楊俊娜,何麗,徐陶,許阿香,徐瑞,楊帆,曾俊偉
(遵義醫(yī)學(xué)院生理學(xué)教研室 貴州省麻醉與器官功能保護重點實驗室,貴州遵義 563000)
微小RNA (miRNA) 是一類多功能的內(nèi)源性非編碼小分子RNA,長度為18~25個核苷酸序列,與靶mRNA分子的3′非翻譯區(qū)(3′-UTR)不完全性互補結(jié)合,在轉(zhuǎn)錄水平調(diào)控基因表達與蛋白合成,參與細胞增殖、分化、凋亡等生命活動過程[1]。早在2002年,Lagos-Quintana等[2]首次發(fā)現(xiàn)miR-124高表達于小鼠腦組織。miR-124具有三條未成熟的前體序列,分別為miR-124-1、miR-124-2和miR-124-3,分別定位于染色體8p23.1、8q12.3和20q13.33[3],Dicer酶剪切后成為成熟的miR-124序列,與下游靶基因序列結(jié)合,發(fā)揮生物學(xué)效應(yīng)[4]。在大鼠、小鼠、果蠅以及非洲爪蟾等多物種組織中均有miR-124表達,其基因結(jié)構(gòu)和功能在物種進化的過程中具有高度保守性。使用miRNA分子靶基因預(yù)測數(shù)據(jù)庫miRbase、Target scan和miRDB對人類miR-124靶基因進行預(yù)測并結(jié)合韋恩分析,在不同數(shù)據(jù)庫中共同預(yù)測到256個靶分子,其中NR4A1、SERP1、ROCK1等在腦發(fā)育以及神經(jīng)損傷與修復(fù)中均有非常重要的作用[5~7]。提示miR-124可能與神經(jīng)系統(tǒng)發(fā)育、損傷與修復(fù)密切相關(guān)。近年來,圍繞這一方面的研究取得了一些進展,現(xiàn)綜述如下。
在外周神經(jīng)系統(tǒng),miR-124表達于Corti′s器、嗅神經(jīng)、背根神經(jīng)節(jié)、交感神經(jīng)節(jié)以及視網(wǎng)膜等部位[3,8];在小鼠中樞神經(jīng)系統(tǒng)中miR-124的表達量是肝、腎、肺、脾等器官的100倍以上。miR-124在人腦組織中表達水平較高,占成年人大腦中總miRNA的25%~48%,在大腦皮層含量最多;與大腦皮質(zhì)相比,miRNA在小腦中所占的比例約為60%,在脊髓的比例約為35%[9]。其次,在海馬、枕葉、顳葉、中腦黑質(zhì)、腦室下區(qū)和脊髓背角等部位miR-124表達亦較高。miR-124在腦區(qū)高水平表達提示其與神經(jīng)系統(tǒng)的發(fā)育密切相關(guān)。形態(tài)學(xué)觀察結(jié)果顯示,小鼠內(nèi)耳神經(jīng)干細胞、前額葉皮質(zhì)神經(jīng)元、皮層星形膠質(zhì)細胞、海馬神經(jīng)元、脊髓的神經(jīng)元和小膠質(zhì)細胞、背根神經(jīng)節(jié)的神經(jīng)元和小鼠中腦小膠質(zhì)細胞表達miR-124[10]。在離體條件下,培養(yǎng)的小鼠交感神經(jīng)元、CX3CR1-GFP小鼠骨髓來源巨噬細胞誘導(dǎo)的小膠質(zhì)細胞,以及肌萎縮側(cè)索硬化小鼠的脊髓和腦干部位的神經(jīng)干細胞中均觀察到miR-124表達[11~13]。在BV-2小膠質(zhì)細胞、SH-SY5Y細胞、U87神經(jīng)膠質(zhì)瘤細胞以及MN9D多巴胺神經(jīng)元等細胞系也觀察到miR-124表達[14]。
在小鼠胚胎腦發(fā)育過程中,miR-124表達與大腦神經(jīng)元發(fā)育成熟趨勢相一致,在出生后仍然高表達。將秀麗隱桿線蟲和果蠅腦組織的神經(jīng)元和星形膠質(zhì)細胞共培養(yǎng)發(fā)現(xiàn),miR-124優(yōu)先表達于神經(jīng)元。Baek等[15]研究發(fā)現(xiàn),將miR-124轉(zhuǎn)染到HeLa細胞之后,可抑制數(shù)百種非神經(jīng)元基因表達。由此初步推測,miR-124可能在神經(jīng)元的發(fā)育成熟階段發(fā)揮作用,對于非神經(jīng)元細胞的生長發(fā)育亦具有一定調(diào)控作用。近年研究表明,miR-124不僅可促進干細胞向神經(jīng)元方向分化,而且對于神經(jīng)元突起的延伸具有促進作用。
2.1 促進干細胞向神經(jīng)元分化 神經(jīng)干細胞(NSCs)具有增殖能力與分化能力,在神經(jīng)系統(tǒng)發(fā)育過程中起著至關(guān)重要的作用[16]。miR-124可作用于以下下游靶點,促進多種干細胞或祖細胞向神經(jīng)元方向分化:①性別決定區(qū)Y框蛋白9(SOX9): miR-124和sox9共表達于室管膜室下區(qū)(SVZ)干細胞。在成年小鼠的腦室下區(qū),miR-124過表達可顯著降低轉(zhuǎn)錄子SOX9表達,促進SVZ干細胞向神經(jīng)元發(fā)育,而不是向星形膠質(zhì)細胞發(fā)育[17]。②原肌球蛋白相關(guān)激酶B(TrkB)和細胞分裂周期蛋白42(Cdc42):在新生C57BL/6小鼠的螺旋神經(jīng)節(jié),miR-124可促進TrkB和Cdc42表達,促進內(nèi)耳神經(jīng)干細胞向神經(jīng)元分化,神經(jīng)元特異性Ⅲ類β-微管蛋白(Tuj1)的表達在第3天開始升高,在第14天達到頂峰。相反,miR-124表達下調(diào)導(dǎo)致TrkB和Cdc42蛋白表達降低,神經(jīng)元分化減慢,突起生長停滯[18]。③RNA聚合酶Ⅱ的C端結(jié)構(gòu)域多肽的小磷酸酯酶1(SCP1):在雞脊髓神經(jīng)祖細胞,miR-124與SCP1的3′-UTR端結(jié)合,抑制SCP1表達,導(dǎo)致REST/SCP1信號通路受到抑制,從而解除SCP1抑制神經(jīng)祖細胞向神經(jīng)元分化的效應(yīng)[19];⑤特異性蛋白1(SP1):SP1是一種轉(zhuǎn)錄因子,在調(diào)控細胞周期中具有關(guān)鍵作用。脂肪來源的間充質(zhì)干細胞向神經(jīng)元發(fā)育過程中,miR-124能夠與SP1結(jié)合,促進間充質(zhì)干細胞向神經(jīng)元分化[20];⑥促紅細胞產(chǎn)生肝細胞受體B1(Ephrin B1):miR-124能夠通過與Ephrin B1結(jié)合,降低Ephrin B1表達,促進神經(jīng)干細胞向神經(jīng)元分化[21];相反,在Ephrin B1基因敲除小鼠神經(jīng)干細胞向神經(jīng)元分化增加。
在研究神經(jīng)發(fā)育的分子機制時發(fā)現(xiàn),miR-124過表達可作用于M17細胞的下游靶點Rho相關(guān)卷曲螺旋形成蛋白激酶1(ROCK1),顯著下調(diào)ROCK1表達,減弱其對PI3K/Akt信號通路的抑制作用,促進M17細胞向神經(jīng)元分化[22];而在P19細胞中,miR-124下游靶點有多聚嘧啶序列結(jié)合蛋白1(PTBP1)和Ⅱa類組蛋白去乙?;?HDACs)。miR-124可下調(diào)PTBP1和HDACs表達,促進PTBP2以及轉(zhuǎn)錄因子MEF2C表達,靶向M6a轉(zhuǎn)錄起始位點,促進M6a表達,進而促進P19細胞向神經(jīng)元分化[23]。
2.2 促進神經(jīng)元突起延伸 神經(jīng)元的突起不僅能夠?qū)w發(fā)出的沖動通過突起傳遞給另外一個神經(jīng)元,而且也是神經(jīng)元接受信號的重要入口。在神經(jīng)系統(tǒng)發(fā)育過程中,miR-124可能是通過作用于下游靶點促進了神經(jīng)元突起的延伸:①HDAC5和Ras家族同源性生長相關(guān)基因(RhoG):HDAC5可抑制C57/BL小鼠皮層神經(jīng)元突觸的生長和延伸;而miR-124能下調(diào)HDAC5表達,促進神經(jīng)元突觸和軸突生長[24]。在大鼠海馬神經(jīng)元,RhoG活性增強,可通過ELMO/Dock180/Rac1通路抑制突觸形成與突起延伸;miR-124與RhoG的3′-UTR結(jié)合,下調(diào)RhoG表達,促進突觸形成與突起延伸[25]。②Ras家族相關(guān)蛋白Rap2a:Rap2a能夠顯著抑制神經(jīng)元樹突形成。小鼠大腦神經(jīng)元中,miR-124結(jié)合Rap2a的3′-UTR來抑制Rap2a表達,負性調(diào)節(jié)AKT/GSK3β信號,解除Rap2a對神經(jīng)元突起生長的抑制效應(yīng),從而促進神經(jīng)元突起延伸[26]。③氧甾醇結(jié)合蛋白(OSBP):OSBP的3′-UTR存在4個保守的miR-124靶基因位點。在C57BL/6小鼠腦發(fā)育過程中,miR-124高表達引起OSBP表達下降。在N2a神經(jīng)瘤母細胞,miR-124通過與OSBP結(jié)合,降低其表達,可促進N2a細胞中神經(jīng)突觸的生長和延伸[27]。④cAMP反應(yīng)元件結(jié)合蛋白1 (CREB1):海兔感覺神經(jīng)元和運動神經(jīng)元共培養(yǎng),miR-124與CREB1的3′-UTR相結(jié)合,抑制CREB1 表達;miR-124表達降低時CREB1表達上調(diào),突觸可塑性增強[28,29]。
2.3 參與膠質(zhì)細胞發(fā)育成熟 神經(jīng)膠質(zhì)細胞包括星形膠質(zhì)細胞、少突膠質(zhì)細胞、施萬細胞和衛(wèi)星細胞。神經(jīng)膠質(zhì)細胞調(diào)節(jié)突觸的生長和興奮性,對神經(jīng)系統(tǒng)發(fā)育有重要影響。放射狀膠質(zhì)細胞轉(zhuǎn)化為星形膠質(zhì)細胞是皮層發(fā)育過程中的一個重要事件,而miR-124在此過程中發(fā)揮重要作用。miR-124可與Jagged2(Jag2,Notch1的配體)結(jié)合,使Jag2表達顯著下調(diào),進而抑制Notch1信號通路,促進皮層放射狀膠質(zhì)細胞向星形膠質(zhì)細胞的轉(zhuǎn)化[30]。敲除Dicer1基因小鼠大腦皮層Jag2表達增強,導(dǎo)致放射狀膠質(zhì)細胞轉(zhuǎn)化為星形膠質(zhì)細胞出現(xiàn)延遲,大腦皮層中易位的放射狀膠質(zhì)細胞數(shù)目明顯減少。此外,miR-124在少突膠質(zhì)細胞的發(fā)育以及髓鞘形成過程中也發(fā)揮了重要作用。原位雜交技術(shù)觀察顯示,miR-124通過抑制其靶基因rabgef1表達,導(dǎo)致包裹在軸突外側(cè)的少突膠質(zhì)細胞數(shù)目減少。斑馬魚胚胎注射嗎啉后腹側(cè)后腦miR-124表達降低,神經(jīng)元軸突的發(fā)育不良,尾巴形態(tài)異常彎曲[31]。
研究發(fā)現(xiàn),小鼠大腦皮層撞擊損傷3天后,損傷區(qū)域小膠質(zhì)細胞顯著活化,miR-124表達同步增加;將損傷后小鼠腦組織提取物與BV2細胞共培養(yǎng),發(fā)現(xiàn)miR-124可促進BV2細胞向M2型極化,從而抑制神經(jīng)炎癥發(fā)生。隨后研究證實,miR-124作用于靶基因PDE4B,抑制PDE4B和后續(xù)的mTOR信號通路,導(dǎo)致促炎性細胞因子IL-1β、IL-6和TNF-α下調(diào),而抗炎因子IL-10上調(diào)[32]。Yu等[33]檢測到腦出血小鼠腦損傷區(qū)域miR-124表達顯著降低;腦室注射miR-124模擬物后,miR-124模擬物作用于下游靶點C/EBP-α,抑制C/EBP-α表達,導(dǎo)致促炎性細胞因子IL-1β和TNF-α表達顯著下降,而抗炎因子IL-10表達上調(diào),細胞凋亡減少,M2型小膠質(zhì)細胞標(biāo)記物Arg-1表達也顯著上調(diào)。證實miR-124能促進小膠質(zhì)細胞向M2型極化,發(fā)揮抗炎作用,減輕神經(jīng)系統(tǒng)損傷。
C57BL/6小鼠脊髓灰質(zhì)損傷后周圍神經(jīng)元中miR-124表達逐漸降低,損傷7天時miR-124表達為未損傷時的1/6[34]。Louw等[35]在離體實驗和在體實驗均觀察到,大鼠脊髓小膠質(zhì)細胞miR-124過表達可降低骨髓來源的小膠質(zhì)細胞MHC-Ⅱ表達,并可抑制TNF-α以及ROS產(chǎn)生。Song等[36]研究發(fā)現(xiàn),miR-124a可抑制脊髓損傷大鼠吡哆醛激酶的活性,導(dǎo)致磷酸吡哆醛代謝紊亂,進而引起氨基酸代謝紊亂以及神經(jīng)系統(tǒng)繼發(fā)性損傷。這些研究說明,miR-124不僅能夠特異性反映脊髓的損傷程度,且有可能成為藥物治療促進神經(jīng)損傷后修復(fù)的作用靶點之一。Zhao等[34]將小鼠BMMSCs誘導(dǎo)分化成神經(jīng)元細胞并過表達miR-124后移置入損傷脊髓的小鼠體內(nèi),小鼠脊髓損傷癥狀得到顯著緩解;轉(zhuǎn)染miR-124的大鼠NSCs經(jīng)過靜脈注射進入脊髓損傷大鼠體內(nèi),同樣能促進NSCs分化成神經(jīng)元和星形膠質(zhì)細胞,促進脊髓損傷后的恢復(fù)。
綜上所述,miR-124作為一個重要的、多效能的miRNA,廣泛表達于外周和中樞神經(jīng)系統(tǒng),不僅可促進神經(jīng)系統(tǒng)的發(fā)育成熟,而且參與神經(jīng)損傷后的修復(fù)。miR-124在神經(jīng)系統(tǒng)中表達下降往往是神經(jīng)系統(tǒng)退行性變以及膠質(zhì)瘤病變的一個重要環(huán)節(jié)。miR-124相關(guān)的信號通路機制雖已被初步被闡明或證實,但可能也有許多潛在的機制還沒被發(fā)現(xiàn)。對此進行深入研究將使miR-124在神經(jīng)系統(tǒng)的發(fā)育或病變過程中的作用更加明確,也可為神經(jīng)系統(tǒng)疾病的治療提供新思路。在神經(jīng)系統(tǒng)發(fā)育及損傷修復(fù)過程中,miR-124表達呈動態(tài)變化,提示miR-124表達可反映神經(jīng)發(fā)育或損傷或病變的程度,可能成為藥物治療的作用靶點之一。血清miR-124表達與神經(jīng)系統(tǒng)發(fā)育或疾病關(guān)系的研究可能在未來受到重視。
參考文獻:
[1] Carthew RW,Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs[J]. Cell,2009,136(4):642-655.
[2] Lagos-Quintana M,Rauhut R,Yalcin A,et al. Identification of tissue-specific microRNAs from mouse[J]. Curr Biol,2002,12(9):735-739.
[3] Kozomara A,Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data[J]. Nucleic Acids Res,2014(42):68-73.
[4] Meltzer PS. Cancer genomics: small RNAs with big impacts[J]. Nature,2005,435(7043):745-746.
[5] Tenga A,Beard JA,Takwi A,et al. Regulation of Nuclear Receptor Nur77 by miR-124.[J]. PLoS One,2016,11(2):148433.
[6] Mucaj V,Lee SS,Skuli N,et al. MicroRNA-124 expression counteracts pro-survival stress responses in glioblastoma.[J]. Oncogene,2015,34(17):2204-2214.
[7] Cui M,Wang J,Li Q,et al. Long non-coding RNA HOXA11-AS functions as a competing endogenous RNA to regulate ROCK1 expression by sponging miR-124-3p in osteosarcoma.[J]. Biomed Pharm,2017(92):437-444.
[8] Lee RC,Feinbaum RL,Ambros V. The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell,2004,116(2):89-92.
[9] Mishima T,Mizuguchi Y,Kawahigashi Y,et al. RT-PCR-based analysis of microRNA (miR-1 and -124) expression in mouse CNS[J]. Brain Res,2007,1131(1):37-43.
[10] Weng H,Shen C,Hirokawa G,et al. Plasma miR-124 as a biomarker for cerebral infarction[J]. Biomed Res,2011,32(2):135.
[11] Akerblom M,Jakobsson J. MicroRNAs as neuronal fate determinants[J]. Neuroscientist,2014,20(3):235.
[12] Ponomarev ED,Veremeyko T,Barteneva N,et al. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-[alpha]-PU.1 pathway[J]. Nat Med,2011,17(1):64.
[13] Zhou F,Zhang C,Guan Y,et al. Screening the expression characteristics of several miRNAs in G93A-SOD1 transgenic mouse: altered expression of miRNA-124 is associated with astrocyte differentiation by targeting Sox2 and Sox[J]. J Neurochem,2017,145(1):51-67.
[14] 盧國輝,蔣春梅,肖振勇,等. MicroRNA-124對帕金森病中多巴胺能神經(jīng)元的神經(jīng)保護作用[J].中華神經(jīng)醫(yī)學(xué)雜志,2013,12(3):226-230.
[15] Baek D,Villen J,Shin C,et al. The impact of microRNAs on protein output[J]. Nature,2008,455(7209):64-71.
[16] Qin W,Chen S,Yang S,et al. The effect of traditional chinese medicine on neural stem cell proliferation and differentiation[J]. Aging Dis,2017,8(6):792-811.
[17] Cheng LC,Pastrana E,Tavazoie M,et al. miR-124 regulates adult neurogenesis in the SVZ stem cell niche[J]. Nat Neurosci,2009,12(4):399-408.
[18] Jiang D,Du J,Zhang X,et al. miR-124 promotes the neuronal differentiation of mouse inner ear neural stem cells[J]. Int J Mol Med,2016,38(5):1367-1376.
[19] Visvanathan J,Lee S,Lee B,et al. The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development[J]. Genes Dev,2007,21(7):744.
[20] Mondanizadeh M,Arefian E,Mosayebi G,et al. MicroRNA-124 regulates neuronal differentiation of mesenchymal stem cells by targeting Sp1 mRNA[J]. J Cell Biochem,2015,116(6):943-953.
[21] Arvanitis DN,Jungas T,Behar A,et al. Ephrin-B1 reverse signaling controls a posttranscriptional feedback mechanism via miR-124[J]. Mol Cell Biol,2010,30(10):2508-2517.
[22] Gu X,Meng S,Liu S,et al. miR-124 Represses ROCK1 expression to promote neurite elongation through activation of the PI3K/Akt signal pathway[J]. J Mol Neurosci,2014,52(1):156.
[23] Makeyev EV,Zhang J,Carrasco MA,et al. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing[J]. Mol Cell,2007,27(3):435-448.
[24] Gu X,Fu C,Lin L,et al. miR-124 and miR-9 mediated downregulation of HDAC5 promotes neurite development through activating MEF2C-GPM6A pathway[J]. J Cell Physiol,2018,233(1):673-687.
[25] Franke K,Otto W,Johannes S,et al. miR-124-regulated RhoG reduces neuronal process complexity via ELMO/Dock180/Rac1 and Cdc42 signalling[J]. EMBO J,2012,31(13):2908-2921.
[26] Xue Q,Yu C,Wang Y,et al. miR-9 and miR-124 synergistically affect regulation of dendritic branching via the AKT/GSK3beta pathway by targeting Rap2a[J]. Sci Rep,2016,6:26781.
[27] Gu X,Li A,Liu S,et al. MicroRNA124 Regulated Neurite Elongation by Targeting OSBP[J]. Mol Neurobiol,2016,53(9):6388-6396.
[28] Wang W,Wang X,Chen L,et al. The microRNA miR-124 suppresses seizure activity and regulates CREB1 activity[J]. Expert Rev Mol Med,2016(18):4.
[29] Rajasethupathy P,Fiumara F,Sheridan R,et al. Characterization of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB[J]. Neuron,2009,63(6):803-817.
[30] Zhang C,Ge X,Liu Q,et al. MicroRNA-mediated non-cell-autonomous regulation of cortical radial glial transformation revealed by a Dicer1 knockout mouse model[J]. Glia,2015,63(5):860-876.
[31] Morris JK,Chomyk A,Song P,et al. Decrease in levels of the evolutionarily conserved microRNA miR-124 affects oligodendrocyte numbers in Zebrafish,Danio rerio[J]. Invert Neurosci,2015,15(3):4.
[32] Huang S,Ge X,Yu J,et al. Increased miR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons[J]. FASEB J,2018,32(1):512-528.
[33] Yu A,Zhang T,Duan H,et al. MiR-124 contributes to M2 polarization of microglia and confers brain inflammatory protection via the C/EBP-α pathway in intracerebral hemorrhage[J]. Immunology Letters,2017(182):1.
[34] Zhao Y,Zhang H,Zhang D,et al. Loss of microRNA-124 expression in neurons in the peri-lesion area in mice with spinal cord injury[J]. Neural Regen Res,2015,10(7):1147-1152.
[35] Louw AM,Kolar MK,Novikova LN,et al. Chitosan polyplex mediated delivery of miRNA-124 reduces activation of microglial cells in vitro and in rat models of spinal cord injury[J]. Nanomedicine,2016,12(3):643-653.
[36] Song JL,Zheng W,Chen W,et al. Lentivirus-mediated microRNA-124 gene-modified bone marrow mesenchymal stem cell transplantation promotes the repair of spinal cord injury in rats[J]. Exp Mol Med,2017,49(5):e332.