王亞楠,黃林,王士雷
(青島大學(xué)附屬醫(yī)院,山東青島 226555 )
研究證實(shí),組蛋白乙酰化和去乙?;揎椩诨虮磉_(dá)調(diào)控中發(fā)揮重要作用。缺血再灌注損傷是缺血組織在恢復(fù)血液灌注之后結(jié)構(gòu)和功能進(jìn)一步破壞。研究發(fā)現(xiàn),線粒體分裂是導(dǎo)致腦缺血再灌注損傷的重要原因[1],keap1/Nrf2/ARE為經(jīng)典的氧化應(yīng)激調(diào)控通路,在缺血再灌注損傷過(guò)程中起重要作用。Sirtuins是一種去乙酰化酶,可通過(guò)去乙?;饔糜绊懚喾N蛋白之間的活動(dòng)以及相互作用,是基因表達(dá)調(diào)控過(guò)程中的關(guān)鍵因子。Sirtuins包括兩類(lèi),一類(lèi)是在酵母菌中表達(dá)的Sir2;另一類(lèi)是發(fā)現(xiàn)于哺乳動(dòng)物體內(nèi)的家族蛋白,即通常所說(shuō)的Sirtuins。本文主要闡述Sirtuins從線粒體及keap1/Nrf2/ARE通路激活方面在缺血再灌注損傷中的器官保護(hù)作用及其機(jī)制。
Sirtuins家族高度保守,目前已鑒定了7種哺乳動(dòng)物Sirtuins同系物(SIRT1~SIRT7)。其中SIRT1、SIRT6和SIRT7定位于細(xì)胞核內(nèi),SIRT3、SIRT4和SIRT5定位在線粒體中,而SIRT2主要定位于細(xì)胞質(zhì)中。Sirtuins家族主要表現(xiàn)為兩種酶活性:NAD+依賴(lài)性蛋白脫乙酰酶活性和ADP-核糖基轉(zhuǎn)移酶活性。Sirtuins家族能去乙?;鞣N底物,如轉(zhuǎn)錄因子、代謝酶和組蛋白;控制許多生物學(xué)過(guò)程,包括細(xì)胞生長(zhǎng)代謝、細(xì)胞凋亡和自噬等。其中SIRT1和SIRT3與缺血再灌注損傷密切相關(guān)。
1.1 Sirtuins激活劑 白藜蘆醇能激活SIRT1使自噬相關(guān)蛋白LC3去乙酰化,介導(dǎo)α-突觸核蛋白的自噬降解,從而改善神經(jīng)毒素導(dǎo)致的小鼠運(yùn)動(dòng)缺陷和病理變化[2]。研究發(fā)現(xiàn),白藜蘆醇類(lèi)似物補(bǔ)骨脂酚(BAK)可上調(diào)SIRT1,隨后觸發(fā)PGC-1α表達(dá),改善下游SDH、COX、SOD活性及線粒體氧化還原電位,導(dǎo)致抗凋亡因子Bcl2水平升高和促凋亡因子Caspase-3和Bax水平降低[3]。紫檀芪(PTE)也是白藜蘆醇的一種類(lèi)似物,SIRT1抑制劑EX527可抵消PTE對(duì)IR相關(guān)肌肉損傷的保護(hù)作用[4]。姜黃素(Cur)可調(diào)節(jié)SIRT1的活性,Sirtinol和SIRT1 siRNA各自通過(guò)抑制SIRT1信號(hào)傳導(dǎo)阻斷Cur介導(dǎo)的心臟保護(hù)作用,表明Cur預(yù)處理通過(guò)激活SIRT1信號(hào)減少I(mǎi)R誘導(dǎo)的線粒體氧化損傷[5]。木犀草素可能通過(guò)激活SIRT1信號(hào)通路,或直接影響Nrf2-Keap1復(fù)合物來(lái)維持小鼠肝臟中Nrf2的產(chǎn)生[6]。研究還發(fā)現(xiàn),槲皮素、小檗堿、兒茶素、酪醇、阿魏酸、氯硝柳胺、malvidin等均能刺激SIRT1,這些物質(zhì)與不同信號(hào)傳導(dǎo)途徑(NAD、NAM、AKT、ERK、AMPK和mTOR)相互作用,使得SIRT1表達(dá)增加[7]。跑臺(tái)運(yùn)動(dòng)可能通過(guò)激活阿爾茨海默病小鼠模型中SIRT1信號(hào)傳導(dǎo)來(lái)減少β淀粉樣蛋白產(chǎn)生[8]。
香豆素(C12)是一種新型SIRT3激活劑,可與SIRT3高親和力結(jié)合,促進(jìn)錳超氧化物歧化酶(MnSOD)的去乙酰化和活化[9]。和厚樸酚存在于線粒體中,可將SIRT3表達(dá)提高近兩倍,提示和厚樸酚可能直接與SIRT3結(jié)合并進(jìn)一步增強(qiáng)其活性,減少ROS生成,逆轉(zhuǎn)小鼠的心力衰竭和心肌纖維化[7]。薯蕷皂甙能上調(diào)SIRT3水平,促進(jìn)SOD2、Nrf2和GST蛋白表達(dá),并抑制Keap1表達(dá)以增強(qiáng)抗氧化能力,顯示出對(duì)果糖誘導(dǎo)的腎缺血再灌注損傷的保護(hù)作用[10]。
1.2 Sirtuins抑制劑 在哺乳動(dòng)物中,線粒體融合是通過(guò)外膜融合蛋白mitofusins(MFN1和MFN2)和內(nèi)膜融合蛋白視神經(jīng)萎縮1(OPA1)發(fā)生的;通過(guò)線粒體分裂動(dòng)力蛋白Drp1和其招募蛋白Fis1促進(jìn)細(xì)胞裂變。研究發(fā)現(xiàn),Sirtuins脫乙酰酶抑制劑煙酰胺(NAM)能促進(jìn)MFN1降解;siRNA介導(dǎo)的SIRT1敲低可引起MFN1減少,而SIRT1過(guò)表達(dá)則增加其水平[11];在NCSU-23培養(yǎng)基中用合適濃度的sirtinol(SIRT1/2抑制劑)培養(yǎng)體外受精的豬胚胎,sirtinol組SIRT2水平顯著降低,增加LC3轉(zhuǎn)錄物和LC3蛋白誘導(dǎo)自噬且caspase-3表達(dá)顯著升高,提示Sirtuins可能通過(guò)修飾自噬和細(xì)胞凋亡來(lái)對(duì)抗氧化應(yīng)激反應(yīng)[12];腹腔注射Sirtuins抑制劑Tenovin6,發(fā)現(xiàn)SIRT3激活,其介導(dǎo)線粒體親環(huán)蛋白cypD去乙?;?,可降低mPTP開(kāi)放程度,抑制細(xì)胞凋亡,減輕大鼠腎IRI[13]。衰竭心肌組織miR-195表達(dá)升高涉及直接的3′-UTR靶向下調(diào)SIRT3可增加丙酮酸脫氫酶和ATP合酶的乙酰化抑制酶活性,影響心臟的能量代謝[14]。
哺乳動(dòng)物Sirtuins可與FOXO、PGC-1α、SOD2、Ku70和Nrf2等蛋白相互作用,調(diào)控缺血再灌注損傷過(guò)程。缺血再灌注損傷機(jī)制復(fù)雜,包括線粒體損傷、鈣超載、氧自由基累積、炎癥反應(yīng)及細(xì)胞凋亡等,其中線粒體與缺血再灌注損傷的病理機(jī)制層層交叉、密切相關(guān)。
2.1 SIRT1 SIRT1可將許多轉(zhuǎn)錄因子及核共激活因子去乙?;⑴c包括心腦腎在內(nèi)的多種器官與組織的保護(hù)作用。SIRT1的去乙?;富钚栽贗RI心臟保護(hù)中起關(guān)鍵作用。高水平SIRT1使Nrf2蛋白的去乙?;揎椩龆?,Nrf2蛋白表達(dá)升高,可減輕心肌IRI引起的炎癥和氧化應(yīng)激。亦有研究發(fā)現(xiàn),抑制SIRT1制造乙?;瘲l件可導(dǎo)致Nrf2的核定位增加,促進(jìn)Nrf2與DNA結(jié)合并增強(qiáng)基因轉(zhuǎn)錄;去乙?;瘎t使Nrf2重新定位于細(xì)胞質(zhì)內(nèi)[15]。去乙?;负蚇rf2激活的關(guān)系值得進(jìn)一步探討。研究發(fā)現(xiàn),SIRT1激活劑白藜蘆醇及其類(lèi)似物補(bǔ)骨脂酚、紫檀芪分別在心肌、骨骼肌等缺血再灌注中發(fā)揮保護(hù)作用[3,4]。姜黃素能減輕心肌IRI,且能通過(guò)激活Nrf2抑制線粒體分裂而改善胰島素抵抗。Huang等[16]發(fā)現(xiàn),伴隨著去乙?;淖饔煤蚇rf2的泛素化水平降低,SIRT1可明顯增強(qiáng)Keap1/Nrf2/ARE通路活性,包括降低Keap1表達(dá),促進(jìn)Nrf2核內(nèi)移,增強(qiáng)與ARE結(jié)合能力和轉(zhuǎn)錄活性,增加血紅素加氧酶1(Nrf2靶基因)蛋白表達(dá),最終抑制晚期糖基化終產(chǎn)物處理的腎小球系膜細(xì)胞中ROS過(guò)量產(chǎn)生,延緩糖尿病腎病的進(jìn)展。Nrf2也能正面調(diào)節(jié)SIRT1的蛋白表達(dá)和去乙酰酶活性水平,推測(cè)SIRT1與Keap1/Nrf2/ARE抗氧化途徑之間形成正反饋環(huán),發(fā)揮器官保護(hù)作用。
2.2 SIRT3 SIRT3介導(dǎo)的線粒體蛋白脫乙酰作用在心腦等疾病中均發(fā)揮重要作用。全腦缺血再灌注損傷后,大鼠大腦運(yùn)動(dòng)皮質(zhì)內(nèi)SIRT3表達(dá)隨再灌注時(shí)間延長(zhǎng)而降低。SIRT3缺乏可在缺血后恢復(fù)過(guò)程中加劇心功能不全,并增加線粒體通透性轉(zhuǎn)換孔(mPTP)開(kāi)放和ROS產(chǎn)生[17]。SIRT3主要在線粒體中表達(dá),能使線粒體蛋白去乙?;突罨?,改善線粒體功能[18]。Meng等[19]研究發(fā)現(xiàn),硫氫化鈉(NaHS)增加SIRT3啟動(dòng)子活性和SIRT3表達(dá)后,能逆轉(zhuǎn)線粒體功能障礙,而沉默SIRT3則可廢除此功能;同時(shí)發(fā)現(xiàn),NaHS可抑制Drp1、Fis1,但SIRT3敲除小鼠不能被抑制。SIRT3能夠使線粒體融合蛋白OPA1去乙?;⑻岣咂銰TP酶活性,OPA1的SIRT3依賴(lài)性激活有助于保護(hù)線粒體網(wǎng)絡(luò),調(diào)節(jié)線粒體動(dòng)力學(xué),提高線粒體功能。SIRT3超表達(dá)可減少SOD2乙酰化水平,并刺激Nrf2核轉(zhuǎn)位,提高抗氧化能力。去乙?;说鞍譑u70可減少Drp1相關(guān)的線粒體轉(zhuǎn)位,減弱叔丁基過(guò)氧化氫誘導(dǎo)的小鼠肝細(xì)胞線粒體分裂。SIRT3去乙?;疨GC-1α可促進(jìn)線粒體生物合成[20]。SIRT3可能如SIRT1一樣,與Nrf2之間存在正反饋環(huán),因?yàn)镹rf2可通過(guò)與SIRT3啟動(dòng)子的直接相互作用來(lái)控制SIRT3表達(dá),而PGC-1α與NRF2作為轉(zhuǎn)錄共激活因子相互作用,其減少可使SIRT3轉(zhuǎn)錄減少,導(dǎo)致細(xì)胞凋亡[21,22]。
SIRT3對(duì)缺血再灌注損傷的器官保護(hù)作用目前存在爭(zhēng)議。有學(xué)者認(rèn)為,腦缺血再灌注后通過(guò)未知的SIRT3活化機(jī)制增強(qiáng)線粒體神經(jīng)酰胺合酶的去乙?;瑢?dǎo)致神經(jīng)酰胺的積累和線粒體功能障礙,累積的神經(jīng)酰胺抑制呼吸鏈活動(dòng),導(dǎo)致ROS增加和活化的Bax表達(dá)增加,使腦損傷加重。而SIRT3基因可消融減少神經(jīng)酰胺,保留線粒體呼吸鏈功能,抑制ROS生成和氧化損傷,并減輕中風(fēng)小鼠模型的腦組織損傷[23]。
2.3 其他Sirtuins成員 細(xì)胞質(zhì)中的SIRT2在氧化應(yīng)激條件下通過(guò)抑制caspase-3活化和降低SOD的水平,在細(xì)胞凋亡和氧化信號(hào)傳導(dǎo)中發(fā)揮作用。COPD中SIRT2活性降低可能導(dǎo)致Nrf2乙酰化增加,Nrf2穩(wěn)定性降低和抗氧化劑防御功能受損[24]。SIRT2能增加融合相關(guān)蛋白Mfn2并減少線粒體相關(guān)的Drp1,還能減弱線粒體DNA相關(guān)蛋白TFAM的下調(diào),促進(jìn)線粒體質(zhì)量的增加[25]。但也有研究表明,SIRT2通過(guò)結(jié)合和去乙酰化Nrf2,促進(jìn)其降解,隨后Nrf2總細(xì)胞水平及核水平降低[26]。SIRT4與SIRT5均定位于線粒體中,哺乳動(dòng)物SIRT4抑制與飲食剝奪相結(jié)合,可能防治缺血再灌注損傷[27]。SIRT5可靶向MiD51、Fis1、Drp1降低線粒體片段化,保護(hù)線粒體功能,減輕心肌缺血再灌注損傷[28]。在神經(jīng)母細(xì)胞瘤細(xì)胞中,SIRT6過(guò)表達(dá)可增加總Nrf2、核Nrf2及其靶基因HO-1和SOD水平,減輕氧化應(yīng)激反應(yīng),減弱OGD/R誘導(dǎo)的細(xì)胞死亡,其保護(hù)作用可被NRF2敲低阻斷,這些證據(jù)表明SIRT6可通過(guò)激活Nrf2抑制氧化應(yīng)激保護(hù)大腦,使其免受缺血再灌注損傷[29]。SIRT6上調(diào)能夠維持氧化穩(wěn)態(tài)和線粒體功能,抑制炎癥反應(yīng)和MAPK信號(hào)傳導(dǎo),最終減弱細(xì)胞凋亡和自噬相關(guān)的肝細(xì)胞死亡,使肝臟免受缺血再灌注損傷[30]。
綜上所述,Sirtuins家族多個(gè)成員均涉及線粒體功能,且在器官保護(hù)尤其是缺血再灌注損傷中發(fā)揮作用,目前其在缺血再灌注損傷中的器官保護(hù)作用機(jī)制仍未闡明,依舊爭(zhēng)議存在。Sirtuins可以調(diào)節(jié)Nrf2產(chǎn)生不同影響,其與Nrf2、線粒體及缺血再灌注之間的作用機(jī)制仍需進(jìn)一步探討。
參考文獻(xiàn):
[1] Zhang N,Wang S,Li Y,et al. A selective inhibitor of Drp1,mdivi-1,acts against cerebral ischemia/reperfusion injury via an anti-apoptotic pathway in rats[J]. Neuroscience Letters,2013,535(1):104-109.
[2] Guo YJ,Dong SY,Cui XX,et al. Resveratrol alleviates MPTP-induced motor impairments and pathological changes by autophagic degradation of alpha-synuclein via SIRT1-deacetylated LC3[J]. Mol Nutr Food Res,2016,60(10):2161-2175.
[3] Feng J,Yang Y,Zhou Y,et al. Bakuchiol attenuates myocardial ischemia reperfusion injury by maintaining mitochondrial function: the role of silent information regulator 1[J]. Apoptosis,2016,21(5):532-545.
[4] Cheng Y,Di S,Fan C,et al. SIRT1 activation by pterostilbene attenuates the skeletal muscle oxidative stress injury and mitochondrial dysfunction induced by ischemia reperfusion injury[J]. Apoptosis,2016,21(8):905-916.
[5] Yang Y,Duan W,Lin Y,et al. SIRT1 activation by curcumin pretreatment attenuates mitochondrial oxidative damage induced by myocardial ischemia reperfusion injury[J]. Free Radic Biol Med,2013(65):667-679.
[6] Yang D,Tan X,Lv Z,et al. Regulation of Sirt1/Nrf2/TNF-alpha signaling pathway by luteolin is critical to attenuate acute mercuric chloride exposure induced hepatotoxicity[J]. Sci Rep,2016,6:37157.
[7] Giovannini L,Bianchi S. Role of nutraceutical SIRT1 modulators in AMPK and mTOR pathway: evidence of a synergistic effect[J]. Nutrition,2017(34):82-96.
[8] Koo JH,Kang EB,Oh YS,et al. Treadmill exercise decreases amyloid-β burden possibly via activation of SIRT-1 signaling in a mouse model of Alzheimer′s disease[J]. Expe Neurol,2017(288):142.
[9] Lu J,Zhang H,Chen X,et al. A small molecule activator of SIRT3 promotes deacetylation and activation of manganese superoxide dismutase[J]. Free Radic Biol Med,2017,112:287-297.
[10] Qiao Y,Xu L,Tao X,et al. Protective effects of dioscin against fructose-induced renal damage via adjusting Sirt3-mediated oxidative stress,fibrosis,lipid metabolism and inflammation[J]. Toxicol Lett,2017(284):37-45.
[11] Oanh NTK,Park YY,Cho H. Mitochondria elongation is mediated through SIRT1-mediated MFN1 stabilization[J]. Cell Signal,2017(38):67-75.
[12] Kim MG,Kim DH,Lee HR,et al. Sirtuin inhibition leads to autophagy and apoptosis in porcine preimplantation blastocysts[J]. Biochem Biophys Res Commun,2017,488(4):603-608.
[13] 斯妍娜,張媛,韓流,等.SIRT3介導(dǎo)CypD去乙酰化在右美托咪定減輕腎缺血再灌注損傷中的作用[J].中華麻醉學(xué)雜志,2016,36(2):239-241.
[14] Zhang X,Ji R,Liao X,et al. miR-195 regulates metabolism in failing myocardium via alterations in SIRT3 expression and mitochondrial protein acetylation[J]. Circulation,2018,137(8):123-150.
[15] Kawai Y,Garduno L,Theodore M,et al. Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization[J]. J Biol Chem,2011,286(9):7629-7640.
[16] Huang K,Gao X,Wei W. The crosstalk between Sirt1 and Keap1/Nrf2/ARE anti-oxidative pathway forms a positive feedback loop to inhibit FN and TGF-β1expressions in rat glomerular mesangial cells[J]. Expe Cell Res,2017,361(1):63.
[17] Parodirullán RM,Chapadubocq X,Rullán P J,et al. Corrigendum: high sensitivity of SIRT3 deficient hearts to ischemia-reperfusion is associated with mitochondrial abnormalities[J]. Front Pharmacol,2017(8):275.
[18] Ramachandran D,Clara R,Fedele S,et al. Intestinal SIRT3 overexpression in mice improves whole body glucose homeostasis independent of body weight[J]. Mol Metab,2017,6(10):1264-1273.
[19] Meng G,Liu J,Liu S,et al. Hydrogen sulfide pretreatment improves mitochondrial function in myocardial hypertrophy via a SIRT3-dependent manner[J]. Br J Pharmacol,2017,175(8):1126-1145.
[20] Liu J,Li D,Zhang T,et al. SIRT3 protects hepatocytes from oxidative injury by enhancing ROS scavenging and mitochondrial integrity[J]. Cell Death Dis,2017,8(10):564.
[21] Satterstrom FK,Swindell WR,Laurent G,et al. Nuclear respiratory factor 2 induces SIRT3 expression[J]. Aging Cell,2015,14(5):818-825.
[22] Song C,Fu B,Zhang J,et al. Sodium fluoride induces nephrotoxicity via oxidative stress-regulated mitochondrial SIRT3 signaling pathway[J]. Sci Rep,2017,7(1):672.
[23] Novgorodov S A,Riley C L,Keffler J A,et al. SIRT3 Deacetylates Ceramide Synthases: implications formitochondrial dysfunction and brain injury[J]. J Biol Chem,2016,291(4):1957-1973.
[24] Mercado N,Thimmulappa R,Thomas C M,et al. Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress[J]. Biochem Biophys Res Commun,2011,406(2):292-298.
[25] Lemos V,de Oliveira R M,Naia L,et al. The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes[J]. Hum Mol Genet,2017,26(21):4105.
[26] Yang X,Park SH,Chang HC,et al. Sirtuin 2 regulates cellular iron homeostasis via deacetylation of transcription factor NRF2[J]. J Clin Invest,2017,127(4):1505-1516.
[27] Sangaletti R,D′Amico M,Grant J,et al. Knock-out of a mitochondrial sirtuin protects neurons from degeneration in Caenorhabditis elegans[J]. Plos Genetics,2017,13(8):1006965.
[28] Guedouari H,Daigle T,Scorrano L,et al. Sirtuin 5 protects mitochondria from fragmentation and degradation during starvation[J]. Biochim Biophys Acta,2017,1864(1):169-176.
[29] Zhang W,Wei R,Zhang L,et al. Sirtuin 6 protects the brain from cerebral ischemia/reperfusion injury through NRF2 activation[J]. Neuroscience,2017(366):95-104.
[30] Zhang S,Jiang S,Wang H,et al. SIRT6 protects against hepatic ischemia/reperfusion injury by inhibiting apoptosis and autophagy related cell death[J]. Free Radic Biol Med,2018(115):18-30.