劉肖依 高 軍 雷 旭 王鵬云 喻 婧
(西南大學(xué)心理學(xué)部,重慶 400700)
睡眠片段化(SF)是指睡眠過程中反復(fù)出現(xiàn)覺醒的現(xiàn)象,且每次覺醒持續(xù)時(shí)間較短〔1,2〕。SF是睡眠障礙的標(biāo)志之一,往往標(biāo)志著睡眠質(zhì)量的下降。研究表明,連續(xù)睡眠不僅對心血管健康、免疫功能和壽命具有重要意義,還在學(xué)習(xí)和記憶鞏固過程中扮演重要角色〔3,4〕。而與之相對,SF作為睡眠維持性失眠的標(biāo)志,不僅會(huì)對認(rèn)知功能造成負(fù)面影響,還可使大腦的可塑性發(fā)生永久性改變〔1,3〕。本文對老年人SF產(chǎn)生機(jī)制、生理基礎(chǔ)及影響機(jī)制三方面進(jìn)行綜述。
1.1睡眠神經(jīng)機(jī)制受老化的影響 神經(jīng)遞質(zhì)方面,老年人與年輕人相比體內(nèi)褪黑激素和5-羥色胺分泌減少,夜間皮質(zhì)醇分泌水平增加〔5〕。動(dòng)物研究表明,老年大鼠體內(nèi)促進(jìn)覺醒的食欲素細(xì)胞外水平較低〔6〕,而活動(dòng)狀態(tài)下的老年大鼠體內(nèi)去甲腎上腺素水平和去甲腎上腺素能神經(jīng)元活性較低〔7〕。此外,老年大鼠會(huì)產(chǎn)生更多的腺苷酸,但腺苷酸受體的敏感性降低使它們無法產(chǎn)生和年輕大鼠同等強(qiáng)度的腺苷酸信號(hào),從而造成睡眠驅(qū)力降低。在行為層面上表現(xiàn)為SF增加、δ波(2~4 Hz的腦電波)減少、睡眠剝奪后的恢復(fù)性睡眠減少〔8〕。調(diào)節(jié)睡眠-覺醒周期的腦區(qū)中神經(jīng)遞質(zhì)和受體水平的變化會(huì)引發(fā)SF,這些年齡引起的神經(jīng)信號(hào)方面的變化可能是造成老年人睡眠/覺醒維持困難的原因。
此外,老年人大腦結(jié)構(gòu)和功能的退行性變化也是引起SF的原因之一。大量文獻(xiàn)表明,視上核(SCN)的中央生物鐘隨年齡衰退可能是造成睡眠-覺醒周期紊亂的關(guān)鍵〔9,10〕。老化影響機(jī)體晝夜節(jié)律的峰值和時(shí)間,主要表現(xiàn)為晝夜節(jié)律波動(dòng)幅度減小、覺醒時(shí)間增長、睡眠時(shí)間縮短和SF〔8,11,12〕。有研究發(fā)現(xiàn),相對于年輕人和中年人,老年人的白天小睡數(shù)量和夜間SF指數(shù)都顯著升高〔13~18〕。動(dòng)物研究發(fā)現(xiàn)將倉鼠胎兒的SCN組織移植到老年倉鼠的第三腦室可以逆轉(zhuǎn)年齡造成的行為節(jié)律衰退〔19,20〕。此外,覺醒-活動(dòng)神經(jīng)元的數(shù)量減少及功能衰退也會(huì)使老年人難以維持睡眠和覺醒狀態(tài),而SF則會(huì)通過對覺醒-活動(dòng)神經(jīng)元造成負(fù)面影響進(jìn)而引起神經(jīng)退行性疾病〔2〕。SF程度與癡呆嚴(yán)重性呈正比〔21〕。但是,也有學(xué)者認(rèn)為老化過程中睡眠的改變不能歸結(jié)于睡眠相關(guān)神經(jīng)元的損傷,因?yàn)槭箢愌芯匡@示年輕組和老年組腹外側(cè)視前區(qū)(與睡眠產(chǎn)生相關(guān))的神經(jīng)元數(shù)量無顯著差異〔8〕。
老化還會(huì)造成個(gè)體日間體溫的下降〔22,23〕。由于果蠅的睡眠-覺醒周期、節(jié)律強(qiáng)度和SF與人類十分相似,實(shí)驗(yàn)中常選擇果蠅作為睡眠研究模型。研究發(fā)現(xiàn),果蠅SF的概率主要取決于環(huán)境溫度,進(jìn)而影響壽命。低溫會(huì)增加SF發(fā)生的概率,表明SF是生理老化的一個(gè)組成部分〔24〕。以往研究表明,老年人的體溫隨著年齡的增長而逐漸降低〔25〕。由此推測,老年人體溫的降低也是引起其SF的原因之一。
綜上,我們發(fā)現(xiàn)老化過程中伴隨的神經(jīng)遞質(zhì)、大腦結(jié)構(gòu)與功能、體溫等方面的改變會(huì)導(dǎo)致SF。雖然尚存爭議,但是一個(gè)普遍共識(shí)是睡眠相關(guān)激素水平的變化、神經(jīng)元數(shù)量和敏感性降低及大腦結(jié)構(gòu)和功能的退化,主要通過改變老年人睡眠-覺醒周期和晝夜節(jié)律引起SF。而體溫對SF的影響機(jī)制需進(jìn)一步研究進(jìn)行闡釋。另外,一些睡眠相關(guān)的不良行為,如長期臥床、過度覺醒、安眠藥或其他藥物的使用等也會(huì)造成SF。上床睡覺太早、長期臥床往往會(huì)提高SF程度,進(jìn)而造成睡眠質(zhì)量下降,致使臥床時(shí)間增加和進(jìn)一步的SF〔4,26,27〕。而與之相反,過度覺醒狀態(tài)則可能涉及睡眠發(fā)作、夜間覺醒后難以恢復(fù)睡眠等問題〔27〕。
1.2老化影響SF的分子機(jī)制 研究發(fā)現(xiàn)伴隨著老化表現(xiàn)出來的SF可能是由基因和周圍環(huán)境共同作用引發(fā)的〔24,28〕。與人類相似,果蠅的睡眠也會(huì)隨著年齡增長而逐漸片段化。研究者采用果蠅對影響睡眠的基因進(jìn)行研究,結(jié)果發(fā)現(xiàn)Hyperkinetic基因(一種控制鉀離子入胞的基因)的不同突變型會(huì)產(chǎn)生不同睡眠表現(xiàn)型,證明果蠅體內(nèi)鉀離子通道在產(chǎn)生睡意的過程中發(fā)揮關(guān)鍵作用〔28〕。果蠅128Q polyglutamine基因的泛神經(jīng)元表達(dá)對夜間睡眠造成影響,主要表現(xiàn)為睡眠時(shí)長縮短和片段化,這與人類亨廷頓病(HD)患者的表現(xiàn)一致;攜帶amnesiac基因突變型amnX8的果蠅表現(xiàn)出SF和睡眠潛伏期縮短,是導(dǎo)致SF的原因之一〔29〕,提示果蠅在老化過程中表現(xiàn)出的SF與其攜帶的基因相關(guān)。
哺乳類動(dòng)物和果蠅具有相同的睡眠特征〔30,31〕。研究發(fā)現(xiàn),與野生型對照組相比,基因變異的PLB1Triple小鼠從第9個(gè)月便開始出現(xiàn)非快速眼動(dòng)(NREM)SF和覺醒增加,而野生型小鼠從第21個(gè)月開始才出現(xiàn)這些癥狀。此外,變異小鼠的睡眠-覺醒周期和腦電(EEG)圖譜也發(fā)生了異常,海馬功率譜顯示這些小鼠出現(xiàn)了警惕狀態(tài)和腦區(qū)的年齡特異性變化〔32〕。表明特定基因與老化過程相互作用導(dǎo)致其攜帶者的SF具有年齡特異性。
由此可知,基因在SF的產(chǎn)生過程中也扮演重要角色,個(gè)體攜帶的特定基因會(huì)在老化過程中決定并促進(jìn)SF的發(fā)生。但是,目前已有研究主要揭示了哪些基因與SF有關(guān)及其生理機(jī)制,而基因如何受老化影響進(jìn)行表達(dá)的機(jī)制尚不明確。
1.3老化相關(guān)疾病引發(fā)SF 除了老化本身給睡眠帶來的影響,某些老化相關(guān)睡眠障礙〔如阻塞性睡眠呼吸暫停(OSA)、不寧腿綜合征等〕也和老年人SF密切相關(guān)。睡眠呼吸紊亂(SDB)會(huì)促進(jìn)SF,如睡眠呼吸暫停、呼吸不足、窒息等,這類由睡眠呼吸事件引發(fā)的覺醒被定義為呼吸努力相關(guān)的覺醒。研究結(jié)果顯示,老年OSA患者的睡眠更容易受呼吸暫停/不足的影響而變得片段化〔33〕。OSA引發(fā)的重復(fù)性呼吸暫?;蚝粑蛔闶寡躏柡投乳g歇性地突然減少,患者在睡眠過程中還會(huì)出現(xiàn)反復(fù)性皮層覺醒,兩者共同導(dǎo)致了SF〔3,34〕。同時(shí),睡眠呼吸暫停導(dǎo)致睡眠增加以彌補(bǔ)SF帶來的影響,但是隨著睡眠時(shí)間的延長SF更易發(fā)生〔26,35,36〕。此外,相對于正常人,發(fā)作性睡病(NC)患者也會(huì)表現(xiàn)出SF和睡眠階段的多次轉(zhuǎn)換〔37,38〕。
另一方面,某些神經(jīng)退行性疾病也與SF有關(guān)。阿爾茨海默病(AD)患者的癥狀之一是睡眠-覺醒周期的碎片化,主要體現(xiàn)在夜間活動(dòng)和白天睡眠的增加〔9,39,40〕。神經(jīng)退行性疾病AD和帕金森病(PD)患者經(jīng)常出現(xiàn)入睡抽動(dòng)(HJs),由此造成的睡眠中斷會(huì)增加SF的發(fā)生,給睡眠鞏固帶來負(fù)面影響〔41,42〕。其中,SF與輕度認(rèn)知障礙(MCI)患者的腦脊液(CSF)-食欲素水平升高相關(guān),表明食欲素系統(tǒng)參與了AD的早期階段,導(dǎo)致睡眠潛伏期延長、睡眠效率降低和快速眼動(dòng)(REM)睡眠障礙〔43〕。研究發(fā)現(xiàn),食欲素系統(tǒng)失調(diào)會(huì)導(dǎo)致MCI患者的睡眠障礙,主要影響REM并導(dǎo)致睡眠潛伏期增長和夜間覺醒增加〔43〕。
綜上,老化過程中的睡眠相關(guān)疾病引發(fā)呼吸事件促進(jìn)SF的發(fā)生,而神經(jīng)退行性疾病則通過改變激素水平進(jìn)而影響睡眠。在老化的基礎(chǔ)上,這兩類疾病的發(fā)生和發(fā)展都促進(jìn)了SF的發(fā)生。SF是由多方面因素共同作用引起,隨著年齡增長而逐漸顯現(xiàn)出來的一項(xiàng)睡眠障礙?;蚺c老化相互作用,決定了SF發(fā)生的時(shí)間和時(shí)程;老化過程中的疾病又在不同程度上促進(jìn)了SF的發(fā)生,加強(qiáng)了它的影響;不良的睡眠習(xí)慣則使這一過程惡性循環(huán)。
2.1對認(rèn)知能力的影響 研究表明,SF在老年人認(rèn)知功能衰退過程中起重要作用〔44~46〕。包括動(dòng)物實(shí)驗(yàn)在內(nèi)的一系列研究證明,SF會(huì)引起注意力和警覺性的降低,SF程度越高,在注意和警覺測試上的成績越差〔3,34,47〕。如果以1 min為間隔對睡眠進(jìn)行短暫干擾會(huì)損害日間功能和警覺任務(wù)的表現(xiàn),其程度和完全睡眠剝奪基本一致〔1〕。但是有研究者發(fā)現(xiàn),部分SF的老年人會(huì)表現(xiàn)出較高的執(zhí)行功能,推測可能是由于這些老年人為了取得較好的測試成績而表現(xiàn)出過度覺醒〔48〕。
對病理性老化的研究同樣支持了上述結(jié)論。OSA引起的REM SF會(huì)對空間導(dǎo)航能力造成損傷,其損傷程度和片段化程度呈正比〔49〕。SDB患者會(huì)同時(shí)表現(xiàn)出夜間SF和血氧不足,一項(xiàng)長達(dá)8年的跟蹤研究顯示,SDB老年患者的記憶衰退主要由SF引起,而夜間血氧不足的作用較小〔50〕。由于老年人的SF主要發(fā)生在慢波睡眠(SWS)階段,且SWS有助于記憶鞏固過程相關(guān)的海馬-新皮層對話,它的片段化導(dǎo)致了慢波活動(dòng)(SWA)減少,進(jìn)而對睡眠依賴性記憶鞏固(SDC)造成負(fù)面影響〔51〕。有研究者推測,睡眠周期中的多個(gè)睡眠階段按順序進(jìn)行,對記憶整合所必須的蛋白質(zhì)合成十分重要。由于老年人在睡眠Ⅱ期和REM階段更容易發(fā)生SF,因此記憶功能表現(xiàn)出顯著下降〔52〕。MCI患者SDC下降的程度與他們在SWS和REM階段所表現(xiàn)出SF相關(guān),且SF程度越高患AD的概率越大〔53〕。
連續(xù)氣道正壓通氣(CPAP)作為治療OSA的有效手段,可以有效減少打鼾及呼吸暫停、改善患者睡眠質(zhì)量,進(jìn)而降低不良睡眠帶來的負(fù)面影響并提高患者整體認(rèn)知功能〔54~56〕?;隗w素的形態(tài)測定(VBM)顯示,在排除了年齡和性別的影響后,SF與白質(zhì)完整性的降低顯著相關(guān),而白質(zhì)與認(rèn)知功能密切相關(guān),它的萎縮促進(jìn)了老化過程中認(rèn)知衰退〔57〕。此外,一項(xiàng)在老年人中進(jìn)行的延遲樣本匹配(DMS)任務(wù)研究發(fā)現(xiàn),OSA患者的覺醒指數(shù)與其反應(yīng)時(shí)的延長及前額葉激活降低相關(guān)。同時(shí),患者SF導(dǎo)致其任務(wù)過程中前扣帶回(ACC)和背外側(cè)前額葉(DLPFC)功能連接減弱,使其額葉功能受損〔58〕。此外,海馬和丘腦在記憶的鞏固過程中有重要作用,但是長期的SF會(huì)導(dǎo)致海馬神經(jīng)發(fā)生(神經(jīng)細(xì)胞增殖)的顯著下降〔59〕。鼠類研究結(jié)果顯示,SF會(huì)引起海馬齒狀回(DG)神經(jīng)元再生的顯著減少,這可能是造成海馬體積減小的原因之一〔1〕。磁共振波譜分析發(fā)現(xiàn),健康老年被試的主觀睡眠中斷和海馬區(qū)膠質(zhì)改變有關(guān)〔59〕。同時(shí),在大鼠模型中,睡眠剝奪和SF都會(huì)對基底前腦(BF)造成顯著影響。異相SF會(huì)導(dǎo)致老年大鼠記憶衰退〔60〕。
依據(jù)上述結(jié)果,睡眠中斷導(dǎo)致睡眠階段順序紊亂和SDC受阻及SF引起的大腦皮層和功能連接改變和海馬、基底前腦等腦區(qū)的損傷,共同成為造成老年人認(rèn)知功能衰退的生理基礎(chǔ)。SF引起的大腦結(jié)構(gòu)和功能連接的損傷可能是老年人認(rèn)知衰退的原因之一。
2.2對情緒的影響 SF不僅會(huì)給認(rèn)知帶來損傷,還有可能增加老年人的負(fù)性情緒。SF使睡眠Ⅳ期出現(xiàn)δ波反彈進(jìn)而促進(jìn)抑郁產(chǎn)生,因?yàn)棣牟ǚ磸椗c一氧化氮的產(chǎn)生及血清素抑制密切相關(guān)〔61〕。而抑郁會(huì)進(jìn)一步導(dǎo)致睡眠中斷,因而受抑郁影響的老年人更容易發(fā)生SF。從生理角度來看,長期SF會(huì)損傷多巴胺能神經(jīng)元功能,可能是SF引起抑郁的神經(jīng)基礎(chǔ)〔62〕。此外,一項(xiàng)有關(guān)睡眠時(shí)長和片斷化程度的個(gè)體內(nèi)變異性研究表明,社會(huì)心理和生理壓力事件與個(gè)體的夜間SF程度相關(guān)〔63~66〕。上述結(jié)果提示,老年人SF與其情緒密切相關(guān)。
雖然有關(guān)研究較少,但已有文獻(xiàn)表明SF會(huì)引發(fā)負(fù)性情緒。但是其內(nèi)在機(jī)制和作用原理仍需進(jìn)一步探索。綜上所述,SF從生理和行為兩個(gè)層面對老年群體的認(rèn)知和情緒都造成了負(fù)性影響。而由SF引起的大腦功能退化和老化導(dǎo)致的身體功能衰退使老年人日?;顒?dòng)水平降低,損害了老年人的日間功能。同時(shí)由于惡性循環(huán),SF造成的變化很容易發(fā)展成為難以逆轉(zhuǎn)的長期損傷,因此應(yīng)該在睡眠惡化的初期階段采取切實(shí)有效的干預(yù)措施。
3.1運(yùn)動(dòng)干預(yù) 進(jìn)行規(guī)律的有氧運(yùn)動(dòng)的老年人SF程度較低。一項(xiàng)有關(guān)運(yùn)動(dòng)影響老年人睡眠的研究發(fā)現(xiàn),老年人的睡眠在每周3次連續(xù)10 w的運(yùn)動(dòng)之后有顯著提高。其中有氧運(yùn)動(dòng)組SF指數(shù)(SFI)下降了18.9,有氧運(yùn)動(dòng)和抗阻訓(xùn)練結(jié)合組下降了13.0,并且兩組被試在睡眠過程中總體活動(dòng)(動(dòng)作數(shù)量)顯著下降。提示相對于抗阻訓(xùn)練,有氧運(yùn)動(dòng)能夠更加有效地改善老年人的SF〔67〕。大鼠研究證實(shí),運(yùn)動(dòng)不僅可以提高體溫,還可以減少晝夜節(jié)律的碎片化,進(jìn)而降低SF的程度〔21,68〕。EEG研究結(jié)果顯示,運(yùn)動(dòng)后REM睡眠的θ波(4~8 Hz的腦電波)峰值有所上升,而θ波的出現(xiàn)表明大腦處于疲憊狀態(tài)且更容易入睡,表明運(yùn)動(dòng)可以促進(jìn)睡眠。此外,規(guī)律的作息也會(huì)使SF有所改善,而長期臥床和睡眠過多會(huì)造成SF。睡眠限制常被用來作為改善老年人SF的手段之一〔26〕,研究顯示睡眠時(shí)間限制策略和睡眠有關(guān)知識(shí)的科普教育可以顯著降低老年人的SF程度〔69〕。
3.2神經(jīng)信號(hào) 神經(jīng)信號(hào)的改變可以對改善SF起到積極作用。如胰島素/胰島素樣生長因子(IIS)和雷帕霉素靶標(biāo)(TOR)信號(hào)系統(tǒng)的活性降低,可以通過增加夜間睡眠和日間活動(dòng)減少SF,達(dá)到改善睡眠質(zhì)量的作用。研究發(fā)現(xiàn),在整個(gè)成年期間系統(tǒng)性地減少胰島素信號(hào),可以通過減緩衰老過程而降低老年蒼蠅SF的發(fā)生概率〔70〕。TOR信號(hào)可以調(diào)節(jié)IIS水平對夜間活動(dòng)和睡眠帶來的影響,并減少SF。即使在老年晚期,使用雷帕霉素對TOR進(jìn)行急性藥理學(xué)抑制也可以扭轉(zhuǎn)與年齡有關(guān)的SF〔70〕。此外,果蠅研究顯示多巴胺能信號(hào)可以通過調(diào)節(jié)不同活動(dòng)的喚醒程度進(jìn)而影響睡眠,而對多巴胺受體Ⅰ基因表達(dá)的干擾可以減少SF〔71〕。同時(shí),降低飲食中的卡路里也可以有效減少SF〔72〕。
綜上,在日常生活方面加強(qiáng)運(yùn)動(dòng)并保持規(guī)律的作息有助于減少SF帶來的影響;在神經(jīng)信號(hào)方面,胰島素和多巴胺信號(hào)水平的調(diào)節(jié)對于從藥理角度改善睡眠質(zhì)量有重要意義。此外,對睡眠相關(guān)疾病的治療手段也可以在某些程度上降低SF。如CPAP可以通過給上呼吸道提供空氣壓力以防止它在睡眠中發(fā)生阻塞,進(jìn)而減少呼吸不足和片段化睡眠的發(fā)生〔3,73〕。
綜上,SF給老年群體的生理和心理帶來多種負(fù)面影響,而由它造成的與睡眠密切相關(guān)的功能協(xié)同衰退更進(jìn)一步加重了其負(fù)面作用。認(rèn)識(shí)老年人SF的產(chǎn)生機(jī)制及其影響因素可以幫助我們更好地采取手段預(yù)防和改善SF帶來的影響。老化是一個(gè)復(fù)雜的過程,老化過程中多種因素交互作用引起了SF。特定基因的變異和表達(dá)使個(gè)體在老化進(jìn)程中更容易表現(xiàn)出SF,而神經(jīng)遞質(zhì)的分泌水平和傳導(dǎo)、大腦的結(jié)構(gòu)和功能及體溫等生理因素會(huì)在老化過程中逐漸發(fā)生改變,進(jìn)而促進(jìn)SF的發(fā)生。此外,老化相關(guān)睡眠障礙、神經(jīng)退行性疾病及抑郁等疾病的產(chǎn)生也與SF顯著相關(guān)。同時(shí),老年人的睡眠還會(huì)受到光照等環(huán)境因素和不良生活習(xí)慣的影響。未來研究可以從上述影響因素及因素與因素之間的交互作用進(jìn)一步闡釋老化引起SF的機(jī)制,以及探索有效的干預(yù)方法,提高老年人的睡眠質(zhì)量,延緩老化帶來的功能衰退。
4 參考文獻(xiàn)
1Guzman-Marin R,Bashir T,Suntsova N,etal.Hippocampal neurogenesis is reduced by sleep fragmentation in the adult rat〔J〕.Neuroscience,2007;148(1):325-33.
2Stern AL,Naidoo N.Wake-active neurons across aging and neurodegeneration:a potential role for sleep disturbances in promoting disease〔J〕.Springer Plus,2015;4:25.
3Malhotra RK,Desai AK.Healthy brain aging:what has sleep got to do with it〔J〕? Clin Geriatr Med,2010;26(1):45-56.
4Ancoli-Israel S,Kripke DF.Prevalent sleep problems in the aged〔J〕.Biofeedback Self Regul,1991;16(4):349-59.
5Bravo R,Matito S,Cubero J,etal.Tryptophan-enriched cereal intake improves nocturnal sleep,melatonin,serotonin,and total antioxidant capacity levels and mood in elderly humans〔J〕.Age(Dordr),2013;35(4):1277-85.
6Desarnaud F,Murillo-Rodriguez E,Lin L,etal.The diurnal rhythm of hypocretin in young and old F344 rats〔J〕.Sleep,2004;27(5):851-6.
7Naidoo N.The unfolded protein response in mouse cerebral cortex〔J〕.Methods Enzymol,2011;489:3-21.
8Murillo-Rodriguez E,Blanco-Centurion C,Gerashchenko D,etal.The diurnal rhythm of adenosine levels in the basal forebrain of young and old rats〔J〕.Neuroscience,2004;123(2):361-70.
9Wu YH,Swaab DF.Disturbance and strategies for reactivation of the circadian rhythm system in aging and Alzheimer′s disease〔J〕.Sleep Med,2007;8(6):623-36.
10Hofman MA,Swaab DF.Alterations in circadian rhythmicity of the vasopressin-producing neurons of the human suprachiasmatic nucleus(SCN) with aging〔J〕.Brain Res,1994;651(1-2):134-42.
11Dijk DJ,Kronauer RE.Commentary:models of sleep regulation:successes and continuing challenges〔J〕.J Biol Rhythms,1999;14(6):569-73.
12Hasan S,Dauvilliers Y,Mongrain V,etal.Age-related changes in sleep in inbred mice are genotype dependent〔J〕.Neurobiol Aging,2012;33(1):195,e113-26.
13Huang YL,Liu RY,Wang QS,etal.Age-associated difference in circadian sleep-wake and rest-activity rhythms〔J〕.Physiol Behav,2002;76(4-5):597-603.
14Opp MR,George A,Ringgold KM,etal.Sleep fragmentation and sepsis differentially impact blood-brain barrier integrity and transport of tumor necrosis factor-alpha in aging〔J〕.Brain Behav Immun,2015;50:259-65.
15Tune GS.Sleep and wakefulness in normal human adults〔J〕.Br Med J,1968;2(5600):269-71.
16Carskadon MA,Brown ED,Dement WC.Sleep fragmentation in the elderly:relationship to daytime sleep tendency〔J〕.Neurobiol Aging,1982;3(4):321-7.
17Webb WB,Swinburne H.An observational study of sleep of the aged〔J〕.Percept Mot Skills,1971;32(3):895-8.
18Van Someren EJ.Circadian and sleep disturbances in the elderly〔J〕.Exp Gerontol,2000;35(9-10):1229-37.
19Van Reeth O,Sturis J,Byrne MM,etal.Nocturnal exercise phase delays circadian rhythms of melatonin and thyrotropin secretion in normal men〔J〕.Am J Physiol,1994;266(6 Pt 1):E964-74.
20Viswanathan N,Davis FC.Suprachiasmatic nucleus grafts restore circadian function in aged hamsters〔J〕.Brain Res,1995;686(1):10-6.
21Pat-Horenczyk R,Klauber MR,Shochat T,etal.Hourly profiles of sleep and wakefulness in severely versus mild-moderately demented nursing home patients〔J〕.Aging(Milano),1998;10(4):308-15.
22Blanco-Centurion CA,Shiromani PJ.Beneficial effects of regular exercise on sleep in old F344 rats〔J〕.Neurobiol Aging,2006;27(12):1859-69.
23Weinert D.Circadian temperature variation and ageing〔J〕.Ageing Res Rev,2010;9(1):51-60.
24Koh K,Evans JM,Hendricks JC,etal.A Drosophila model for age-associated changes in sleep:wake cycles〔J〕.Proc Nat Acad Sci U S A,2006;103(37):13843-7.
25Waalen J,Buxbaum JN.Is older colder or colder older?The association of age with body temperature in 18,630 individuals〔J〕.J Gerontol Ser A Biol Sci Med Sci,2011;66A(5):487-92.
26Youngstedt SD,Kripke DF.Long sleep and mortality:rationale for sleep restriction〔J〕.Sleep Med Rev,2004;8(3):159-74.
27Basta M,Chrousos GP,Vela-Bueno A,etal.Chronic insomnia and stress system〔J〕.Sleep Med Clin,2007;2(2):279-91.
28Bushey D,Hughes KA,Tononi G,etal.Sleep,aging,and lifespan in Drosophila〔J〕.BMC Neurosci,2010;11:56.
29Liu W,Guo F,Lu B,etal.Amnesiac regulates sleep onset and maintenance in Drosophila melanogaster〔J〕.Biochem Biophys Res Commun,2008;372(4):798-803.
30Kilduff TS.What rest in flies can tell us about sleep in mammals〔J〕.Neuron,2000;26(2):295-8.
31Hendricks JC,Finn SM,Panckeri KA,etal.Rest in Drosophila is a sleep-like state〔J〕.Neuron,2000;25(1):129-38.
32Jyoti A,Plano A,Riedel G,etal.Progressive age-related changes in sleep and EEG profiles in the PLB1Triple mouse model of Alzheimer′s disease〔J〕.Neurobiol Aging,2015;36(10):2768-84.
33Lee JS,Lee SJ,Jeong DU.Effect of age on sleep fragmentation in patients with obstructive sleep apnea syndrome〔J〕.Int J Psychophysiol,2010;77(3):261-2.
34Fetveit A.Late-life insomnia:a review〔J〕.Geriatr Gerontol Int,2009;9(3):220-34.
35Wehr TA.The durations of human melatonin secretion and sleep respond to changes in daylength(photoperiod)〔J〕.J Clin Endocrinol Metab,1991;73(6):1276-80.
36Levine B,Lumley M,Roehrs T,etal.The effects of acute sleep restriction and extension on sleep efficiency〔J〕.Int J Neurosci,1988;43(3-4):139-43.
37Grimaldi D,Calandra-Buonaura G,Provini F,etal.Abnormal sleep-cardiovascular system interaction in narcolepsy with cataplexy:effects of hypocretin deficiency in humans〔J〕.Sleep,2012;35(4):519-28.
38Silvani A,Bastianini S,Berteotti C,etal.Sleep and cardiovascular phenotype in middle-aged hypocretin-deficient narcoleptic mice〔J〕.J Sleep Res,2014;23(1):98-106.
39Harper DG,Volicer L,Stopa EG,etal.Disturbance of endogenous circadian rhythm in aging and Alzheimer disease〔J〕.Am J Geriatr Psychiatry,2005;13(5):359-68.
40Volicer L,Harper DG,Manning BC,etal.Sundowning and circadian rhythms in Alzheimer′s disease〔J〕.Am J Psychiatry,2001;158(5):704-11.
41Chiaro G,Calandra-Buonaura G,Sambati L,etal.Hypnic jerks are an underestimated sleep motor phenomenon in patients with parkinsonism.A video-polysomnographic and neurophysiological study〔J〕.Sleep Med,2016;26:37-44.
42Scullin MK,Fairley JA,Trotti LM,etal.Sleep correlates of trait executive function and memory in Parkinson′s disease〔J〕.J Parkinsons Dis,2015;5(1):49-54.
43Liguori C,Nuccetelli M,Izzi F,etal.Rapid eye movement sleep disruption and sleep fragmentation are associated with increased orexin-A cerebrospinal-fluid levels in mild cognitive impairment due to Alzheimer′s disease〔J〕.Neurobiol Aging,2016;40:120-6.
44Levine B,Roehrs T,Stepanski E,etal.Fragmenting sleep diminishes its recuperative value〔J〕.Sleep,1987;10(6):590-9.
45Stepanski E,Lamphere J,Roehrs T,etal.Experimental sleep fragmentation in normal subjects〔J〕.Int J Neurosci,1987;33(3-4):207-14.
46Martin SE,Brander PE,Deary IJ,etal.The effect of clustered versus regular sleep fragmentation on daytime function〔J〕.J Sleep Res,1999;8(4):305-11.
47Wimmer ME,Rising J,Galante RJ,etal.Aging in mice reduces the ability to sustain sleep/wake states〔J〕.PLoS One,2013;8(12):e81880.
48Altena E,Ramautar JR,Van Der Werf YD,etal.Do sleep complaints contribute to age-related cognitive decline〔J〕?Prog Brain Res,2010;185:181-205.
49Varga AW,Kishi A,Mantua J,etal.Apnea-induced rapid eye movement sleep disruption impairs human spatial navigational memory〔J〕.J Neurosci,2014;34(44):14571-7.
50Martin MS,Sforza E,Crawford-Achour E,etal.Sleep breathing disorders and cognitive decline in healthy elderly followed for eight years:the PROOF cohort〔J〕.Ann Phys Rehabil Med,2016;59S:e99.
51Varga AW,Ducca EL,Kishi A,etal.Effects of aging on slow-wave sleep dynamics and human spatial navigational memory consolidation〔J〕.Neurobiol Aging,2016;42:142-9.
52Pace-Schott EF,Spencer RM.Sleep-dependent memory consolidation in healthy aging and mild cognitive impairment〔J〕.Curr Top Behav Neurosci,2015;25:307-30.
53Hita-Yanez E,Atienza M,Gil-Neciga E,etal.Disturbed sleep patterns in elders with mild cognitive impairment:the role of memory decline and ApoE epsilon4 genotype〔J〕.Curr Alzheimers Res,2012;9(3):290-7.
54Bedard MA,Montplaisir J,Malo J,etal.Persistent neuropsychological deficits and vigilance impairment in sleep apnea syndrome after treatment with continuous positive airways pressure(CPAP)〔J〕.J Clin Exp Neuropsychol,1993;15(2):330-41.
55Lau EY,Eskes GA,Morrison DL,etal.Executive function in patients with obstructive sleep apnea treated with continuous positive airway pressure〔J〕.J Int Neuropsychol Soc,2010;16(6):1077-88.
56Naegele B,Pepin JL,Levy P,etal.Cognitive executive dysfunction in patients with obstructive sleep apnea syndrome(OSAS) after CPAP treatment〔J〕.Sleep,1998;21(4):392-7.
57Arvanitakis Z,Fleischman DA,Arfanakis K,etal.Association of white matter hyperintensities and gray matter volume with cognition in older individuals without cognitive impairment〔J〕.Brain Struct Funct,2016;221(4):2135-46.
58Zhang X,Ma L,Li S,etal.A functional MRI evaluation of frontal dysfunction in patients with severe obstructive sleep apnea〔J〕.Sleep Med,2011;12(4):335-40.
59Cross NE,Lagopoulos J,Duffy SL,etal.Sleep quality in healthy older people:relationship with1H magnetic resonance spectroscopy markers of glial and neuronal integrity〔J〕.Behav Neurosci,2013;127(5):803-10.
60Stone WS,Altman HJ,Berman RF,etal.Association of sleep parameters and memory in intact old rats and young rats with lesions in the nucleus basalis magnocellularis〔J〕.Behav Neurosci,1989;103(4):755-64.
61Eli R,Fasciano J.A chronopharmacological diagnostic test and treatment for bipolar disorder and depression:nitric oxide release during sleep causes it to become depressogenic in a subset of patients〔J〕.Med Hypotheses,2006;66(1):72-5.
62Williams MJ,Perland E,Eriksson MM,etal.Recurrent sleep fragmentation induces insulin and neuroprotective mechanisms in middle-aged flies〔J〕.Front Aging Neurosci,2016;8:180.
63Healey ES,Kales A,Monroe LJ,etal.Onset of insomnia:role of life-stress events〔J〕.Psychosom Med,1981;43(5):439-51.
64Sadeh A,Keinan G,Daon K.Effects of stress on sleep:the moderating role of coping style〔J〕.Health Psychol,2004;23(5):542-5.
65Vahtera J,Kivimaki M,Hublin C,etal.Liability to anxiety and severe life events as predictors of new-onset sleep disturbances〔J〕.Sleep,2007;30(11):1537-46.
66Hall M,Buysse DJ,Nofzinger EA,etal.Financial strain is a significant correlate of sleep continuity disturbances in late-life〔J〕.Biol Psychol,2008;77(2):217-22.
67Bonardi JMT,Lima LG,Campos GO,etal.Effect of different types of exercise on sleep quality of elderly subjects〔J〕.Sleep Med,2016;25:122-9.
68Van Someren EJ,Lijzenga C,Mirmiran M,etal.Long-term fitness training improves the circadian rest-activity rhythm in healthy elderly males〔J〕.J Biol Rhythms,1997;12(2):146-56.
69Riedel BW,Lichstein KL,Dwyer WO.Sleep compression and sleep education for older insomniacs:Self-help versus therapist guidance〔J〕.Psychol Aging,1995;10(1):54-63.
70Metaxakis A,Tain LS,Gronke S,etal.Lowered insulin signalling ameliorates age-related sleep fragmentation in Drosophila〔J〕.PLoS Biol,2014;12(4):e1001824.
71Lebestky T,Chang JS,Dankert H,etal.Two different forms of arousal in Drosophila are oppositely regulated by the dopamine D1 receptor ortholog DopR via distinct neural circuits〔J〕.Neuron,2009;64(4):522-36.
72Yamazaki M,Tomita J,Takahama K,etal.High calorie diet augments age-associated sleep impairment in Drosophila〔J〕.Biochem Biophys Res Commun,2012;417(2):812-6.
73Loredo JS,Ancoli-Israel S,Dimsdale JE.Effect of continuous positive airway pressure vs placebo continuous positive airway pressure on sleep quality in obstructive sleep apnea〔J〕.Chest,1999;116(6):1545-9.