張?chǎng)┬?,張妍,張衍軍,吳啟超,劉亞?wèn)|,劉宗建,關(guān)云,陳學(xué)明,b
1.首都醫(yī)科大學(xué)附屬北京潞河醫(yī)院,a.中心實(shí)驗(yàn)室;b.脊柱外科,北京市101149
脊髓損傷后通常會(huì)發(fā)生一系列病理變化,包括血管系統(tǒng)崩解、水腫、免疫細(xì)胞浸潤(rùn)、炎癥反應(yīng)、神經(jīng)膠質(zhì)增生/膠質(zhì)瘢痕形成、細(xì)胞凋亡和死亡以及脫髓鞘等[1]。長(zhǎng)期激活的淋巴細(xì)胞、小膠質(zhì)細(xì)胞和巨噬細(xì)胞等免疫細(xì)胞可導(dǎo)致神經(jīng)系統(tǒng)發(fā)生繼發(fā)性損傷,從而引起受損局部微環(huán)境發(fā)生改變,并阻礙中樞神經(jīng)系統(tǒng)(central nervous system,CNS)中軸突的再生[2]。CNS損傷后引起的缺血缺氧、興奮性氨基酸毒性作用、自由基及炎癥反應(yīng)是造成繼發(fā)性損傷的主要原因。由此將脊髓損傷分為急性脊髓損傷和慢性脊髓損傷。急性脊髓損傷主要由原發(fā)性機(jī)械損傷造成,主要病理特點(diǎn)包括神經(jīng)元壞死、軸突變性和脫髓鞘等;慢性脊髓損傷主要由繼發(fā)性損傷引起,主要是膠質(zhì)瘢痕、炎癥及囊腔空洞形成[3]。
低氧及高氧預(yù)處理是指機(jī)體預(yù)先經(jīng)過(guò)短暫的低氧或高氧刺激,再恢復(fù)其正常氧狀態(tài),并反復(fù)多次,使機(jī)體對(duì)低氧或高氧產(chǎn)生適應(yīng),提高機(jī)體對(duì)氧的耐受。目前針對(duì)脊髓損傷治療的研究主要集中于藥物保護(hù)、干細(xì)胞治療以及組織工程治療等方面,應(yīng)用物理手段研究脊髓損傷的報(bào)道較少。本文綜述近幾年關(guān)于應(yīng)用低壓氧及高壓氧預(yù)處理探討脊髓損傷后保護(hù)作用的文獻(xiàn),探討其對(duì)神經(jīng)元的影響及對(duì)脊髓的營(yíng)養(yǎng)和保護(hù)作用。
低壓氧預(yù)處理作為一種有效的物理防御手段,在脊髓損傷的研究中鮮有報(bào)道。Satriotomo等[4]提出RAIH能增加運(yùn)動(dòng)神經(jīng)元中生長(zhǎng)因子與營(yíng)養(yǎng)因子的表達(dá),從而誘導(dǎo)呼吸運(yùn)動(dòng)的可塑性及神經(jīng)保護(hù)??伤苄钥稍诙鄠€(gè)控制呼吸的神經(jīng)系統(tǒng)發(fā)生,包括腦干整合神經(jīng)元、外周化學(xué)感受器和呼吸運(yùn)動(dòng)神經(jīng)核[5-7]。Satriotomo等提出RAIH能作為提高運(yùn)動(dòng)神經(jīng)元存活率和細(xì)胞移植的預(yù)處理手段之一。
在細(xì)胞水平上,間歇性低氧能改變突觸可塑性和神經(jīng)保護(hù)關(guān)鍵分子的表達(dá)。研究RAIH誘導(dǎo)突觸可塑性最常見(jiàn)的模型是膈神經(jīng)長(zhǎng)時(shí)程易化(phrenic long term facilitation,pLTF)伴急性間歇性缺氧(acute intermittent hypoxia,AIH)模型,需要脊髓中5-羥色胺受體激活后,與腦源性神經(jīng)營(yíng)養(yǎng)因子(brain-derived neurotrophic factor,BDNF)結(jié)合,形成5-羥色胺依賴綜合體[7]。RAIH能引起膈神經(jīng)運(yùn)動(dòng)核中多種分子pLTF后表達(dá)增加,包括BDNF、高親和性受體和酪氨酸激酶受體B(tyrosine receptor kinase B,TrkB)等[8-9]。Lovett-Barr等[8]和 Prosser-Loose等[10]發(fā)現(xiàn),持續(xù)每天進(jìn)行AIH能改善頸脊髓損傷大鼠的前肢運(yùn)動(dòng)功能,效果能持續(xù)數(shù)周。
在CNS中,BDNF是強(qiáng)大的神經(jīng)元興奮和突觸傳遞的調(diào)節(jié)劑[11],物理運(yùn)動(dòng)能增加腦和脊髓中BDNF的表達(dá),而B(niǎo)DNF表達(dá)增加能反應(yīng)運(yùn)動(dòng)功能的變化[12]。RAIH成為能夠誘發(fā)脊髓中BDNF和TrkB表達(dá),開(kāi)始逐漸被關(guān)注。
低氧預(yù)處理能有效提高移植后骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cells,BMSC)的存活率,并對(duì)神經(jīng)功能有保護(hù)作用,使干細(xì)胞移植到缺血組織后能更好抵抗缺血狀態(tài);它能抑制血脊髓屏障和細(xì)胞凋亡,抑制組織缺血再灌注所造成的組織損傷,并上調(diào)缺氧誘導(dǎo)因子-1(hypoxia inducible factor-1,HIF-1)在脊髓組織中的表達(dá)[13]。這能成功提高BMSC中的細(xì)胞含量以及宿主細(xì)胞的存活率[14]。
BMSC能有效抑制脊髓缺血再灌注損傷[15]。一些體內(nèi)和體外研究證明,低氧預(yù)處理可能提高BMSC對(duì)低氧環(huán)境的適應(yīng)性,并增加其細(xì)胞活性,從而很好抑制細(xì)胞凋亡[16-18];使其分泌多種細(xì)胞因子、趨化因子和生長(zhǎng)因子,促進(jìn)組織修復(fù)[19]。
血脊髓屏障能調(diào)節(jié)和限制大分子物質(zhì)進(jìn)入CNS,保持脊髓正常微環(huán)境。原發(fā)性損傷會(huì)造成血脊髓屏障受損并改變其蛋白滲透性,炎性物質(zhì)能夠自由進(jìn)入,從而誘發(fā)和加重脊髓損傷。在心肌細(xì)胞研究中,低氧預(yù)處理能增強(qiáng)心肌組織中BMSC的修復(fù)能力,促進(jìn)血管生成[20];低氧預(yù)處理的BMSC能夠有效抑制缺血組織中細(xì)胞凋亡[21]。
基因修飾的神經(jīng)干細(xì)胞(neural stem cell,NSC)能被移植進(jìn)受損的脊髓中,促進(jìn)運(yùn)動(dòng)功能恢復(fù)[22]。Oh等[23]將NSC與骨髓基質(zhì)細(xì)胞(marrow-derived stroma cell,MSC)共培養(yǎng),在培養(yǎng)過(guò)程中采用低氧預(yù)處理,發(fā)現(xiàn)低氧預(yù)處理不僅能在體外促進(jìn)MSC與NSC共培養(yǎng)細(xì)胞的存活及報(bào)告基因的表達(dá),在體內(nèi)也能起同樣作用。
呼吸功能不全是高頸段脊髓損傷后死亡的主要原因。雖然呼吸運(yùn)動(dòng)可以隨時(shí)間逐漸恢復(fù),但其自主恢復(fù)能力有限。Golder等[24]發(fā)現(xiàn),在慢性脊髓損傷中,間歇性低氧能在大多數(shù)患者中有效誘導(dǎo)呼吸功能恢復(fù),同時(shí)誘發(fā)自主呼吸功能恢復(fù)。
Blight[25]的關(guān)注重點(diǎn)在于急性脊髓損傷后如何修復(fù)脊髓軸突,從而引導(dǎo)神經(jīng)通路修復(fù)。脊髓損傷通常是不完全的,受損的運(yùn)動(dòng)系統(tǒng)中通常能觀察到未受損的軸突神經(jīng),并為神經(jīng)軸突自發(fā)放電功能的恢復(fù)提供酶作用物。但在長(zhǎng)期脊髓損傷患者中,這種自發(fā)功能恢復(fù)的治療方案幾乎不存在。
慢性脊髓損傷的發(fā)病機(jī)制復(fù)雜,目前一般認(rèn)為細(xì)胞凋亡和死亡是造成慢性脊髓損傷的主要原因。間歇性低氧可以誘發(fā)脊髓5-羥色胺依賴的可塑性,通過(guò)pLTF加強(qiáng)突觸與運(yùn)動(dòng)神經(jīng)元之間的聯(lián)系。在pLTF過(guò)程中,脊髓損傷后4~8周,由5-羥色胺支配的膈運(yùn)動(dòng)神經(jīng)元發(fā)生明顯變化[24]。目前認(rèn)為,間歇性低氧在急性脊髓損傷后是增強(qiáng)呼吸運(yùn)動(dòng)的最佳方法之一,為脊髓損傷后功能的恢復(fù)提供了一種新的潛在治療方式。
高壓氧能改善脊髓損傷后肢體活動(dòng),并延緩病變發(fā)生;在受損的神經(jīng)組織中減輕繼發(fā)性炎癥反應(yīng),提高氧分壓,抑制細(xì)胞凋亡,并促進(jìn)神經(jīng)組織再生;同時(shí)它能改善組織缺氧狀態(tài),上調(diào)細(xì)胞中的線粒體酶活性,使損傷細(xì)胞得到修復(fù),并促進(jìn)正常代謝反應(yīng);另外,高壓氧能有效抑制活化的小膠質(zhì)細(xì)胞分泌炎癥因子,從而調(diào)節(jié)小膠質(zhì)細(xì)胞介導(dǎo)的免疫反應(yīng)[26-29]。
高壓氧具有保護(hù)脊髓中細(xì)胞結(jié)構(gòu)與組織結(jié)構(gòu)完整性的作用,縮短受損神經(jīng)細(xì)胞的再生周期,并促進(jìn)神經(jīng)纖維再生。目前,高壓氧干預(yù)在脊髓損傷治療中的作用已經(jīng)在多項(xiàng)試驗(yàn)中被證實(shí),這一治療方式還被廣泛應(yīng)用于各種特殊事故及神經(jīng)類疾病中,包括一氧化碳中毒、氣體栓塞、減壓病等[30]。
Lu等[31]將高氧預(yù)處理作用于脊髓損傷大鼠,同時(shí)利用低氧預(yù)處理作為對(duì)照,發(fā)現(xiàn)無(wú)論高壓氧預(yù)處理還是低壓氧預(yù)處理都能促進(jìn)神經(jīng)功能恢復(fù),抑制細(xì)胞凋亡,促進(jìn)軸突再生和運(yùn)動(dòng)行為的恢復(fù),能作為神經(jīng)外科手術(shù)有效的預(yù)防措施。目前,低氧和高氧已經(jīng)被廣泛應(yīng)用于保護(hù)中樞神經(jīng)系統(tǒng)的研究中。
HIF-1由兩種亞基組成,通過(guò)泛素蛋白酶途徑發(fā)揮作用,在低氧條件下穩(wěn)定存在并發(fā)揮功能,但在常氧狀態(tài)下快速降解;其亞型HIF-1b卻在常氧中趨于穩(wěn)定。HIF-1能激活轉(zhuǎn)錄基因編碼VEGF、紅細(xì)胞生成素、糖酵解酶、葡萄糖轉(zhuǎn)運(yùn)蛋白等。脊髓損傷后,這些蛋白能增加氧氣運(yùn)送,促進(jìn)代謝反應(yīng)[32]。
VEGF轉(zhuǎn)錄可上調(diào)HIF-1在5'啟動(dòng)子區(qū)與低氧反應(yīng)元件結(jié)合。在大多數(shù)低氧環(huán)境中,HIF-1能介導(dǎo)VEGF上調(diào)。白質(zhì)損傷及前肢癱瘓后16~20周內(nèi),大量細(xì)胞表達(dá)HIF-1,VEGF迅速增加。脊髓損傷后,VEGF和HIF-1的表達(dá)均明顯上調(diào)。體外研究表明,低氧預(yù)處理的BMSC能促進(jìn)HIF-1分泌,提高細(xì)胞對(duì)低氧環(huán)境的適應(yīng)性,從而達(dá)到神經(jīng)保護(hù)作用[33]。
預(yù)處理是一種內(nèi)源性保護(hù)措施,在循環(huán)系統(tǒng)、神經(jīng)系統(tǒng)、器官移植中具有重要的臨床價(jià)值。低氧預(yù)處理和高氧預(yù)處理對(duì)中樞神經(jīng)缺血再灌注損傷的保護(hù)作用已經(jīng)得到較好證明[34]。
目前脊髓損傷的治療研究仍然集中于探討藥物或干細(xì)胞,很少?gòu)奈锢斫嵌?,包括低氧或高氧方面深入探討其神?jīng)保護(hù)作用和機(jī)制。本文從對(duì)低氧、高氧及低氧后一些重要的標(biāo)志性因子進(jìn)行探討,試圖將物理性保護(hù)引入脊髓損傷的研究中,為脊髓損傷的治療開(kāi)辟一條新的途徑。
[1]Barnabé-Heider F,G?ritz C,Sabelstr?m H,et al.Origin of new glial cells in intact and injured adult spinal cord[J].Cell Stem Cell,2010,7(4):470-482.
[2]Gonzalez R,Glaser J,Liu MT,et al.Reducing inflammation decreases secondary degeneration and functional deficit after spinal cord injury[J].Exp Neurol,2003,184(1):456-463.
[3]Hu R,Zhou J,Luo C,et al.Glial scar and neuroregeneration:histological,functional,and magnetic resonance imaging analysis in chronic spinal cord injury[J].JNeurosurg spine,2010,13(2):169-180.
[4]Satriotomo I,Nichols NL,Dale EA,et al.Repetitive acute intermittent hypoxia increases growth/neurotrophic factor expression in non-respiratory motor neurons[J].Neuroscience,2016,322:479-488.
[5]Prabhakar NR.Sensory plasticity of the carotid body:role of reactive oxygen species and physiological significance[J].Respir Physiol Neurobiol,2011,178(3):375-380.
[6]Kline DD.Chronic intermittent hypoxia affects integration of sensory input by neurons in the nucleus tractussolitarii[J].Respir Physiol Neurobiol,2010,174(1-2):29-36.
[7]Baker-Herman TL,Fuller DD,Bavis RW,et al.BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia[J].Nat Neurosci,2004,7(1):48-55.
[8]Lovett-Barr MR,Satriotomo I,Muir GD,et al.Repetitive intermittent hypoxia induces respiratory and somatic motor recovery after chronic cervical injury[J].JNeurosci,2012,32(11):3591-3600.
[9]Satriotomo I,Dale EA,Dahlberg JM,et al.Repetitive acute intermittent hypoxia increases expression of proteins associated with plasticity in thephrenic motor nucleus[J].Exp Neurol,2012,237(1):103-115.
[10]Prosser-Loose EJ,Hassan A,Mitchell GS,et al.Delayed intervention with intermittent hypoxia and training task improves forelimb function in a rat model of cervical spinal injury[J].J Neurotrauma,2015,32(18):1403-1412.
[11]Kafitz KW,Rose CR,Thoenen H,et al.Neurotrophin evoked rapid excitation through TrkB receptors[J].Nature,1999,401(6756):918-921.
[12]Gomez-Pinilla F,Ying Z,Opazo P,et al.Differential regulation by exercise of BDNFand NT-3 in rat spinal cord and skeletal muscle[J].Eur JNeurosci,2001,13(6):1078-1084.
[13]Wang Z,Fang B,Tan Z,et al.Hypoxic preconditioning increases the protective effect of bone marrow mesenchymal stem cells on spinal cord ischemia/reperfusion injury[J].Mol Med Rep,2016,13(3):1953-1960.
[14]Theus MH,Wei L,Cui L,et al.In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain[J].Exp Neurol,2008,210(2):656-670.
[15]Fang B,Wang H,Sun XJ,et al.Intrathecal transplantation of bone marrow stromal cells attenuates blood spinal cord barrier disruption induced by spinal cord ischemia reperfusion injury in rabbits[J].JVasc-Surg,2013,58(4):1043-1052.
[16]Huang X,Su K,Zhou L,et al.Hypoxia preconditioning of mesenchymal stromal cells enhances PC3 cell lymphatic metastasis accompanied by VEGFR 3/CCR7 activation[J].J Cell Biochem,2013,114(12):2834-2841.
[17]Peterson KM,Aly A,Lerman A,et al.Improved survival of mesenchymal stromal cell after hypoxia preconditioning:role of oxidative stress[J].Life Sci,2011,88(1-2):65-73.
[18]Liu H,Liu S,Li Y,et al.The role of SDF 1 CXCR4/CXCR7 axis in the therapeutic effects of hypoxia preconditioned mesenchymal stem cells for renal ischemia/reperfusion injury[J].PLoS One,2012,7(4):e34608.
[19]Chang CP,Chio CC,Cheong CU,et al.Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury[J].Clin Sci(Lond),2013,124(3):165-176.
[20]Wang JA,He A,Hu X,et al.Anoxic preconditioning:A way to enhance the cardioprotection of mesenchymal stem cells[J].Int JCardiol,2009,133(3):410-412.
[21]He A,Jiang Y,Gui C,et al.The anti-apoptotic effect of mesenchymal stem cell transplantation on ischemic myocardium is enhanced by anoxic preconditioning[J].Can JCardiol,2009,25(6):353-358.
[22]Kim SU.Human neural stem cells genetically modified for brain repair in neurological disorders[J].Neuropathology,2004,24(3):159-171.
[23]Oh JS,Ha Y,An SS,et al.Hypoxia-preconditioned adipose tissue-derived mesenchymal stem cell increase the survival and gene expression of engineered neural stem cells in a spinal cord injury model[J].Neurosci Lett,2010,472(3):215-219.
[24]Golder FJ,Mitchell GS.Spinal synaptic enhancement with acute intermittent hypoxia improvesrespiratory function after chronic cervical spinal cord injury[J].JNeurosci,2005,25(11):2925-2932.
[25]Blight AR.Just one word:plasticity[J].Nat Neurosci,2004,7(3):206-208.
[26]Tai PA,Chang CK,Niu KC,et al.Attenuating experimental spinal cord injury by hyperbaric oxygen:stimulating production of vasculoendothelial and glial cell line-derived neurotrophic growth factors and interleukin-10[J].JNeurotrauma,2010,27(6):1121-1127.
[27]Cristante AF,Damasceno ML,Barros Filho TE,et al.Evaluation of the effects of hyperbaric oxygen therapy for spinal cord lesion in correlation with the moment of intervention[J].Spinal Cord,2012,50(7):502-506.
[28]Dayan K,Keser A,Konyalioglu S,et al.The effect of hyperbaric oxygen on neuroregeneration following acute thoracic spinal cord injury[J].Life Sci,2012,90(9-10):360-364.
[29]Topuz K,Colak A,Cemil B,et al.Combined hyperbaric oxygen and hypothermia treatment on oxidative stress parameters after spinal cord injury:an experimental study[J].Archiv Med Res,2010,41(7):506-512.
[30]Al-Waili NS,Butler GJ,Beale J,et al.Hyperbaric oxygen in the treatment of patients with cerebral stroke,brain trauma,and neurologic disease[J].Adv Ther,2005,22(6):659-678.
[31]Lu PG,Hu SL,Hu R,et al.Functional recovery in rat spinal cord injury induced by hyperbaric oxygen preconditioning[J].Neurol Res,2012,34(10):944-951.
[32]Chen MH,Ren QX,Yang WF,et al.Influences of HIF-lαon Bax/Bcl-2 and VEGF expressions in rats with spinal cord injury[J].Int J Clin Exp Pathol,2013,6(11):2312-2322.
[33]Liu H,Xue W,Ge G,et al.Hypoxic preconditioning advances CXCR4 and CXCR7 expression by activating HIF 1alpha in MSCs[J].Biochem Biophys Res Commun,2010,401(4):509-515.
[34]盧培剛,馮華,胡榮,等.高壓氧預(yù)處理對(duì)脊髓損傷后軸突再生影響實(shí)驗(yàn)研究[J].中華神經(jīng)外科疾病研究雜志,2011,10(4):316-320.