樊麗穎 張佳寧 曹麗萍 宋婧婧
摘 要:為了研究Banach空間算子的一些幾何性質(zhì),給出了β算子和弱β算子的定義;討論了β算子和弱β算子的性質(zhì),進(jìn)一步得到了算子具有β性質(zhì)的充分必要條件、β算子與具有β性質(zhì)的空間之間的關(guān)系,研究了β算子空間的定義及此空間的性質(zhì),得到了β算子是緊算子的判別條件,給出了自反空間一個(gè)新的特征。
關(guān)鍵詞:β算子;自反空間;弱β算子;β算子空間
DOI:10.15938/j.jhust.2018.02.025
中圖分類(lèi)號(hào): O177.7
文獻(xiàn)標(biāo)志碼: A
文章編號(hào): 1007-2683(2018)02-0140-04
Abstract:To study some geometric properties of Banach space operator, the definitions of the β-operator and weak β-operator were given, and the properties of the β-operator and weak β-operator were discussed. Sufficient and necessary conditions for the operator with β-property were obtained. The relationship between properties of β-operator and the space which has β-property were discussed. The definition of β-operator space and the property of this space were studied. The conclusion was obtained that β-operator is a compact operator, and a new feature of reflexive space was given.
Keywords:β-operator; reflexive space; weak β-operator; β-operator space
0 引 言
眾所周知,對(duì)定義在Banach空間而取值于另一Banach空間的有界線(xiàn)性算子[1-7],其變域的結(jié)構(gòu)在算子結(jié)構(gòu)的研究中起主要作用,文[1]引入了NUC算子以及UKK算子,并對(duì)它的性質(zhì)進(jìn)行了討論,得到了NUC算子是UKK的、算子是NUC的充要條件、算子T是NUC算子,則算子T*是NUS算子等結(jié)論,作者將定義β算子和弱β算子,這類(lèi)算子與具有β性質(zhì)的空間以及弱β性質(zhì)的空間有密切的關(guān)系,證明自反空間β算子為弱β算子等結(jié)論。
參 考 文 獻(xiàn):
[1]PRUS, Stanislaw. Banach Spaces and Operators Which are Nearly Uniformly Convex[J]. Dissertationes Mathematicae, 1997, 363.
[2]鄭少薇. 關(guān)于一致凸算子[J]. 華南師范大學(xué)學(xué)報(bào)(自然科學(xué)版), 1991(1):95-103.
[3]馬爾邁. 一致凸算子及其性質(zhì)[J]. 寧夏大學(xué)學(xué)報(bào):自然科學(xué)版, 1993(2):30-33.
[4]黎永錦. Banach空間的凸性算子[J]. 中山大學(xué)學(xué)報(bào)(自然科學(xué)版), 1996(4): 18-21.
[5]GOHBERG I, GOLDBERG S, KAASHOEK M A. Classes of Linear Operators[M]. Birkh Auser Verlag, 1990:20-28.
[6]HUFF R. Banach Spaces Which are Nearly Uniformly Convex[J]. Rocky Mountain Journal of Mathematics, 1980, 10(10):743-750.
[7]CLARKSON J A. Uniformly Convex Spaces[J]. Transactions of the American Mathematical Society, 1936, 40(3):396-414.
[8]崔云安. Banach空間幾何理論及應(yīng)用[M]. 北京:科學(xué)出版社, 2010:80-83.
[9]俞鑫來(lái). Banach空間幾何理論[M]. 上海: 華東師范大學(xué)出版社, 1986:112-134.
[10]DIESTEL J. Sequences and Series in Banach Spaces[M]. World Publishing Corp,1984:76-87.
[11]LINDENSTRAUSS J, TZAFRIRI L. Classical Banach Spaces I [M]. Springer-Verlag, 1977: 98-105.
[12]ISTRATESCU V I. Strict Convexity and Complex Strict Convexity[M]. M. Dekker, 1984:114-128.
[13]BANAS' J. Compactness Conditions in the Geometric Theory of Banach Spaces[J]. Nonlinear Analysis, 1991:669-682.
[14]JAMES RC. Weak Compactness and Reflexivity, [J].Israel Journal of Mathematics, 1964: 542-550.
[15]LIN L Q, ZHONG H J. On Weak Compact Operators and Reflexivity of Banach Spaces[J]. Journal of Putian University, 2006:99-116.
[16]JOHNSON W B, DAVIS W J, FIGIEL T, et al. Factoring Weakly Compact Operators[J]. Israel Journal of Mathematics, 1971:337-345.
[17]張恭慶, 林源渠. 泛函分析講義[M]. 北京: 北京大學(xué)出版社, 1987:77-78.
[18]鄭維行, 王聲望. 實(shí)變函數(shù)與泛函分析概要[M]. 北京:人民教育出版社, 1980:89-112.
[19]RAMSEY F P. On a Problem of Formal Logic[J]. Proceedings of the London Mathematical Society, 1930:1-24.
[20]LEONARD I E. Banach Sequence Spaces[J]. Journal of Mathematical Analysis & Applications, 1976:245-265.
(編輯:溫澤宇)