国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

單磷酸腺苷激活的蛋白激酶(AMPK)調(diào)控機(jī)制的研究進(jìn)展

2018-04-11 06:58林志忠葉志云林圣彩林舒勇
關(guān)鍵詞:溶酶體亞基磷酸化

林志忠,葉志云,林圣彩,林舒勇

(廈門大學(xué)生命科學(xué)學(xué)院,福建 廈門 361102)

三磷酸腺苷(ATP)是幾乎所有細(xì)胞和有機(jī)體中最重要的能量載體,ATP水解成二磷酸腺苷(ADP)所釋放出的能量直接用于絕大多數(shù)生命活動,當(dāng)能量進(jìn)一步缺乏時(shí)ADP可再轉(zhuǎn)變?yōu)閱瘟姿嵯佘?AMP)以提供更多的能量;而當(dāng)能量充足時(shí),細(xì)胞又可將AMP和ADP 重新轉(zhuǎn)化成ATP從而將能量存儲起來.在正常情況下,大部分真核細(xì)胞中的ATP濃度始終維持在一個(gè)非常穩(wěn)定的水平,因此細(xì)胞中必然存在一個(gè)可以感知ATP、ADP和AMP水平變化的機(jī)制.

AMP激活的蛋白激酶(AMP-activated protein kinase,AMPK)目前已被公認(rèn)是有機(jī)體和細(xì)胞內(nèi)感應(yīng)能量水平并調(diào)節(jié)代謝穩(wěn)態(tài)的最重要分子.早期的研究發(fā)現(xiàn),向大鼠的肝臟勻漿中加入AMP或ADP,可以有效地抑制2種脂肪酸合成過程中的關(guān)鍵酶——3-羥基-3-甲基戊二酸單酰輔酶A還原酶(HMG-CoA reductase)和乙酰輔酶A羧化酶(acetyl-CoA carboxy-lase,ACC)的活力從而強(qiáng)烈地抑制肝臟的脂肪合成[1-3].進(jìn)一步的研究表明,這一抑制作用實(shí)際上是由AMP引起的,且依賴于某個(gè)未知蛋白激酶的催化反應(yīng)[4].為了找到這個(gè)未知的蛋白激酶,蘇格蘭鄧迪大學(xué)的Hardie實(shí)驗(yàn)室對大鼠肝臟勻漿進(jìn)行了分離和純化,并對能夠響應(yīng)AMP抑制ACC的組分進(jìn)行了近4年的細(xì)致分析,終于在1989年找到了一個(gè)由分子質(zhì)量分別為63,38和35 ku的3個(gè)亞基組成的蛋白,并根據(jù)該蛋白能被AMP激活的特性將其命名為AMPK[5].

后來的研究表明,當(dāng)細(xì)胞內(nèi)處于能量缺乏狀態(tài)時(shí),AMPK被激活,進(jìn)而直接導(dǎo)致了多條信號通路的抑制或激活并引起一系列的生理變化(圖1),包括:促進(jìn)脂肪細(xì)胞中甘油三酯的水解[6],促進(jìn)肝臟對血液中脂肪酸的攝取和氧化[7],抑制脂肪酸和膽固醇的合成以及甘油三酯的形成[8-9],促進(jìn)肌肉中脂類氧化以及葡萄糖的攝取和分解[10-11],抑制胰島β細(xì)胞分泌胰島素以及糖原的合成[12],抑制蛋白質(zhì)的合成并促進(jìn)自噬作用[13-15]和酮體的生成[16]等.其中,抑制脂肪酸合成并促進(jìn)其氧化被認(rèn)為是AMPK最經(jīng)典的功能,主要是通過磷酸化并抑制其底物ACC的活力實(shí)現(xiàn)的,而ACC又是脂肪酸合成的關(guān)鍵酶[10].這些作用的結(jié)果是增加體內(nèi)的產(chǎn)能代謝,減少體內(nèi)的耗能代謝,穩(wěn)定體內(nèi)能量水平,維持能量穩(wěn)態(tài),從而保證細(xì)胞的正常生命活動.由此可見,AMPK是機(jī)體內(nèi)最重要的能量穩(wěn)態(tài)調(diào)節(jié)者,它的功能和人類的生存與健康密切相關(guān).

圖1 AMPK參與調(diào)控的許多重要細(xì)胞生物學(xué)過程Fig.1 Multiple important cellular biological processes regulated by AMPK

1 AMPK的結(jié)構(gòu)

AMPK是由α、β和γ 3個(gè)亞基構(gòu)成的一個(gè)異源三聚體.α亞基的N 端是AMPK催化活性的核心區(qū)域,包含一個(gè)保守的絲氨酸/蘇氨酸激酶結(jié)構(gòu)域(kinase domain,KD)、C端的β亞基相互作用結(jié)構(gòu)域(β-subunit interacting domain,β-SID)和與C端緊鄰的自抑制結(jié)構(gòu)域(autoinhibitory domain,AID),其中AID的作用是通過結(jié)合KD來抑制α亞基的激酶活性[17-18];β亞基包含一個(gè)中等碳水化合物的結(jié)合模塊(mid-molecule carbohydrate-binding module,CBM)和一段位于C末端的連接α和γ亞基的結(jié)合序列(α,γ subunit-binding sequence,SBS);γ亞基含有4個(gè)參與結(jié)合ATP、AMP等的胱硫醚β-合成酶(cystathionine-β-synthase,CBS)結(jié)構(gòu)域.當(dāng)AMP結(jié)合到γ亞基上的CBS結(jié)構(gòu)域時(shí)會引起該亞基發(fā)生變構(gòu),隨后影響AID的構(gòu)象,使α亞基上的蘇氨酸172(T172)位點(diǎn)暴露出來,導(dǎo)致該位點(diǎn)被AMPK的上游激酶磷酸化[18-22];同時(shí)由于AMP的結(jié)合導(dǎo)致的構(gòu)象變化還可阻止該位點(diǎn)的去磷酸化,從而使AMPK保持較高的激活水平.相反地,ATP的結(jié)合則能夠抑制這一過程[23-24].

在哺乳動物細(xì)胞中,AMPK的α和β亞基各包含2種不同的亞型(α1、α2和β1、β2),γ亞基包含3種不同的亞型(γ1、γ2和γ3),這些亞型均由不同的基因編碼表達(dá),它們可以組合成至少12種不同的AMPK三聚體[25-26].研究發(fā)現(xiàn)這些亞型的表達(dá)具有組織特異性,γ2在人體的心肌細(xì)胞中高度表達(dá),而γ3則集中表達(dá)于快速抽動的骨骼肌細(xì)胞中;此外,在不同物種之間這些亞型的表達(dá)差異很大,如γ2在人的心肌細(xì)胞中高表達(dá),但在小鼠的心肌細(xì)胞中表達(dá)量卻很低,而在小鼠的腦組織和脂肪組織中又是高表達(dá)的[27-28].因此,AMPK不同亞型之間的關(guān)聯(lián)性及其在不同物種、不同組織細(xì)胞中所發(fā)揮的功能還有待進(jìn)一步的深入研究.

2 AMPK的調(diào)控機(jī)制

如上所述,AMPK的激活依賴于其T172位點(diǎn)的磷酸化,目前已發(fā)現(xiàn)2種主要的上游激酶,分別為肝臟激酶B1(liver kinase B1,LKB1)和鈣離子/鈣調(diào)蛋白依賴蛋白激酶β(Ca2+/calmodulin-activated protein kinase β,CaMKKβ)[29-32].LKB1是一個(gè)腫瘤抑制因子,自身處于持續(xù)激活的狀態(tài),當(dāng)組織缺氧、缺血或運(yùn)動導(dǎo)致細(xì)胞內(nèi)能量缺乏時(shí),細(xì)胞內(nèi)AMP/ATP比值上升,AMP與AMPK結(jié)合時(shí)后者的構(gòu)象發(fā)生改變,使得AMPK的T172位點(diǎn)暴露出來,從而使LKB1能夠?qū)υ撐稽c(diǎn)進(jìn)行磷酸化,并可使其活性上升100倍以上[29];而CaMKKβ則需要在細(xì)胞內(nèi)鈣離子濃度升高時(shí)才能被激活,并進(jìn)而磷酸化AMPK[30,33].另外,早期的研究表明ADP與AMPK結(jié)合亦可引發(fā)與AMP相同的效應(yīng)[34-35];但是較新的一項(xiàng)研究證明,只有當(dāng)AMP與AMPK結(jié)合后LKB1才對其T172位點(diǎn)進(jìn)行磷酸化,而ADP的結(jié)合只參與了抑制該位點(diǎn)的去磷酸化[22].然而,這些發(fā)現(xiàn)大都基于體外的生化實(shí)驗(yàn),AMPK在體內(nèi)被激活的機(jī)制,以及AMP對AMPK磷酸化的具體作用長期以來一直不為人知.

2013年,本課題組率先揭開了AMPK在體內(nèi)被激活的“路線圖”,發(fā)現(xiàn)體軸發(fā)育抑制因子(axis inhibitor,AXIN)是LKB1激活A(yù)MPK所必需的,其中AXIN是一個(gè)多功能的構(gòu)架蛋白,參與調(diào)節(jié)許多信號通路,如Wnt、JNK和p53等,對細(xì)胞生長起重要的調(diào)控作用[36-40].當(dāng)細(xì)胞在饑餓狀態(tài)下,由于AMP結(jié)合至AMPK后增強(qiáng)了后者對AXIN的親和力,而AXIN自身與LKB1有很強(qiáng)的相互作用,所以此時(shí)的AXIN起到了一個(gè)橋梁的作用,將AMPK和其上游激酶LKB1連接在一起,三者形成一個(gè)復(fù)合體,促進(jìn)了LKB1對AMPK的磷酸化激活,使得AMPK的活性升高[41](圖2).以上研究成果完善了AMPK活性調(diào)控過程中的關(guān)鍵一環(huán),揭示了AMP促進(jìn)AMPK磷酸化的分子機(jī)制.

圖2 AXIN激活A(yù)MPK的機(jī)制[41]Fig.2 Mechanism of AMPK activation by AXIN[41]

引自參考文獻(xiàn)[42],經(jīng)修改.圖3 v-ATPase-Ragulator復(fù)合體調(diào)控AMPK和mTORC1活化切換的機(jī)制Fig.3 Mechanism of switch between AMPK and mTORC1 activation regulated by v-ATPase-Ragulator complex

隨后,本課題組又通過酵母雙雜交的方式找到了和AXIN相互作用的溶酶體相關(guān)膜蛋白LAMTOR1,并且證明該蛋白也是能量缺乏情況下AMPK激活所必需的[42].LAMTOR1是一個(gè)錨定在溶酶體膜表面的蛋白復(fù)合體Ragulator的重要成員,在缺乏LAMTOR1的小鼠或細(xì)胞中,饑餓信號不能引起AMPK的激活.在能量充足的情況下,Ragulator通過其自身的鳥苷酸交換因子(guanine nucleotide exchange factor,GEF)激活鳥苷酸酶Rag,從而使哺乳動物雷帕霉素靶蛋白復(fù)合體1(mammalian target of rapamycin complex 1,mTORC1)遷移到溶酶體上并被激活,這時(shí)合成代謝途徑開啟(圖3(a));而在能量不足的情況下,溶酶體上的能量感知者空泡型ATP酶(vacuolar-type ATPase,v-ATPase)發(fā)生變構(gòu),通過與其相互作用的Ragulator復(fù)合體共同促進(jìn)AXIN-LKB1遷移到溶酶體上并與Ragulator結(jié)合,最后在此激活A(yù)MPK,同時(shí)AXIN抑制了Ragulator的GEF活力,進(jìn)一步促進(jìn) mTORC1的解離,從而關(guān)閉合成代謝途徑,開啟分解代謝途徑(圖3(b)).

綜上,本課題組發(fā)現(xiàn)細(xì)胞內(nèi)由于葡萄糖缺乏所引起的AMPK激活是在溶酶體膜上進(jìn)行的,并且揭示了該過程所涉及的蛋白質(zhì)機(jī)器.這一發(fā)現(xiàn)不僅揭示了AMPK在體內(nèi)生理狀態(tài)下被激活的方式與過程,也解析了細(xì)胞在營養(yǎng)物質(zhì)缺乏的情況下調(diào)節(jié)合成代謝與分解代謝的切換機(jī)制.

此外,除了能量缺乏以外,AMPK還可以響應(yīng)多種藥物的刺激而被激活[43].根據(jù)作用機(jī)制的不同可以將這些藥物分為以下3大類:1) 線粒體復(fù)合體抑制劑,通過抑制呼吸鏈來提高細(xì)胞內(nèi)AMP/ADP水平從而激活A(yù)MPK,常見的如二甲雙胍(metformin)[44]、黃連素[45]等;2) AMP類似物的前體化合物,如5-氨基-4-甲酰胺咪唑核糖核苷酸(5-aminoimidazole-4-carboxamide ribonucleoside,AICAR)[46]和近幾年被發(fā)現(xiàn)的一種膦酸類化合物5-(5-hydroxyl-isoxazol-3-yl)-furan-2-phosphonic acid[47],這些化合物可在細(xì)胞內(nèi)轉(zhuǎn)變?yōu)锳MP類似物,從而直接提高AMP水平使AMPK被激活;3)AMPK激活劑,可直接作用于AMPK使之構(gòu)象發(fā)生變化并隨后被激活,包括最早發(fā)現(xiàn)的被命名為A769662的化合物[48]以及最近發(fā)現(xiàn)的991[49]和MT-63-78[50].在上述這些藥物中,二甲雙胍是一個(gè)重要的代表性藥物,已被廣泛應(yīng)用于治療Ⅱ型糖尿病,它能通過激活A(yù)MPK來緩解脂肪肝并降低并發(fā)癥風(fēng)險(xiǎn)[51].

為了進(jìn)一步探究Ragulator-AXIN在藥理情況下對AMPK激活過程的調(diào)控作用,本課題組對缺失了LAMTOR1的小鼠胚胎成纖維細(xì)胞(mouse embryonic fibroblast,MEF)進(jìn)行二甲雙胍處理,發(fā)現(xiàn)二甲雙胍不能在這些細(xì)胞中激活A(yù)MPK;同樣地,對于LAMTOR1肝臟特異性敲除的小鼠,二甲雙胍也不能在其肝臟中激活A(yù)MPK;進(jìn)而在缺失了AXIN的細(xì)胞和小鼠肝臟中檢測了二甲雙胍對AMPK的激活作用,發(fā)現(xiàn)AXIN是二甲雙胍激活A(yù)MPK所必需的,且二甲雙胍激活A(yù)MPK也是通過溶酶體途徑進(jìn)行的,并依賴于上述溶酶體上的v-ATPase-Ragulator感應(yīng)復(fù)合體[52].這一發(fā)現(xiàn)不僅解決了二甲雙胍如何激活A(yù)MPK的重要問題,還為人們了解二甲雙胍降低糖尿病人的腫瘤發(fā)生機(jī)制打開了窗口.

3 AMPK和葡萄糖感應(yīng)

引自參考文獻(xiàn)[59],經(jīng)修改.圖4 細(xì)胞感知葡萄糖水平的分子機(jī)制Fig.4 Molecular mechanism of glucose sensing in cell

葡萄糖是生物界最基本、最主要的供能物質(zhì),故其水平和機(jī)體的能量代謝狀態(tài)本身就具有緊密的聯(lián)系;此外,葡萄糖代謝的中間產(chǎn)物又是幾乎所有合成代謝途徑最重要的原材料來源.可見,感受葡萄糖的水平并隨時(shí)作出相應(yīng)的響應(yīng)是生物體維持代謝平衡的基本功能.AMPK能夠響應(yīng)機(jī)體葡萄糖水平的變化,并在其水平下降的時(shí)候被激活,該機(jī)制在各種表達(dá)有AMPK的真核生物中高度保守,從酵母到哺乳動物中都已被發(fā)現(xiàn)[53],是進(jìn)化上少有的經(jīng)典表型.

饑餓、運(yùn)動等生理過程都會導(dǎo)致整體或某個(gè)器官的葡萄糖水平變化.在葡萄糖水平下降時(shí),激活的AMPK能夠通過一系列方式維持代謝平衡和機(jī)體的正常生理功能.例如:饑餓能夠引起血液和組織液中葡萄糖水平的下降,AMPK在此時(shí)被激活,進(jìn)而促進(jìn)肝臟等組織中脂肪酸的β-氧化,使之轉(zhuǎn)換為利用脂肪酸[7];與此同時(shí),AMPK還能促進(jìn)肝臟生成酮體,通過血液供給腦部等不能利用脂肪酸的器官,以滿足這些組織的能量需求.許多生物的生命活動有晝夜節(jié)律(circadian rhythms),這種周期性也引起了機(jī)體內(nèi)葡萄糖水平的周期性變化[54],而AMPK能夠響應(yīng)這種變化并維持機(jī)體能量穩(wěn)態(tài)[55].近年來,人們利用AMPK和葡萄糖之間的密切聯(lián)系開發(fā)了許多藥物,來模擬葡萄糖缺失的情況以激活A(yù)MPK,如無法被代謝的葡萄糖類似物2-DG和5-TG等[56-57],這些藥物能夠通過阻斷葡萄糖代謝達(dá)到激活A(yù)MPK的目的,并已應(yīng)用于某些腫瘤的前期實(shí)驗(yàn)中[58].

因此,葡萄糖水平的感應(yīng)對于AMPK的激活至關(guān)重要,是打開代謝穩(wěn)態(tài)維持機(jī)制之門的“鑰匙”.然而,AMPK如何感應(yīng)機(jī)體的葡萄糖水平并被激活的機(jī)制長期以來并不清楚,甚至存在重大的誤區(qū).由于AMP在AMPK激活過程中的重要而經(jīng)典的地位,它一直以來被認(rèn)為是AMPK唯一的激活信號;同時(shí),傳統(tǒng)的理論把葡萄糖看作一種“能量信號”,它的下降將引起細(xì)胞內(nèi)ATP水平的下降和AMP水平的上升,后者作為激活劑直接激活A(yù)MPK.但實(shí)際上,并沒有一種生理狀態(tài)能夠驗(yàn)證以上理論.

本課題組在對AMPK激活機(jī)制的深入研究中發(fā)現(xiàn),無論是在葡萄糖缺乏的細(xì)胞培養(yǎng)條件下,還是在饑餓的低血糖動物體內(nèi),都不能檢測到AMP水平的上升,但與此同時(shí)AMPK卻處在被激活的狀態(tài),這說明葡萄糖水平的降低與“能量缺失”無關(guān),即與AMP水平無關(guān),而是通過一種新的信號和一條獨(dú)立于能量代謝的通路來調(diào)控AMPK的激活.

本課題組之前已經(jīng)發(fā)現(xiàn)了一條響應(yīng)葡萄糖缺失并激活A(yù)MPK的溶酶體途徑[42],揭示了內(nèi)源AMPK的激活過程.在此基礎(chǔ)上,進(jìn)一步研究AMPK感受和響應(yīng)葡萄糖水平而被激活的機(jī)制,成功地鑒定出傳遞葡萄糖水平的“信使”——果糖1,6-二磷酸(fructose-1,6-bisphosphate,FBP),同時(shí)找到了感應(yīng)這一“信使”的“感受器”——參與糖酵解通路的醛縮酶(aldolase),依靠這一套完整的信號系統(tǒng),葡萄糖水平就能夠作為一種具體的信號調(diào)節(jié)AMPK的激活乃至整個(gè)機(jī)體的代謝穩(wěn)態(tài)[59].具體地說,當(dāng)葡萄糖水平下降時(shí),葡萄糖代謝物FBP的水平也相應(yīng)地下降,該過程進(jìn)一步被醛縮酶所感應(yīng),后者將啟動激活A(yù)MPK的溶酶體途徑進(jìn)而介導(dǎo)AMPK的激活(圖4).

這一發(fā)現(xiàn)改變了人們一直以來認(rèn)為的AMPK活性只被代表低能量的AMP調(diào)節(jié)的觀點(diǎn),是對傳統(tǒng)AMPK激活機(jī)制的一次重新認(rèn)識;并據(jù)此提出,葡萄糖水平是機(jī)體的一種“狀態(tài)信號”,通過調(diào)節(jié)AMPK的激活從而調(diào)節(jié)機(jī)體代謝的總平衡.這對全面了解細(xì)胞代謝穩(wěn)態(tài)維持的分子機(jī)制、糖代謝和相關(guān)應(yīng)激反應(yīng)乃至生理、病理進(jìn)程有重要意義,且有助于為研發(fā)治療人類重大疾病的藥物提供全新、有效的靶點(diǎn).

4 AMPK和疾病

糖尿病是一種糖脂代謝穩(wěn)態(tài)失調(diào)、紊亂的疾?。延醒芯堪l(fā)現(xiàn),在肥胖小鼠和Ⅱ型糖尿病病人的外周組織中,AMPK的活性明顯被抑制[60-61].而AMPK的激活能夠促進(jìn)肌肉中的葡萄糖轉(zhuǎn)運(yùn)蛋白GLUT4轉(zhuǎn)移到細(xì)胞膜上[62-63],增加肌肉對血液中葡萄糖的吸收和分解代謝,從而降低血糖[64].在肝臟中,當(dāng)ATP缺乏引起AMPK的激活后,AMPK可以通過磷酸化轉(zhuǎn)錄輔激活因子CRTC2(也稱TORC2)促進(jìn)其出核,或者通過磷酸化去乙酰化酶HDAC4/5/7促進(jìn)轉(zhuǎn)錄因子FOXO1出核,這兩種方式的結(jié)果都是抑制肝臟的糖異生途徑,從而降低血糖[65-67].

除了代謝性疾病,許多腫瘤的發(fā)生和代謝紊亂也有著密切的聯(lián)系.腫瘤以及腫瘤微環(huán)境與正常組織相比的一個(gè)重要特征就是代謝過程的不同,而代謝紊亂進(jìn)一步促進(jìn)了腫瘤的發(fā)生和發(fā)展[68-69].由于腫瘤組織的快速增殖消耗大量營養(yǎng),腫瘤微環(huán)境是一個(gè)營養(yǎng)匱乏的環(huán)境,這將引起腫瘤組織中AMPK的激活[70].在細(xì)胞水平上,已經(jīng)有大量的研究表明AMPK的激活可以通過抑制mTORC1復(fù)合體而抑制腫瘤細(xì)胞的合成代謝,從而阻止其增殖[71];還可以通過促進(jìn)p53的活性引起腫瘤細(xì)胞的生長阻滯和凋亡,從而抑制腫瘤細(xì)胞的生長[72-74].因此,在多種腫瘤組織,如黑色素瘤、乳腺癌、結(jié)腸癌和肺癌組織中,AMPK的表達(dá)或者活性被強(qiáng)烈抑制,進(jìn)一步打破了這些組織中原有的合成代謝和分解代謝的平衡,加劇了腫瘤的發(fā)展[70,75-76].腫瘤微環(huán)境對免疫細(xì)胞中AMPK的激活則反過來阻止了促炎癥免疫細(xì)胞的分化和發(fā)育以及相關(guān)免疫因子的釋放,使之處于休眠狀態(tài)不能被激活并發(fā)揮效應(yīng),從而抑制了免疫反應(yīng)對腫瘤組織的識別和殺滅,導(dǎo)致腫瘤的生長更加不受控制[77].

5 結(jié)語與展望

作為能量代謝調(diào)節(jié)的核心分子,AMPK一直是細(xì)胞代謝領(lǐng)域研究的重點(diǎn).雖然近年來人們已經(jīng)在該領(lǐng)域獲得了一系列的新發(fā)現(xiàn),然而對AMPK精細(xì)的調(diào)控機(jī)制還需要更深層次的研究.目前已知AMPK的激活存在以下兩條截然不同的途徑:1) 依賴于AMP(AMP-dependent)的經(jīng)典途徑;2) 不依賴于AMP(AMP-independent)而通過糖酵解通路中代謝酶aldolase的途徑.那么,進(jìn)一步需要回答的重要問題就是細(xì)胞如何根據(jù)生理狀況對上述兩種途徑做出選擇.另外,本課題組的研究發(fā)現(xiàn)細(xì)胞中存在兩個(gè)激活A(yù)MPK的位置——溶酶體和細(xì)胞質(zhì).那么,在這兩個(gè)位置上激活的AMPK是否有不同的底物及其生理意義也是后續(xù)研究中有待解決的問題,這不僅能夠幫助人們更深刻地理解AMPK以及代謝穩(wěn)態(tài)的調(diào)控機(jī)制,還有助于理解和操控相關(guān)的重要生理過程和病理過程,最終為戰(zhàn)勝威脅人類健康的重大疾病貢獻(xiàn)力量.

過去的十幾年來,人們也一直在研發(fā)以AMPK為靶點(diǎn)用于治療代謝性疾病的藥物,并已篩選出了一些潛在的AMPK激活劑,如國際制藥巨頭Pfizer公司篩選出的名為991的化合物.然而,這些激活劑雖然在體外實(shí)驗(yàn)中可以有效地激活A(yù)MPK,但其面臨的真正挑戰(zhàn)是能否在動物體內(nèi)以及人體內(nèi)也發(fā)揮同樣的功能.隨著人們對AMPK激活機(jī)制的不斷深入研究與解析,或許在不久的將來有望見證以全新的作用機(jī)制激活A(yù)MPK的藥物問世.

參考文獻(xiàn):

[1]GIL G,SITGES M,BOVé J,et al.Phosphorylation-dephosphorylation of rat liver 3-hydroxy 3-methylglutaryl coenzyme A reductase associated with changes in activity[J].FEBS Lett,1980,110(2):195-199.

[2]HARWOOD H J,JR,BRANDT K G,RODWELL V W.Allosteric activation of rat liver cytosolic 3-hydroxy-3-methylglutaryl coenzyme A reductase kinase by nucleoside diphosphates[J].J Biol Chem,1984,259(5):2810-2815.

[3]CARLSON C A,KIM K H.Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation[J].J Biol Chem,1973,248(1):378-380.

[4]CARLING D,ZAMMIT V A,HARDIE D G.A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis[J].FEBS Lett,1987,223(2):217-222.

[5]CARLING D,CLARKE P R,ZAMMIT V A,et al.Purification and characterization of the AMP-activated protein kinase.Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA reductase kinase activities[J].Eur J Biochem,1989,186(1/2):129-136.

[6]GAUTHIER M S,MIYOSHI H,SOUZA S C,et al.AMP-activated protein kinase is activated as a consequence of lipolysis in the adipocyte:potential mechanism and physiological relevance[J].J Biol Chem,2008,83(24):16514-16524.

[7]SAVAGE D B,CHOI C S,SAMUEL V T,et al.Reversal of diet-induced hepatic steatosis and hepatic insulin resis-tance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2[J].J Clin Invest,2006,116(3):817-824.

[8]SMITH B K,MARCINKO K,DESJARDINS E M,et al.Treatment of nonalcoholic fatty liver disease:role of AMPK[J].Am J Physiol Endocrinol Metab,2016,311(4):E730-E740.

[9]LI Y,XU S,MIHAYLOVA M M,et al.AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resis-tant mice[J].Cell Metab,2011,13(4):376-388.

[10]MERRILL G F,KURTH E J,HARDIE D G,et al.AICA riboside increases AMP-activated protein kinase,fatty acid oxidation,and glucose uptake in rat muscle[J].Am J Physiol,1997,273(1):E1107-E1112.

[11]O′NEILL H M,MAARBJERG S J,CRANE J D,et al.AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise[J].Proc Natl AcadSci USA,2011,108(38):16092-16097.

[12]SALT I P,JOHNSON G,ASHCROFT S J,et al.AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic β cells,and may regulate insulin release[J].Biochem J,1998,335(3):533-539.

[13]INOKI K,ZHU T,GUAN K L.TSC2 mediates cellular energy response to control cell growth and survival[J].Cell,2003,115(5):577-590.

[14]GWINN D M,SHACKELFORD D B,EGAN D F,et al.AMPK phosphorylation of raptor mediates a metabolic checkpoint[J].Mol Cell,2008,30(2):214-226.

[15]EGAN D F,SHACKELFORD D B,MIHAYLOVA M M,et al.Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy[J].Science,2011,331(6016):456-461.

[16]WINDER W W,HARDIE D G.AMP-activated protein kinase,a metabolic master switch:possible roles in type 2 diabetes[J].Am J Physiol,1999,277(1):E1-E10.

[17]PANG T,XIONG B,LI J Y,et al.Conserved α-helix acts as autoinhibitory sequence in AMP-activated protein kinase α subunits[J].J Biol Chem,2007,282(1):495-506.

[18]CHEN L,JIAO Z H,ZHENG L S,et al.Structural insight into the autoinhibition mechanism of AMP-activated protein kinase[J].Nature,2009,459(7250):1146-1149.

[19]XIAO B,HEATH R,SAIU P,et al.Structural basis for AMP binding to mammalian AMP-activated protein kinase[J].Nature,2007,449(7161):496-500.

[20]XIN F J,WANG J,ZHAO R Q,et al.Coordinated regulation of AMPK activity by multiple elements in the α-subunit[J].Cell Res,2013,23(10):1237-1240.

[21]OAKHILL J S,CHEN Z P,SCOTT J W,et al.β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK)[J].Proc Natl Acad Sci USA,2010,107(45):19237-19241.

[22]GOWANS G J,HAWLEY S A,ROSS F A,et al.AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation[J].Cell Metab,2013,18(4):556-566.

[23]CARLING D,THORNTON C,WOODS A,et al.AMP-activated protein kinase:new regulation,new roles?[J].Biochem J,2012,445(1):11-27.

[24]OAKHILL J S,SCOTT J W,KEMP B E.AMPK functions as an adenylate charge-regulated protein kinase[J].Trends in Endocrinology and Metabolism,2012,23(3):125-132.

[25]CARLING D,MAYER F V,SANDERS M J,et al.AMP-activated protein kinase:nature′s energy sensor[J].Nat Chem Biol,2011,7(8):512-518.

[26]MILAN D,JEON J T,LOOFT C,et al.A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle[J].Science,2000,288(5469):1248-1251.

[27]CHEUNG P C F,SALT I P,DAVIES S P,et al.Characterization of AMP-activated protein kinase g-subunit isoforms and their role in AMP binding[J].Biochem J,2000,346(3):659-669.

[28]HAWLEY S A,BOUDEAU J,REID J L,et al.Complexes between the LKB1 tumor suppressor,STRAD α/β and MO25 α/β are upstream kinases in the AMP-activated protein kinase cascade[J].J Biol,2003,2(4):28.

[29]HAWLEY S A,PAN D A,MUSTARD K J,et al.Calmo-dulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase[J].Cell Metab,2005,2(1):9-19.

[30]WOODS A,DICKERSON K,HEATH R,et al.Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells[J].Cell Metab,2005,2(1):21-33.

[31]WOODS A,JOHNSTONE S R,DICKERSON K,et al.LKB1 is the upstream kinase in the AMP-activated protein kinase cascade[J].Curr Biol,2003,13(22):2004-2008.

[32]SUTER M,RIEK U,TUERK R,et al.Dissecting the role of 5′-AMP for allosteric stimulation,activation,and deactivation of AMP-activated protein kinase[J].J Biol Chem,2006,281(43):32207-32216.

[33]HURLEY R L,ANDERSON K A,FRANZONE J M,et al.The Ca2+/calmoldulin-dependent protein kinase kinases are AMP-activated protein kinase kinases[J].J Biol Chem,2005,280(32):29060-29066.

[34]XIAO B,SANDERS M J,UNDERWOOD E,et al.Structure of mammalian AMPK and its regulation by ADP[J].Nature,2011,472(7342):230-233.

[35]OAKHILL J S,STEEL R,CHEN Z P,et al.AMPK is a direct adenylate charge-regulated protein kinase[J].Science,2011,332(6036):1433-1440.

[36]ZENG L,FAGOTTO F,ZHANG T,et al.The mouseFusedlocus encodes Axin,an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation[J].Cell,1997,90(1):181-192.

[37]RUI Y,XU Z,LIN S,et al.Axin stimulates p53 functions by activation of HIPK2 kinase through multimeric complex formation[J].EMBO J,2004,23(23):4583-4594.

[38]LI Q,WANG X,WU X,et al.Daxx cooperates with the Axin/HIPK2/p53 complex to induce cell death[J].Cancer Res,2007,67(1):66-74.

[39]LI Q,LIN S,WANG X,et al.Axin determines cell fate by controlling the p53 activation threshold after DNA damage[J].Nat Cell Biol,2009,11(9):1128-1134.

[40]RUI Y,XU Z,XIONG B,et al.Aβ-catenin-independent dorsalization pathway activated by Axin/JNK signaling and antagonized by aida[J].Dev Cell,2007,13(2):268-282.

[41]ZHANG Y L,GUO H,ZHANG C S,et al.AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation[J].Cell Metab,2013,18(4):546-555.

[42]ZHANG C S,JIANG B,LI M,et al.The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1,acting as a switch between cata-bolism and anabolism[J].Cell Metab,2014,20(3):526-540.

[43]HARDIE D G.AMPK:sensing energy while talking to other signaling pathways[J].Cell Metab,2014,20(6):939-952.

[44]HAWLEY S A,FULLERTON M D,ROSS F A,et al.The ancient drug salicylate directly activates AMP-activated protein kinase[J].Science,2012,336(6083):918-922.

[45]HARDIE D G.AMP-activated protein kinase:maintaining energy homeostasisat the cellular and whole-body levels[J].Annu Rev Nutr,2014,34(34):31-55.

[46]GADALLA A E,PEARSON T,CURRIE A J,et al.AICA riboside both activates AMP activated protein kinase and competes with adenosine for the nucleoside transporter in the CA1 region of the rat hippocampus[J].J Neurochem,2004,88(5):1272-1282.

[47]GO′MEZ-GALENO J E,DANG Q,NGUYEN T H,et al.A potent and selective AMPK activator that inhibits de novo lipogenesis[J].ACS Med Chem Lett,2010,1(9):478-482.

[48]COOL B,ZINKER B,CHIOU W,et al.Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome[J].Cell Metab,2006,3(6):403-416.

[49]XIAO B,SANDERS M J,CARMENA D,et al.Structural basis of AMPK regulation by small molecule activators[J].Nat Commun,2013,4(1):3017.

[50]ZADRA G,PHOTOPOULOS C,TYEKUCHEVA S,et al.A novel direct activator of AMPK inhibits prostate cancer growth by blocking lipogenesis[J].EMBO Mol Med,2014,6(4):519-538.

[51]FORETZ M,GUIGAS B,BERTRAND L,et al.Metformin:from mechanisms of action to therapies[J].Cell Metab,2014,20(6):953-66.

[52]ZHANG C S,LI M,MA T,et al.Metformin activates AMPK through the lysosomal pathway[J].Cell Metab,2016,24(4):521-522.

[53]HARDIE D G,CARLING D.The AMP-activated protein kinase:fuel gauge of the mammalian cell?[J].Eur J Biochem,1997,246(2):259-273.

[54]MARCHEVA B,RAMSEY K M,BUHR E D,et al.Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes[J].Nature,2010,466(7306):627-631.

[55]JORDAN S D,LAMIA K A.AMPK at the crossroads of circadian clocks and metabolism[J].Mol Cell Endocrinol,2013,366(2):163-169.

[56]CRAMER F B,WOODWARD G E.2-Desoxy-D-glucose as an antagonist of glucose in yeast fermentation[J].Journal of the Franklin Institute,1952,253(4):354-360.

[57]ZHANG D,LI J,WANG F,et al.2-Deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy[J].Cancer Lett,2014,355(2):176-183.

[58]ROWE I,CHIARAVALLI M,MANNELLA V,et al.Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy[J].Nat Med,2013,19(4):488-493.

[59]ZHANG C S,HAWLEY S A,ZONG Y,et al.Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK[J].Nature,2017,548(7665):112-116.

[60]VIOLLET B,HORMAN S,LECLERC J,et al.AMPK inhibition in health and disease[J].Crit Rev Biochem Mol Biol,2010,45(4):276-295.

[61]WU Y,SONG P,XU J,et al.Activation of protein phosphatase 2A by palmitate inhibits AMP-activated protein kinase[J].J Biol Chem,2007,282(13):9777-9788.

[62]TREEBAK J T,GLUND S,DESHMUKH A,et al.AMPK-mediated AS160 phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory subunits[J].Diabetes,2006,55(7):2051-2058.

[63]MCGEE S L,VAN DENDEREN B J,HOWLETT K F,et al.AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5[J].Diabetes,2008,57(4):860-867.

[64]HUANG S,CZECH M P.The GLUT4 glucose transpor-ter[J].Cell Metab,2007,5(4):237-252.

[65]KOO S H,FLECHNER L,QI L,et al.The CREB co-activator TORC2 is a key regulator of fasting glucose metabolism[J].Nature,2005,437(7062):1109-1111.

[66]MIHAYLOVA M M,VASQUEZ D S,RAVNSKJAER K,et al.Class Ⅱ a histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis[J].Cell,2011,145(4):607-621.

[67]WANG B,MOYA N,NIESSEN S,et al.A hormone-dependent module regulating energy balance[J].Cell,2011,145(4):596-606.

[68]PAVLOVA N N,THOMPSON C B.The emerging hallmarks of cancer metabolism[J].Cell Metab,2016,23(1):27-47.

[69]CAIRNS R A,HARRIS I S,MAK T W.Regulation of cancer cell metabolism[J].Nat Rev Cancer,2011,11(2):85-95.

[70]INOKI K,KIM J,GUAN K L.AMPK and mTOR in cellular energy homeostasis and drug targets[J].Annu Rev Pharmacol Toxicol,2012,52(1):381-400.

[71]BUDANOV A V,KARIN M.p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling[J].Cell,2008,134(3):451-460.

[72]ADAMOVICH Y,ADLER J,MELTSER V,et al.AMPK couples p73 with p53 in cell fate decision[J].Cell Death Differ,2014,21(9):1451-1459.

[73]JONES R G,PLAS D R,KUBEK S,et al.AMP-activated protein kinase induces a p53-dependent metabolic checkpoint[J].Mol Cell,2005,18(3):283-293.

[74]SHACKELFORD D B,SHAW R J.The LKB1-AMPK pathway:metabolism and growth control in tumour suppression[J].Nat Rev Cancer,2009,9(8):563-575.

[75]PINEDA C T,RAMANATHAN S,FON TACER K,et al.Degradation of AMPK by a cancer-specific ubiquitin ligase[J].Cell,2015,160(4):715-728.

[76]VILA I K,YAO Y,KIM G,et al.A UBE2O-AMPKα2 axis that promotes tumor initiation and progression offers opportunities for therapy[J].Cancer Cell,2017,31(2):208-224.

[77]O′NEILL L A,HARDIE D G.Metabolism of inflammation limited by AMPK and pseudo-starvation[J].Nature,2013,493(7432):346-355.

猜你喜歡
溶酶體亞基磷酸化
大連化物所發(fā)展出時(shí)空超分辨四維熒光成像 解析全細(xì)胞溶酶體
T69E模擬磷酸化修飾對Bcl-2與Nur77相互作用的影響
溶酶體功能及其離子通道研究進(jìn)展
心臟鈉通道β2亞基轉(zhuǎn)運(yùn)和功能分析
藍(lán)隱藻藻藍(lán)蛋白亞基的分離及特性研究
高中階段有關(guān)溶酶體的深入分析
ITSN1蛋白磷酸化的研究進(jìn)展
淺談溶酶體具有高度穩(wěn)定性的原因
磷酸化肽富集新方法研究進(jìn)展
MAPK抑制因子對HSC中Smad2/3磷酸化及Smad4核轉(zhuǎn)位的影響
准格尔旗| 秦安县| 长海县| 那曲县| 宁城县| 武宁县| 梧州市| 东安县| 上杭县| 石城县| 五原县| 赫章县| 瓦房店市| 右玉县| 百色市| 绥化市| 泸州市| 吉木乃县| 吴堡县| 密云县| 柏乡县| 江阴市| 平顶山市| 赫章县| 孝昌县| 江陵县| 渝北区| 浠水县| 永修县| 青阳县| 包头市| 清水县| 来安县| 佛教| 南宁市| 新巴尔虎左旗| 洪泽县| 秦安县| 阜宁县| 金山区| 肇州县|