宋彬彬,王清,宋秋萍,段立疆,武香梅,楊璇,于佳
運動神經(jīng)元?。╩otor neuron disease,MND)是一種由上、下運動神經(jīng)元損傷變性而導(dǎo)致的進(jìn)行性神經(jīng)變性疾病,其選擇性侵犯脊髓前角細(xì)胞、腦干運動神經(jīng)元及錐體束,使運動系統(tǒng)受累。脊髓中的運動調(diào)控神經(jīng)環(huán)路由運動神經(jīng)元和中間神經(jīng)元組成,通過精細(xì)復(fù)雜的突觸連接支配骨骼肌收縮和隨意運動。1969年Conradi從形態(tài)上定義了一種位于脊髓前角的可支配運動神經(jīng)元的特殊膽堿能C型突觸終扣[1],也稱C-bouton。C-bouton結(jié)構(gòu)復(fù)雜,突觸前后分布有多種蛋白受體、離子通道及特殊結(jié)構(gòu),可精確調(diào)控α-運動神經(jīng)元的興奮性,影響肌肉活動而與運動神經(jīng)元病緊密相關(guān)。本文就C-bouton的結(jié)構(gòu)(圖1)、功能及其與運動神經(jīng)元病的關(guān)系進(jìn)行綜述。
研究者根據(jù)解剖結(jié)構(gòu)將支配運動神經(jīng)元的突觸分為5種類型,分別為C、F、M、S和T型[2]。其中C型突觸終扣即C-bouton,主要分布在α-運動神經(jīng)元(尤其是支配快肌纖維的運動神經(jīng)元)的細(xì)胞體和樹突近端,可被乙酰膽堿轉(zhuǎn)移酶(choline acetyl transferase,ChAT)、乙酰膽堿酯酶(acetyl cholinesterase,AChE)和囊泡乙酰膽堿轉(zhuǎn)運體(vesicular acetylcholine transporter,VAChT)抗體特異性標(biāo)記[3],屬于膽堿能突觸。研究發(fā)現(xiàn)C-bouton來源于脊髓中央管附近的特異性表達(dá)轉(zhuǎn)錄因子Pitx2的V0(Dbx1+)中間神經(jīng)元,單個V0中間神經(jīng)元可產(chǎn)生大量C-bouton,支配一個或多個α-運動神經(jīng)元——這種多對一或多對多的突觸連接模式使突觸前軸突對于α-運動神經(jīng)元有更多的遞質(zhì)釋放位點,保證膽堿能神經(jīng)調(diào)節(jié)的安全性和可靠性[4]。C-bouton體積較大,人和嚙齒動物中C-bouton的直徑分別為3~6 μm和1~8 μm。突觸前區(qū)域具有密集明亮的球形突觸囊泡和大量線粒體;突觸后高度特化,突觸后膜下方5~8 nm處具有標(biāo)志性的內(nèi)質(zhì)網(wǎng)衍生結(jié)構(gòu)(subsynaptic cisterns,SSC)。其是與整個突觸前結(jié)構(gòu)相對的10~15 nm厚的盤狀結(jié)構(gòu),呈“C”型,故稱為C-bouton。SSC下方存在粗面內(nèi)質(zhì)網(wǎng),游離的核糖體也分布于突觸后區(qū)域[2]。
C-bouton的突觸前后區(qū)域具有不同的標(biāo)志性蛋白[3](圖1):①ATP門控離子通道P2X7受體和煙堿乙酰膽堿受體(nicotinic a cetylcholine receptor,nAChR)分布于突觸前膜;②蕈堿樣乙酰膽堿受體2(muscarinic acetylcholine receptor 2,m2 receptor)、小電導(dǎo)鈣激活鉀離子通道(small-conductance calcium-activated potassium channel,SK channel)、電壓門控鉀離子通道Kv2.1和電壓門控鈣離子通道位于突觸后膜,SK通道蛋白和m2受體分別聚集成簇,并與突觸前囊泡釋放位點緊密對應(yīng),Kv2.1填充在突觸后膜未被m2受體和SK通道蛋白占據(jù)的位置;③SSC上具有大量受體型分子伴侶Sigma-1受體蛋白(Sig-1R)和神經(jīng)調(diào)節(jié)素1(neuregulin 1,NRG1)等。
C-bouton的主要功能是調(diào)節(jié)運動神經(jīng)元的電活動,從而影響肌肉收縮力的大小和持續(xù)時間。研究發(fā)現(xiàn),使用m2受體拮抗劑抑制小鼠脊髓切片中C-bouton的乙酰膽堿能神經(jīng)傳導(dǎo),會降低運動神經(jīng)元輸出;使用膽堿酯酶抑制劑增強(qiáng)C-bouton的乙酰膽堿能神經(jīng)傳導(dǎo),會升高運動神經(jīng)元的輸出[5]。另外,C-bouton以高度任務(wù)依賴方式調(diào)節(jié)運動神經(jīng)元放電來適應(yīng)不同運動強(qiáng)度的需要,如低強(qiáng)度運動時(走路)運動神經(jīng)元低輸出、高強(qiáng)度運動(游泳)時運動神經(jīng)元高輸出。Zagoraiou等[6]發(fā)現(xiàn),敲除乙酰膽堿合成酶抑制V0中間神經(jīng)元的C-bouton輸出,導(dǎo)致實驗組小鼠游泳時相對于走路時的肌電活動增加程度顯著低于對照組小鼠。C-bouton突觸前后的多種蛋白參與調(diào)控α-運動神經(jīng)元產(chǎn)生的后超極化電位(after hyperpolarizing potential,AHP)和放電率,并且形成內(nèi)部安全機(jī)制以避免運動神經(jīng)元興奮性毒性損傷的發(fā)生。
nAChR和P2X7受體分別與釋放到突觸間隙的乙酰膽堿(acetylcholine,ACh)和三磷酸腺苷(ade-nosine triphosphate,ATP)結(jié)合后介導(dǎo)大量鈣離子內(nèi)流,引起囊泡和突觸前膜活性區(qū)域的融合和胞吐,從而進(jìn)一步增強(qiáng)C-bouton的ACh釋放[7]。
m2受體是G蛋白偶聯(lián)受體,特異性與ACh結(jié)合發(fā)生激活后通過調(diào)節(jié)SK和Kv2.1等離子通道蛋白的活性,降低動作電位的后超極化而增加運動神經(jīng)元的興奮性[5]。
SK通道對鈣離子高度敏感,可快速將細(xì)胞內(nèi)鈣離子濃度的改變轉(zhuǎn)化為細(xì)胞膜電位的變化,SK通道被激活后,對鉀離子通透性增加,使鉀離子外流,可在產(chǎn)生動作電位之后引起AHP,調(diào)節(jié)運動神經(jīng)元的放電率。C-bouton中SK通道蛋白主要有SK2和SK3兩種亞型,所有嚙齒動物的α-運動神經(jīng)元都表達(dá)SK2,而SK3僅表達(dá)在體積較小的α-運動神經(jīng)元中,這類α-運動神經(jīng)元產(chǎn)生的AHP半衰期較長,幅度較大,軸突傳導(dǎo)速度明顯減慢,主要支配慢肌纖維。SK3陰性、SK2陽性的α-運動神經(jīng)元往往體積較大,且主要支配快肌纖維[8]。m2受體激活,抑制N型鈣離子通道介導(dǎo)的鈣內(nèi)流,下調(diào)SK通道的活性,從而降低AHP,增強(qiáng)神經(jīng)元興奮性[2]。另外,m2受體激活可能直接引起蛋白激酶C(protein kinase C,PKC)和CK2(casein kinase 2)對SK的磷酸化,減弱其對鈣離子的敏感性而抑制其活性,調(diào)節(jié)運動神經(jīng)元的興奮性[2,9,10]。
Kv2.1通道介導(dǎo)的鉀離子流具有延遲整流特性,被激活后會降低神經(jīng)元興奮性。Kv2.1通道可在C-bouton突觸后膜上聚集成簇,高密度的Kv2.1通道蛋白是低或者非導(dǎo)電的。Kv2.1通道蛋白N端和C端存在多個磷酸化位點,磷酸化水平調(diào)控Kv2.1的激活和聚集狀態(tài)[11]。不同強(qiáng)度運動過程中,Kv2.1磷酸化水平和聚集程度發(fā)生變化,從而影響運動神經(jīng)元的興奮性和放電率。m2受體活化可抑制高電壓激活鈣離子電流而阻止鈣離子/鈣調(diào)磷酸酶(calcineurin)依賴的去磷酸化通路,上調(diào)Kv2.1磷酸化水平和聚集程度,降低其介導(dǎo)的電流幅度從而增加運動神經(jīng)元興奮性[2,12]。
Sig-1R在神經(jīng)系統(tǒng)中高表達(dá),其N端的內(nèi)質(zhì)網(wǎng)停泊信號介導(dǎo)其在內(nèi)質(zhì)網(wǎng)和SSC上的定位,調(diào)節(jié)鈣離子通道、鉀等離子通道、肌醇三磷酸(IP3)受體和NMDA受體等,參與調(diào)控內(nèi)質(zhì)網(wǎng)、線粒體功能及神經(jīng)遞質(zhì)釋放等。SSC衍生于內(nèi)質(zhì)網(wǎng),作為運動神經(jīng)元內(nèi)的鈣離子儲備池,在鈣離子的穩(wěn)態(tài)和動員的調(diào)控中發(fā)揮重要作用:SSC可從空間和功能上制約游離鈣離子的擴(kuò)散;神經(jīng)元活性增高時,SSC從細(xì)胞質(zhì)中吸收和清除過多的游離鈣離子;SSC上的Sig-1R和鈣釋放通道Ryanodine受體(RyR受體)調(diào)控鈣離子向細(xì)胞質(zhì)的釋放,上調(diào)細(xì)胞質(zhì)局部游離鈣離子濃度[2,13]。Sig-1R不僅對鈣離子的可用性有潛在調(diào)節(jié)作用,還可調(diào)節(jié)m2受體對Ach的敏感性及Kv通道在細(xì)胞內(nèi)和細(xì)胞膜上的分布,進(jìn)而影響運動神經(jīng)元的興奮性[14,15]。
NRG1是神經(jīng)營養(yǎng)因子,調(diào)節(jié)細(xì)胞間信號傳導(dǎo)、軸突運輸、突觸功能、神經(jīng)遞質(zhì)受體表達(dá)、神經(jīng)膠質(zhì)細(xì)胞的增殖和活化等,對于神經(jīng)系統(tǒng)的發(fā)育和成熟以及神經(jīng)炎癥具有重要作用[16]。NRG1位于突觸后區(qū)域,而C-bouton突觸前膜上存在NRG1受體ErbB2/4,提示NRG1可能是C-bouton中的逆行信號調(diào)節(jié)分子[17]。
肌萎縮側(cè)索硬化(amyotrophic lateral sclerosis,ALS)是運動神經(jīng)元病中最常見的類型,患者皮質(zhì)、腦干和脊髓的運動神經(jīng)元發(fā)生變性死亡,支配運動神經(jīng)元的中間神經(jīng)元也會發(fā)生病理改變。目前,對于ALS中C-bouton的數(shù)量和體積變化的確切結(jié)論仍存在爭議,可能與研究對象實驗設(shè)計、分析方法和疾病病程不一致等有關(guān)[18]。早期研究發(fā)現(xiàn)散發(fā)性ALS患者脊髓運動神經(jīng)元的膽堿能輸入突觸C-bouton數(shù)量減少[19]。而SOD1G93A ALS小鼠模型中發(fā)現(xiàn)C-bouton數(shù)量增加[20]、不變[21]和減少[22]的現(xiàn)象。最近Milan等[23]發(fā)現(xiàn)C-bouton數(shù)量的改變與病程緊密相關(guān):疾病早期C-bouton數(shù)量不變,隨后增加,晚期減少,這種變化可能與機(jī)體維持細(xì)胞內(nèi)穩(wěn)態(tài)的自我補償機(jī)制有關(guān)。多數(shù)研究認(rèn)為SOD1G93A ALS小鼠模型中C-bouton體積變大[2,3,23]。Herron等[21]指出C-bouton體積變大出現(xiàn)在SOD1G93AALS小鼠模型的發(fā)育早期(8~30 d),早于運動癥狀出現(xiàn)(90~100 d),雄性中變化更加明顯。由于ALS中去神經(jīng)支配增加,C-bouton體積變大可能是補償乙酰膽堿能神經(jīng)輸出的一種神經(jīng)保護(hù)機(jī)制[24],這種改變也帶來潛在的風(fēng)險——會使運動神經(jīng)元興奮性增強(qiáng),隨著時間推移又可能會產(chǎn)生興奮毒性而導(dǎo)致運動神經(jīng)元損傷和變性。筆者在前期工作中發(fā)現(xiàn),過表達(dá)VAPBP56S的ALS轉(zhuǎn)基因小鼠模型與過表達(dá)VAPBWT的轉(zhuǎn)基因小鼠及非轉(zhuǎn)基因小鼠模型相比,C-bouton的體積不變但最大直徑變長,C-bouton的長效放電顯著減弱[25]。另外,脊髓性肌萎縮(spinal muscular atrophy,SMA)是一類因脊髓前角運動神經(jīng)元變性導(dǎo)致的肌無力、肌萎縮的運動神經(jīng)元病。Ling等[26]發(fā)現(xiàn)SMA(SMNΔ7)小鼠出生后12~14 d脊髓L3~L5節(jié)段中運動神經(jīng)元對應(yīng)的C-bouton數(shù)量和密度減少及活化的小膠質(zhì)細(xì)胞增生,活化的小膠質(zhì)細(xì)胞可促進(jìn)突觸剝離(synaptic stripping)使C-bouton損傷,突觸輸出減少。
在ALS患者中發(fā)現(xiàn)Sig-1RE102Q突變,突變位點位于蛋白跨膜保守區(qū)域,過表達(dá)Sig-1RE102Q的運動神經(jīng)元樣細(xì)胞系NSC34會上調(diào)內(nèi)質(zhì)網(wǎng)應(yīng)激誘導(dǎo)細(xì)胞凋亡[27]。ALS患者α-運動神經(jīng)元中Sig-1R重新分布且表達(dá)水平降低[28]。Sig-1R敲除小鼠表現(xiàn)出運動功能障礙、肌力下降和軸突變性[29]。且Sig-1R表達(dá)下降使m2受體激活,抑制SK和Kv2.1通道,運動神經(jīng)元興奮性增強(qiáng)[30],可能產(chǎn)生興奮毒性。敲減原代運動神經(jīng)元和NSC34細(xì)胞中的Sig-1R導(dǎo)致細(xì)胞內(nèi)鈣信號紊亂、內(nèi)質(zhì)網(wǎng)應(yīng)激增強(qiáng)、線粒體活性和軸突運輸受損[28,31]。在攜帶VAPB P56S突變的ALS患者的成纖維細(xì)胞中Sig-1R形成積聚,且與VAPB、20S蛋白酶體和泛素共定位;Sig-1R激動劑具有一定的神經(jīng)保護(hù)作用,并可顯著降低VAPBP56S的蛋白沉積[28]。
在ALS患者中還發(fā)現(xiàn)了ErbB4的p.R927Q和p.R1275W突變,提出NRG1-ErbB4信號通路異常參與疾病發(fā)生[32]。Song等[33]發(fā)現(xiàn)SOD1G93AALS小鼠模型在發(fā)病早期即表現(xiàn)出NRG1-I水平增加和小膠質(zhì)細(xì)胞活化,提出NRG1是神經(jīng)損傷后脊髓中小膠質(zhì)細(xì)胞活化的重要信號。Casanovas等[34]認(rèn)為NRG1是小膠質(zhì)細(xì)胞的趨化因子,神經(jīng)損傷后NRG1-ErbB特異性激活小膠質(zhì)細(xì)胞,引起神經(jīng)損傷早期的炎癥反應(yīng)。而且Lobsiger 等[35]研究發(fā)現(xiàn),參與免疫應(yīng)答和炎癥的補體免疫系統(tǒng)中關(guān)鍵組分C1q與ALS中C-bouton損傷有關(guān)。在SOD1G37R/C1q-/-小鼠模型中膠質(zhì)細(xì)胞活性未增加,小鼠的疾病起始期、發(fā)生期和生存期沒有明顯差異,C1q介導(dǎo)的補體系統(tǒng)異常不能增加SOD1G37R小鼠神經(jīng)毒性。但在疾病末期SOD1G37R/C1q-/-比SOD1G37R小鼠C-bouton損傷更明顯,這提示膠質(zhì)細(xì)胞的活化引起的神經(jīng)炎癥對于ALS發(fā)生發(fā)展有重要調(diào)控作用[36],但C-bouton損傷程度與ALS進(jìn)程關(guān)系復(fù)雜,需要深入研究。
來源于脊髓V0中間神經(jīng)元的軸突投射到α-運動神經(jīng)元的細(xì)胞體和樹突近端形成乙酰膽堿能C-bouton,控制運動神經(jīng)元的興奮性。C-bouton的結(jié)構(gòu)及功能受到nAChR、P2X7受體、m2受體、SK和Kv2.1離子通道、Sig-1R和NRG1等多種突觸前后蛋白的調(diào)控,并在運動神經(jīng)元病中發(fā)生顯著的病理改變和功能異常,導(dǎo)致運動神經(jīng)元電活動受損,影響肌肉收縮特性。C-bouton中Sig-1R和NRG1等蛋白是參與ALS發(fā)生發(fā)展的重要因子。隨著形態(tài)學(xué)、電生理和生化學(xué)等技術(shù)的發(fā)展,C-bouton運動依賴性調(diào)節(jié)運動神經(jīng)元興奮性的具體機(jī)制、C-bouton中標(biāo)志性結(jié)構(gòu)SSC的具體功能以及C-bouton在運動神經(jīng)元病發(fā)病過程中的具體作用將得到更加深入的了解。
[1]Conradi S.Ultrastructure and distribution of neuronal and glial elements on the motoneuron surface in the lumbosacral spinal cord of the adult cat[J].Acta Physiol Scand Suppl,1969,332:49-64.
[2]Deardorff AS,Romer SH,Sonner PM,et al.Swimming against the tide:investigations of the C-bouton synapse[J].Front Neural Circuits,2014,8:106.
[3]Witts EC,Zagoraiou L,Miles GB.Anatomy and function of cholinergic C bouton inputs to motor neurons[J].JAnat,2014,224:52-60.
[4]Frank E.A new class of spinal interneurons:the origin and function of C boutons is solved[J].Neuron,2009,64:593-595.
[5]Miles GB,Hartley R,Todd AJ,et al.Spinal cholinergic interneurons regulate the excitability of motoneurons during locomotion[J].Proc Natl Acad Sci U SA,2007,104:2448-2453.
[6]Zagoraiou L,Akay T,Martin JF,et al.A cluster of cholinergic premotor interneurons modulates mouse locomotor activity[J].Neuron,2009,64:645-662.
[7]Darabid H,Perez-Gonzalez AP,Robitaille R.Neuromuscular synaptogenesis:coordinating partners with multiple functions[J].Nat Rev Neurosci,2014,15:703-718.
[8]Deardorff AS,Romer SH,Deng Z,et al.Expression of postsynaptic Ca2+-activated K+(SK)channels at C-bouton synapses in mammalian lumbar-motoneurons[J].J Physiol,2013,591:875-897.
[9]Buchanan KA,Petrovic MM,Chamberlain SE,et al.Facilitation of long-term potentiation by muscarinic M(1)receptors is mediated by inhibition of SK channels[J].Neuron,2010,68:948-963.
[10]Giessel AJ,Sabatini BL.M1 muscarinic receptors boost synaptic potentials and calcium influx in dendritic spines by inhibiting postsynaptic SK channels[J].Neuron,2010,68:936-947.
[11]Mohapatra DP,Park KS,Trimmer JS.Dynamic regulation of the voltage-gated Kv2.1 potassium channel by multisite phosphorylation[J].Biochem Soc Trans,2007,35:1064-1068.
[12]Misonou H,Mohapatra DP,Park EW,et al.Regulation of ion channel localization and phosphorylation by neuronal activity[J].Nat Neurosci,2004,7:711-718.
[13]Fuchs PA,Lehar M,Hiel H.Ultrastructure of cisternal synapses on outer hair cells of the mouse cochlea[J].J Comp Neurol,2014,522:717-729.
[14]Kim FJ,Kovalyshyn I,Burgman M,et al.Sigma 1 receptor modulation of G-protein-coupled receptor signaling:potentiation of opioid transduction independent from receptor binding[J].Mol Pharmacol,2010,77:695-703.
[15]Kourrich S,Hayashi T,Chuang JY,et al.Dynamic interaction between sigma-1 receptor and Kv1.2 shapes neuronal and behavioral responses to cocaine[J].Cell,2013,152:236-247.
[16]Calvo M,Zhu N,Tsantoulas C,et al.Neuregulin-ErbB signaling promotes microglial proliferation and chemotaxis contributing to microgliosis and pain after peripheral nerve injury[J].J Neurosci,2010,30:5437-5450.
[17]Gallart-Palau X,Tarabal O,Casanovas A,et al.Neuregulin-1 is concentrated in the postsynaptic subsurface cistern of C-bouton inputs to alpha-motoneurons and altered during motoneuron diseases[J].FASEB J,2014,28:3618-3632.
[18]Dukkipati SS,Chihi A,Wang Y,et al.Experimental Design and Data Analysis Issues Contribute to Inconsistent Results of C-Bouton Changes in Amyotrophic Lateral Sclerosis[J].eNeuro,2017,4:doi:10.1523/ENEURO.0281-16.2016.
[19]Nagao M,Misawa H,Kato S,et al.Loss of cholinergic synapses on the spinal motor neurons of amyotrophic lateral sclerosis[J].J Neuropathol Exp Neurol,1998,57:329-333.
[20]Pullen AH,Athanasiou D.Increase in presynaptic territory of C-terminals on lumbar motoneurons of G93A SOD1 mice during disease progression[J].Eur J Neurosci,2009,29:551-561.
[21]Herron LR,Miles GB.Gender-specific perturbations in modulatory inputs to motoneurons in a mouse model of amyotrophic lateral sclerosis[J].Neuroscience,2012,226:313-323.
[22]Casas C,Herrando-Grabulosa M,Manzano R,et al.Early presymptomatic cholinergic dysfunction in a murine model of amyotrophic lateral sclerosis[J].Brain Behav,2013,3:145-158.
[23]Milan L,Courtand G,Cardoit L,et al.Age-Related Changes in Preand Postsynaptic Partners of the Cholinergic C-Boutons in Wild-Type and SOD1G93ALumbar Motoneurons[J].PLoS One,2015,10:e0135525.
[24]Saxena S,Roselli F,Singh K,et al.Neuroprotection through excitability and mTOR required in ALS motoneurons to delay disease and extend survival[J].Neuron,2013,80:80-96.
[25]Aliaga L,Lai C,Yu J,et al.Amyotrophic lateral sclerosis-related VAPB P56S mutation differentially affects the function and survival of corticospinal and spinal motor neurons[J].Hum Mol Genet,2013,22:4293-4305.
[26]Ling KK,Lin MY,Zingg B,et al.Synaptic defects in the spinal and neuromuscular circuitry in a mouse model of spinal muscular atrophy[J].PLoS One,2010,5:e15457.
[27]Al-Saif A,Al-Mohanna F,Bohlega S.A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis[J].Ann Neurol,2011,70:913-919.
[28]Prause J,Goswami A,Katona I,et al.Altered localization,abnormal modification and loss of function of Sigma receptor-1 in amyotrophic lateral sclerosis[J].Hum Mol Genet,2013,22:1581-1600.
[29]Mavlyutov TA,Epstein ML,Verbny YI,et al.Lack of sigma-1 receptor exacerbates ALS progression in mice[J].Neuroscience,2013,240:129-134.
[30]Mavlyutov TA,Guo LW,Epstein ML,et al.Role of the Sigma-1 receptor in Amyotrophic Lateral Sclerosis(ALS)[J].J Pharmacol Sci,2015,127:10-16.
[31]Bernard-Marissal N,Medard JJ,Azzedine H,et al.Dysfunction in en doplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration[J].Brain,2015,138:875-890.
[32]Takahashi Y,Fukuda Y,Yoshimura J,et al.ERBB4 mutations that disrupt the neuregulin-ErbB4 pathway cause amyotrophic lateral sclerosis type 19[J].Am J Hum Genet,2013,93:900-905.
[33]Song F,Chiang P,Wang J,et al.Aberrant neuregulin 1 signaling in amyotrophic lateral sclerosis[J].J Neuropathol Exp Neurol,2012,71:104-115.
[34]Casanovas A,Salvany S,Lahoz V,et al.Neuregulin 1-ErbB module in C-bouton synapses on somatic motor neurons:molecular compartmentation and response to peripheral nerve injury[J].Sci Rep,2017,7:40155.
[35]Lobsiger CS,Boillée S,Pozniak C,et al.C1q induction and global complement pathway activation do not contribute to ALS toxicity in mutant SOD1 mice[J].Proc NatlAcad Sci U SA,2013,110:E4385-4392.
[36]Boillée S,Yamanaka K,Lobsiger CS,et al.Onset and progression in inherited ALS determined by motor neurons and microglia[J].Science,2006,312:1389-1392.