,且可以提供關(guān)于大腦中髓磷脂變化的特定信息[37];新的纖維束成像算法可在大腦外圍追蹤較小的纖維束,以便發(fā)現(xiàn)mTBI中細(xì)微的損傷[38]。這些技術(shù)有助于mTBI患者個(gè)性化醫(yī)療的實(shí)現(xiàn)。
8 磁共振波譜
磁共振波譜(mr spectroscopy,MRS)是根據(jù)氫(1H)、磷(31P)、鈉(23Na)和碳(13C)等同位素的共振頻率來測定活體內(nèi)某一特定組織區(qū)域化學(xué)成分的唯一無創(chuàng)技術(shù)。研究者還可在不提取空間信息的情況下通過使用不同回波時(shí)間及傅里葉變換來創(chuàng)建二維光譜信息[39]。光譜中不同峰值所代表的代謝物都有重要的生物學(xué)作用:脂質(zhì)以膜的形式存在于整個(gè)大腦中,但只有在TBI等嚴(yán)重病理過程中釋放出來才能被MRS所查見;無氧糖酵解的最終產(chǎn)物乳酸是大腦缺氧的直接指標(biāo),譜圖中若出現(xiàn)乳酸則表明灌注受損,垂型顱腦損傷(sTBI)患者的預(yù)后不佳;TBI患者的N-乙酰天冬氨酸(N-acetyl aspartate,NAA)(神經(jīng)元、軸突和樹突活性標(biāo)志物)降低;谷氨酸可用于評估sTBI患者的預(yù)后;膽堿常作為彌漫性軸索損傷的標(biāo)志,MRS發(fā)現(xiàn)其在TBI后顯著增加[40]。Ng等[39]研究發(fā)現(xiàn),mTBI患者半卵圓中心、胼胝體和雙側(cè)額葉白質(zhì)等腦區(qū)NAA減少。Cecil等[41]的研究表明,重復(fù)性腦損傷可致NAA回歸基線水平的時(shí)間增加,提示腦組織易損期延長;運(yùn)動相關(guān)mTBI患者急性和亞急性期的背外側(cè)前額葉皮層和初級運(yùn)動皮層區(qū)NAA/Cr、NAA/Cho和Cho/Cr明顯減少。
9 正電子發(fā)射計(jì)算機(jī)斷層顯像
正電子發(fā)射計(jì)算機(jī)斷層顯像(positron emission computed tomography,PET)通過檢測被標(biāo)記上短壽命放射性核素的物質(zhì),可在體外無創(chuàng)地、定量地、動態(tài)地反映該物質(zhì)及其代謝物在活體內(nèi)的數(shù)量、空間分布及其動態(tài)變化情況,從而達(dá)到診斷目的。據(jù)Peskind等[42]報(bào)道,遭受爆炸傷害的退伍軍人的小腦、蚓部、腦橋、內(nèi)側(cè)顳葉、扣帶回后部等部位可出現(xiàn)葡萄糖代謝障礙。Provenzano等[43]研究顯示,拳擊手小腦、后扣帶回和額葉等部位出現(xiàn)代謝減退,mTBI患者的額葉和顳葉區(qū)域的代謝減退,額區(qū)的低代謝與神經(jīng)心理學(xué)評分較低相關(guān)。
此外,PET新型配體外周苯二氮受體復(fù)合物被認(rèn)為是小膠質(zhì)細(xì)胞活化的標(biāo)志物,其在評估神經(jīng)炎癥方面具有重要作用,現(xiàn)正開發(fā)特異性探針。慢性創(chuàng)傷性腦?。╟hronic traumatic encephalopathy,CTE)最常見于拳擊、橄欖球等接觸式專業(yè)運(yùn)動員群體,該群體常遭受重復(fù)性腦震蕩、mTBI或無癥狀的亞震蕩創(chuàng)傷。諸如其他大多數(shù)神經(jīng)退行性疾病一樣,CTE只能在死后尸檢被確診[44]。因此,在活體個(gè)體大腦中檢測和測量tau方法的發(fā)展有助于CTE的早期診斷、量化tau積累的程度和進(jìn)展趨勢。
綜上所述,CT和常規(guī)MRI在排除sTBI及其并發(fā)癥方面是非常有效的,但mTBI敏感度不高。隨著多種先進(jìn)的神經(jīng)影像學(xué)方法被開發(fā)和改進(jìn),現(xiàn)已可量化大腦的代謝、灌注、功能和微觀結(jié)構(gòu)改變情況,使mTBI后微妙的病理生理學(xué)變化有望被識別。然而,未來仍需選取合適的人群進(jìn)行縱向研究,以了解mTBI的動態(tài)性和潛在調(diào)節(jié)因素對其的影響(如損傷的生物力學(xué)、病變部位和遺傳學(xué))。此外,mTBI的異質(zhì)性要求研究者采用新的后處理方法來確定個(gè)體損傷模式,這為mTBI的個(gè)性化醫(yī)療方法提供了新途徑,并為臨床醫(yī)師提供了評判病情變化和醫(yī)治效果的新信息。最后,為了鑒定有助于mTBI診斷、治療決策和預(yù)后的生物標(biāo)志物,未來可將不同成像方法、臨床研究、神經(jīng)心理學(xué)評估和血液、腦脊液中生物標(biāo)志物相結(jié)合,以多模式綜合法進(jìn)行深入研究。
[參考文獻(xiàn)]
[1] Dewan MC,Rattani A,Gupta S,et al. Estimating the global incidence of traumatic brain injury [J]. J Neurosurg,2018:1-18.
[2] Cassidy JD,Carroll LJ,Peloso PM,et al. Incidence,risk factors and prevention of mild traumatic brain injury:results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury [J]. J Rehabil Med,2004(43 Suppl):28-60.
[3] Borg J,Holm L,Peloso PM,et al. Non-surgical intervention and cost for mild traumatic brain injury:Results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury [J]. J Rehabil Med,2004(43 Suppl):76-83.
[4] Shenton ME,Hamoda HM,Schneiderman JS,et al. A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury [J]. Brain Imaging Behav,2012,6(2):137-192.
[5] Singh R,Meier TB,Kuplicki R,et al. Relationship of collegiate football experience and concussion with hippocampal volume and cognitive outcomes [J]. JAMA,2014,311(18):1883-1888.
[6] Park H,Yang JJ,Seo J,et al. Dimensionality reduced cortical features and their use in predicting longitudinal changes in Alzheimer′s disease [J]. Neurosci Lett,2013, 550:17-22.
[7] Ibarretxe-Bilbao N,Junque C,Segura B,et al. Progression of cortical thinning in early Parkinson′s disease [J]. Mov Disord,2012,27(14):1746-1753.
[8] Lewén A,Li GL,Nilsson P,et al. Traumatic brain injury in rat produces changes of beta-amyloid precursor protein immunoreactivity [J]. Neuroreport,1995,6(2):357-360.
[9] Fineman I,Giza CC,Nahed BV,et al. Inhibition of neocortical plasticity during development by a moderate concussive brain injury [J]. J Neurotrauma,2000,17(9):739-749.
[10] Merkley TL,Bigler ED,Wilde EA,et al. Diffuse changes in cortical thickness in pediatric moderate-to-severe traumatic brain injury [J]. J Neurotrauma,2008,25(11):1343-1345.
[11] Tremblay S,De Beaumont L,Henry LC,et al. Sports concussions and aging:A neuroimaging investigation [J]. Cereb Cortex,2013,23(5):1159-1166.
[12] Haacke EM,Xu Y,Cheng YC,et al. Susceptibility weighted imaging (SWI) [J]. Magn Reson Med,2004,52(3):612-618.
[13] Hasiloglu ZI,Albayram S,Selcuk H,et al. Cerebral microhemorrhages detected by susceptibility-weighted imaging in amateur boxers [J]. Am J Neuroradiol,2011, 32(1):99-102.
[14] Helmer KG,Pasternak O,F(xiàn)redman E,et al. Hockey Concussion Education Project,Part 1. Susceptibility-weighted imaging study in male and female ice hockey players over a single season [J]. J Neurosurg,2014,120(4):864-872.
[15] Ashwal S,Babikian T,Gardner-Nichols J,et al. Susceptibility-weighted imaging and proton magnetic resonance spectroscopy in assessment of outcome after pediatric traumatic brain injur y [J]. Arch Phys MedRehabil,2006, 87(12):S50-S58.
[16] Koerte IK,Lin AP,Willems A,et al. A review of neuroimaging findings in repetitive brain trauma [J]. Brain Pathol,2015,25(3):318-349.
[17] McAllister TW,Sparling MB,F(xiàn)lashman LA,et al. Differential working memory load effects after mild traumatic brain injury [J]. Neuroimage,2001,14(5):1004-1012.
[18] McAllister TW,F(xiàn)lashman LA,Sparling MB,et al. Working memory deficits after traumatic brain injury:catecholaminergic mechanisms and prospects for treatment -a review [J]. Brain Inj,2004,18(4):331-350.
[19] Smits M,Dippel DW,Houston GC,et al. Postconcussion syndrome after minor head injury:Brain activation of working memory and attention [J]. Hum Brain Mapp,2009,30(9):2789-2803.
[20] Matthews S,Simmons A,Strigo I. The effects of loss versus alteration of consciousness on inhibition-related brain activity among individuals with a history of blast-related concussion [J]. Psychiatry Res,2011,191(1):76-79.
[21] Fox MD,Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging [J]. Nat Rev Neurosci,2007,8(9):700-711.
[22] Han K,Mac Donald CL,Johnson AM,et al. Disrupted modular organization of resting-state cortical functional connectivity in U.S. military personnel following concussive‘mildblast-related traumatic brain injury [J]. Neuroimage,2014,84:76-96.
[23] Palacios EM,Sala-Llonch R,Junque C,et al. Resting-state functional magnetic resonance imaging activity and connectivity and cognitive outcome in traumatic brain injury [J]. JAMA Neurol,2013,70(7):845-851.
[24] Stevens MC,Lovejoy D,Kim J,et al. Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury [J]. Brain Imaging Behav,2012,6(2):293-318.
[25] Maravilla KR. Gadobenate dimeglumine-enhanced MR imaging of patients with CNS diseases [J]. Eur Radiol,2006,16:M8-M15.
[26] Liu W,Wang B,Wolfowitz R,et al. Perfusion deficits in patients with mild traumatic brain injury characterized by dynamic susceptibility contrast MRI [J]. NMR Biomed,2013,26(6):651-663.
[27] Wei XE,Wang D,Li MH,et al. A useful tool for the initial assessment of blood-brain barrier permeability after traumatic brain injury in rabbits:Dynamic contrast-enhanced magnetic resonance imaging [J]. J Trauma,2011, 71(6):1645-1650.
[28] Hunter JV,Wilde EA,Tong KA,et al. Emerging imaging tools for use with traumatic brain injury research [J]. J Neurotrauma,2012,29(4):654-671.
[29] Ge Y,Patel MB,Chen Q,et al. Assessment of thalamic perfusion in patients with mild traumatic brain injury by true FISP arterial spin labelling MR imaging at 3T [J]. Brain Inj,2009,23(7):666-674.
[30] Kim J,Whyte J,Patel S,et al. Resting cerebral blood flow alterations in chronic traumatic brain injury:An arterial spin labeling perfusion FMRI study [J]. J Neurotrauma,2010,27(8):1399-1411.
[31] Amen DG,Newberg A,Thatcher R,et al. Impact of playing American professional football on long-term brain function [J]. J Neuropsychiatry Clin Neurosci,2011,23(1):98-106.
[32] Amen DG,Wu JC,Taylor D,et al. Reversing brain damage in former NFL players:Implications for traumatic brain injury and substance abuse rehabilitation [J]. J Psychoactive Drugs,2011,43(1):1-5.
[33] Umile EM,Sandel ME,Alavi A,et al. Dynamic imaging in mild traumatic brain injury:Support for the theory of medial temporal vulnerability [J]. Arch Phys Med Rehabil,2002,83(11):1506-1513.
[34] Pierpaoli C,Barnett A,Pajevic S,et al. Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture [J]. Neuroimage,2001,13(6 Pt 1):1174-1185.
[35] Niogi SN,Mukherjee P,Ghajar J,et al. Structural dissociation of attentional control and memory in adults with and without mild traumatic brain injury [J]. Brain,2008, 131(Pt 12):3209-3221.
[36] Koerte IK,Ertl-Wagner B,Reiser M,et al. White matter integrity in the brains of professional soccer players without a symptomatic concussion [J]. JAMA,2012,308(18):1859-1861.
[37] Michailovich O,Rathi Y,Dolui S. Spatially regularized compressed sensing for high angular resolution diffusion imaging [J]. IEEE Trans Med Imaging,2011,30(5):1100-1115.
[38] Ennis DB,Kindlmann G. Orthogonal tensor invariants and the analysis of diffusion tensor magnetic resonance images [J]. Magn Reson Med,2006,55(1):136-146.
[39] Ng TS,Lin AP,Koerte IK,et al. Neuroimaging in repetitive brain trauma [J]. Alzheimers Res Ther,2014,6(1):10.
[40] Yeo RA,Gasparovic C,Merideth F,et al. A longitudinal proton magnetic resonance spectroscopy study of mild traumatic brain injury [J]. J Neurotrauma,2011,28(1):1-11.
[41] Cecil KM,Hills EC,Sandel ME,et al. Proton magnetic resonance spectroscopy for detection of axonal injury in the splenium of the corpus callosum of brain-injured patients [J]. J Neurosurg,1998,88(5):795-801.
[42] Peskind ER,Petrie EC,Cross DJ,et al. Cerebrocerebellar hypometabolism associated with repetitive blast exposure mild traumatic brain injury in 12 Iraq war veterans with persistent post-concussive symptoms [J]. Neuroimage,2011,54:S76-S82.
[43] Provenzano FA,Jordan B,Tikofsky RS,et al. F-18 FDG PET imaging of chronic traumatic brain injury in boxers:a statistical parametric analysis [J]. Nucl Med Commun,2010,31(11):952-957.
[44] Xia CF,Arteaga J,Chen G,et al. 18F T807,a novel tau positron emission tomography imaging agent for Alzheimer′s disease [J]. Alzheimers Dement,2013,9(6):666-676.
(收稿日期:2018-05-07 本文編輯:蘇 暢)