王珂雯 尹雪 王宇 李玉花
(東北林業(yè)大學(xué)生命科學(xué)學(xué)院,哈爾濱 150040)
天然產(chǎn)物作為生物體內(nèi)自身代謝合成的一種微量次生代謝物,因其具有高效的藥理活性,被人們廣泛應(yīng)用于醫(yī)療保健和食品等領(lǐng)域。近年來利用微生物進(jìn)行基因工程操作,實(shí)現(xiàn)天然產(chǎn)物的大量合成已成為目前的研究熱點(diǎn),如利用大腸桿菌(Esherichia coli)或酵母合成可以預(yù)防心腦血管疾病的白藜蘆醇、具有止痛功效的嗎啡以及具備抗癌功效的人參皂苷和紫杉醇等藥物[1-3];在鏈霉菌(Streptomyces)中實(shí)現(xiàn)了深海極端環(huán)境微生物中具有化學(xué)防御、信號(hào)傳導(dǎo)的特殊代謝產(chǎn)物的異源合成[4]。釀酒酵母作為已完成全基因組測序的真核模式生物,與其他真核生物如煙草細(xì)胞相比,它在代謝工程研究中具有生物繁殖速度快、生長周期短、易于培養(yǎng)、不易污染等特點(diǎn)[5];而與原核生物如大腸桿菌相比,不僅可以高密度發(fā)酵,還具有其他優(yōu)點(diǎn):含有線粒體、內(nèi)質(zhì)網(wǎng)等細(xì)胞器,利于表達(dá)有生物活性的異源蛋白,特別是適合植物細(xì)胞色素P450類蛋白的表達(dá)[6];DNA重組效率高,能夠一次性插入多個(gè)大片段的外源基因,并且能夠穩(wěn)定遺傳。同時(shí),最近釀酒酵母人工染色體從頭合成的成功實(shí)現(xiàn)為未來發(fā)揮酵母巨大潛力提供可能[7]。目前研究人員利用釀酒酵母表達(dá)系統(tǒng)已經(jīng)成功合成了生物堿、萜類、不飽和脂肪酸及其他一些重要的化合物(表1)。
表1 利用釀酒酵母生產(chǎn)的重要化合物
目前對(duì)代謝工程的改造主要集中在通過導(dǎo)入特定的催化酶、調(diào)節(jié)蛋白來構(gòu)建新的代謝通路,或者優(yōu)化釀酒酵母自身的代謝途徑,而選擇合適的基因啟動(dòng)子可以對(duì)能量和營養(yǎng)物質(zhì)在終產(chǎn)物代謝途徑和細(xì)胞自身代謝途徑之間的供給交換進(jìn)行精細(xì)和定量地調(diào)控,實(shí)現(xiàn)目標(biāo)基因表達(dá)強(qiáng)度的最佳組合。因此,在釀酒酵母工程菌中選擇合適的啟動(dòng)子顯得尤為重要。啟動(dòng)子作為轉(zhuǎn)錄調(diào)控的重要元件,其活性的強(qiáng)弱可以顯著影響異源基因轉(zhuǎn)錄的起始、持續(xù)時(shí)間和表達(dá)的程度,進(jìn)而影響外源基因在宿主中的轉(zhuǎn)錄效率,同時(shí)也決定了細(xì)胞中mRNA的總體豐度和蛋白質(zhì)含量,最終高效地合成目標(biāo)產(chǎn)物。本文將基于如何選擇和修飾釀酒酵母啟動(dòng)子用來高效合成目標(biāo)產(chǎn)物,分別對(duì)釀酒酵母啟動(dòng)子結(jié)構(gòu)、類型和優(yōu)化策略幾個(gè)部分進(jìn)行了詳細(xì)介紹。
啟動(dòng)子位于結(jié)構(gòu)基因5′端的上游區(qū)域,直接調(diào)控基因時(shí)空特異性表達(dá)。真核生物啟動(dòng)子由核心啟動(dòng)子(Core promoter)和上游啟動(dòng)子元件(Upstream promoter element)組成(圖 1)。
核心啟動(dòng)子由TATA盒(TATA box)、TFⅡB識(shí)別元件(Transcription factor for RNA polymerase IIB recognition element,BRE)、 起 始 子(Initiator,Inr)和下游啟動(dòng)子元件(Downstream promoter element,DPE)4個(gè)元件構(gòu)成,它們位于轉(zhuǎn)錄起始位點(diǎn)的上游40 bp到下游40 bp之間(圖1)。但在釀酒酵母中,大部分元件都已退化[21],僅有20%的釀酒酵母基因啟動(dòng)子還存在著TATA盒,共同序列為TATA(A/T)A(A/T)(A/G)[22]。并且釀酒酵母啟動(dòng)子的 TATA盒位置具有可變性,一般位于轉(zhuǎn)錄起始位點(diǎn)上游的40-120 bp 處[23]。
釀酒酵母核心啟動(dòng)子TATA盒上游存在一段保守的調(diào)控區(qū)被稱為上游啟動(dòng)子原件,可分為上游激活序列(Upstream activation sequences,UAS)和上游抑制序列(Upstream repression sequences,URS)[24]。轉(zhuǎn)錄激活因子和轉(zhuǎn)錄抑制因子可以分別與其特異性結(jié)合,從而促進(jìn)或抑制RNA聚合酶的結(jié)合效率調(diào)節(jié)下游基因的轉(zhuǎn)錄。上游激活序列最先在酵母中被發(fā)現(xiàn),如半乳糖代謝酶基因Gal的上游激活序列由4個(gè)相連的17 bp序列組成;精氨酸酶基因Car1的上游激活序列為一段13 bp的序列[25]。上游激活序列的作用類似于增強(qiáng)子,但與增強(qiáng)子不同的是,上游激活序列一般位于轉(zhuǎn)錄起始位點(diǎn)上游的100-500 bp之間,距離過遠(yuǎn)就會(huì)失去促進(jìn)轉(zhuǎn)錄的活性[26]。
圖1 啟動(dòng)子結(jié)構(gòu)示意圖
在釀酒酵母工程菌的實(shí)際應(yīng)用中,常用的天然啟動(dòng)子來源于釀酒酵母宿主本身和外源宿主。釀酒酵母宿主內(nèi)源啟動(dòng)子根據(jù)其作用方式或功能可分為組成型啟動(dòng)子、誘導(dǎo)型啟動(dòng)子和雙向啟動(dòng)子,而來源于外源宿主的啟動(dòng)子被稱為異源啟動(dòng)子。選擇合適類型的啟動(dòng)子不僅可以控制目標(biāo)基因的表達(dá),還可以對(duì)基因的表達(dá)量進(jìn)行精細(xì)調(diào)節(jié)。
組成型啟動(dòng)子又稱非特異性啟動(dòng)子,在其調(diào)控下,同一基因在不同生長環(huán)境及生長階段的表達(dá)無明顯差異,且始終維持在一個(gè)相對(duì)穩(wěn)定的水平。
基因表達(dá)量與組成型啟動(dòng)子的強(qiáng)弱密切相關(guān),因此組成型啟動(dòng)子相對(duì)強(qiáng)度的大小在實(shí)際應(yīng)用中尤為重要。當(dāng)需要提高基因的表達(dá)量時(shí),選擇強(qiáng)啟動(dòng)子,反之則選弱啟動(dòng)子(表2),目前組成型啟動(dòng)子的相對(duì)強(qiáng)度可以采用多種報(bào)告系統(tǒng)來進(jìn)行評(píng)估。Partow等[27-28]通過檢測LacZ的活性,比較了7種組成型啟動(dòng)子的強(qiáng)度,獲得的相對(duì)強(qiáng)度大小為:pTEF1≈pPGK1≈pTDH3> pTPI1≈pPYK1 > pADH1 >pHXT7。Sun等[29]從釀酒酵母中克隆了14種組成型啟動(dòng)子并通過GFP的發(fā)光強(qiáng)度和mRNA水平來檢測啟動(dòng)子的相對(duì)強(qiáng)度,其中pTEF1強(qiáng)度相對(duì)最高,pPGI1的強(qiáng)度相對(duì)最低。Blount等[31]利用流式細(xì)胞儀檢測了GFP的發(fā)光強(qiáng)度,從而確定pPFY1、pADH1、pCYC1、pBIO2、pCHO1中 pADH1的 強(qiáng) 度相對(duì)最高,pCHO1的強(qiáng)度相對(duì)最低。Monfort等[31-32]通過表達(dá)脂肪酶來比較釀酒酵母中的pACT1、pADH1、pPGK1及pTDH1的相對(duì)強(qiáng)度,最終發(fā)現(xiàn)pACT1的強(qiáng)度相對(duì)最高。
組成型啟動(dòng)子雖然能夠持續(xù)高強(qiáng)度表達(dá)目的蛋白,但基因過量表達(dá)會(huì)造成代謝紊亂,同時(shí)會(huì)引起重組蛋白在生長過程中降解[33],并且組成型啟動(dòng)子不適用于毒蛋白的表達(dá)。
誘導(dǎo)型啟動(dòng)子在某些特定的物理及化學(xué)信號(hào)的誘導(dǎo)刺激下,可以大幅度地提高或降低基因的轉(zhuǎn)錄水平,因此可以通過人為添加誘導(dǎo)劑定時(shí)定量地對(duì)目標(biāo)基因表達(dá)程度進(jìn)行調(diào)控。誘導(dǎo)型啟動(dòng)子又可以按照功能分為激活型啟動(dòng)子和阻遏型啟動(dòng)子(表3)。
2.2.1 激活型啟動(dòng)子 激活型啟動(dòng)子即正調(diào)控啟動(dòng)子,一般是通過招募轉(zhuǎn)錄激活因子或釋放轉(zhuǎn)錄抑制因子來實(shí)現(xiàn)轉(zhuǎn)錄調(diào)節(jié)的。其優(yōu)點(diǎn)是只有當(dāng)誘導(dǎo)物存在時(shí),基因才可以正常表達(dá),沒有誘導(dǎo)物存在時(shí)基因表達(dá)水平很低甚至沒有。
激活型啟動(dòng)子常用的誘導(dǎo)劑有碳源(半乳糖、葡萄糖)、銅離子、生物素及α1調(diào)節(jié)蛋白。目前在釀酒酵母中應(yīng)用最多的激活型啟動(dòng)子是來源于降解半乳糖代謝途徑的半乳糖誘導(dǎo)啟動(dòng)子(pGAL1、pGAL7、pGAL10)。當(dāng)培養(yǎng)基中的碳源為半乳糖時(shí),轉(zhuǎn)錄誘導(dǎo)因子Gal3p與半乳糖結(jié)合后,會(huì)與抑制因子Gal80p相互作用,轉(zhuǎn)錄激活因子Gal4p發(fā)揮活性,從而激活目標(biāo)基因的表達(dá)[34-35]。目前利用該啟動(dòng)子系統(tǒng)已經(jīng)成功在釀酒酵母中合成了青蒿酸[36]、人參皂苷[37]等物質(zhì)。
2.2.2 阻遏型啟動(dòng)子 酵母啟動(dòng)子阻遏系統(tǒng)建立在阻遏蛋白與轉(zhuǎn)錄因子在空間構(gòu)型相互作用的基礎(chǔ)之上。當(dāng)誘導(dǎo)物存在時(shí),其會(huì)與激活蛋白結(jié)合,阻遏蛋白則與啟動(dòng)子上的元件結(jié)合,抑制基因的轉(zhuǎn)錄。
阻遏型啟動(dòng)子常用的抑制劑有碳源(葡萄糖)、磷酸鹽、鐵離子、蛋氨酸、滲透壓及氧氣。釀酒酵母adh2基因編碼乙醇脫氫酶II,其轉(zhuǎn)錄起始于葡萄糖耗盡,乙醇作為碳源發(fā)酵的同時(shí),轉(zhuǎn)錄激活因子乙醇脫氫酶調(diào)節(jié)蛋白Adr1可大量表達(dá)并起始ADH2的轉(zhuǎn)錄[38]。目前已經(jīng)有研究團(tuán)隊(duì)利用該啟動(dòng)子表達(dá)外源蛋白,在釀酒酵母工程菌中合成了聚酮化合物[39]、三醋酸內(nèi)酯[40]等物質(zhì)。
應(yīng)用誘導(dǎo)系統(tǒng)可以將細(xì)胞的生長階段與目標(biāo)蛋白的生產(chǎn)階段分開,避免了外源蛋白早期表達(dá)對(duì)自身細(xì)胞的傷害。但該類型啟動(dòng)子存在著操作繁瑣,誘導(dǎo)劑價(jià)格昂貴,添加的誘導(dǎo)劑可能會(huì)對(duì)細(xì)胞本身的生長產(chǎn)生負(fù)面影響等諸多在實(shí)際生產(chǎn)中難以解決的問題。
表2 釀酒酵母中常用的組成型啟動(dòng)子
雙向啟動(dòng)子普遍存在于釀酒酵母的基因組中,它能以兩個(gè)相反的方向啟動(dòng)轉(zhuǎn)錄。目前釀酒酵母中應(yīng)用最多的雙向啟動(dòng)子載體是pESC載體,通過pGAL1-pGAL10可以在同一時(shí)間轉(zhuǎn)錄兩個(gè)不同的基因,這兩個(gè)啟動(dòng)子的轉(zhuǎn)錄起始位點(diǎn)相距約600 bp。該系列的載體已用于人參皂苷CK的合成[37]。
在實(shí)際應(yīng)用中,使用酵母內(nèi)源啟動(dòng)子可能會(huì)干擾酵母的自身代謝反應(yīng),降低酵母的生長活性,因此可以采用外源啟動(dòng)子來構(gòu)建代謝途徑。其中常用的異源啟動(dòng)子可以來源于病毒、細(xì)菌和真菌等外源宿主。目前,在釀酒酵母中常用巨細(xì)胞病毒的啟動(dòng)子pCMV組成型表達(dá)外源基因,它的活性受亞砷酸鹽的調(diào)控[52]。細(xì)菌中的tet操縱子,會(huì)被培養(yǎng)基中的四環(huán)素類似物多西霉素所抑制,而多西霉素并不會(huì)影響酵母的生長狀態(tài)和內(nèi)源基因的mRNA轉(zhuǎn)錄水平[53]。應(yīng)用棉病囊霉(Ashbya gossypii)的 pTEF1進(jìn)行特定位點(diǎn)的同源重組時(shí),酵母內(nèi)源的pTEF1并不會(huì)影響外源基因的重組效率,同時(shí)又避免了在同源重組過程中因序列相似度高而產(chǎn)生錯(cuò)誤插入[54]。
表3 釀酒酵母中常用的誘導(dǎo)型啟動(dòng)子
根據(jù)上文所述,在代謝工程中應(yīng)用自身和異源啟動(dòng)子的方法已經(jīng)獲得了廣泛的應(yīng)用,但隨著功能基因組學(xué)和代謝組學(xué)的快速發(fā)展,科學(xué)家們通過對(duì)現(xiàn)有的啟動(dòng)子進(jìn)行突變、融合的優(yōu)化方式來獲得不同功能、不同強(qiáng)度的啟動(dòng)子,以期在進(jìn)一步提高轉(zhuǎn)錄能力的同時(shí)還可以對(duì)宿主代謝進(jìn)行更為精細(xì)的人工調(diào)控。以下將介紹釀酒酵母啟動(dòng)子工程的具體策略及相關(guān)的應(yīng)用實(shí)例。
在明確天然啟動(dòng)子活性的情況下,可以通過突變轉(zhuǎn)錄因子結(jié)合位點(diǎn)來改變轉(zhuǎn)錄因子的結(jié)合能力,直接達(dá)到改變其啟動(dòng)強(qiáng)度的目的。根據(jù)作用方式的不同,可以將突變優(yōu)化分為隨機(jī)突變優(yōu)化(易錯(cuò)PCR、飽和誘變)和定向突變優(yōu)化(直接修飾)。
易錯(cuò)PCR(Error-prone PCR)適用于整個(gè)啟動(dòng)子區(qū)域,通過隨機(jī)突變可產(chǎn)生具有不同的強(qiáng)度和功能的啟動(dòng)子。Redden和Nevoigt等[55-56]使用易錯(cuò)PCR將pTEF1隨機(jī)突變并篩選出活性范圍是天然pTEF1活性 8%-120%的11個(gè)突變體,最終發(fā)現(xiàn)兩個(gè)活性中等的啟動(dòng)子可以降低副產(chǎn)物甘油的產(chǎn)量,該研究使酒精、甘油產(chǎn)量及細(xì)胞生長三者之間達(dá)到一個(gè)相對(duì)平衡的狀態(tài)。此外,也有人將pDAN1隨機(jī)突變并得到兩個(gè)對(duì)氧氣含量不敏感的突變體,使下游基因的表達(dá)量顯著增加,大大提升了終產(chǎn)物的合成量[57]。2015年,張旭等[58]利用易錯(cuò)PCR 篩選得到的具有高表達(dá)性能的pTEFV1,使GFP和人血清白蛋白的表達(dá)能力較改造前有明顯增加。
飽和誘變(Saturation mutagenesis)是指對(duì)基因的某一特定局部小區(qū)域內(nèi)的堿基進(jìn)行所有類型的突變。該技術(shù)最早應(yīng)用于細(xì)菌啟動(dòng)子系統(tǒng),有效地改變了單基因或多基因操縱子的表達(dá)水平[59]。Jeppsson團(tuán)隊(duì)參考天然啟動(dòng)子相關(guān)結(jié)構(gòu)設(shè)計(jì)了一個(gè)名為YRP的啟動(dòng)子[60-61],降低了葡萄糖-6-磷酸脫氫酶的活性,進(jìn)而增加乙醇的產(chǎn)量。對(duì)pPFY1的非必需區(qū)域進(jìn)行飽和誘變可篩選得到36個(gè)有不同活性的非天然啟動(dòng)子。近年來也有人對(duì)pSUL1中的493 bp序列進(jìn)行誘變及篩選,發(fā)現(xiàn)突變后的結(jié)構(gòu)可以提高轉(zhuǎn)錄效率[62]。
事實(shí)上,對(duì)啟動(dòng)子強(qiáng)度的調(diào)控是基于核苷酸序列響應(yīng)轉(zhuǎn)錄機(jī)制的累積效應(yīng)。直接對(duì)目標(biāo)啟動(dòng)子的上游元件進(jìn)行增加或刪除修飾就可以得到活性不同的啟動(dòng)子。將pGAL1上游激活元件UASGAl串聯(lián)加倍得到的突變啟動(dòng)子UASGal-pGAL1在半乳糖誘導(dǎo)下其活性略高于pGAL1[64]。對(duì)pADH1的5′端調(diào)控區(qū)域進(jìn)行不同程度的刪減可以顯著改變啟動(dòng)子對(duì)葡萄糖的應(yīng)答,從而改變基因的表達(dá)強(qiáng)度[64-67]。此外,通過直接優(yōu)化轉(zhuǎn)錄因子也可以達(dá)到增強(qiáng)啟動(dòng)子活性的目的。釀酒酵母pARO9在添加外源色氨酸的情況下可以組成型表達(dá),而蛋白質(zhì)工程優(yōu)化后的轉(zhuǎn)錄因子Aro80p可增強(qiáng)與該啟動(dòng)子的結(jié)合效率,從而增強(qiáng)該啟動(dòng)子的活性[68-69]?;趐GAL的作用機(jī)制,敲除抑制因子Gal80后的啟動(dòng)子在葡萄糖中具有組成型表達(dá)的活性[70]。
雜合啟動(dòng)子就是將兩種或兩種以上不同來源的啟動(dòng)子元件融合構(gòu)成的一個(gè)新的啟動(dòng)子。雜合啟動(dòng)子的高強(qiáng)度和穩(wěn)定性對(duì)于精細(xì)調(diào)控細(xì)胞中的基因表達(dá)具有極其重要的意義。
釀酒酵母中的雜合啟動(dòng)子大多是將自身不同的啟動(dòng)子核心區(qū)域與調(diào)節(jié)區(qū)域融合進(jìn)而增強(qiáng)雜合啟動(dòng)子的活性。將不同比例或組合型的轉(zhuǎn)錄激活元件分別與pTDH3融合后,發(fā)現(xiàn)串聯(lián)3倍的UASCLB啟動(dòng)子可使轉(zhuǎn)錄活性提高2.5倍。因此,利用該方法可以將弱啟動(dòng)子定向轉(zhuǎn)變?yōu)閺?qiáng)啟動(dòng)子。此外,與天然啟動(dòng)子相比雜合啟動(dòng)子的活性更加穩(wěn)定,將3個(gè)串聯(lián)的激活元件UASCLB與pTEF1的核心區(qū)域所組裝而成的人工雜合paTEF1在不同宿主的不同生長階段其活性均高于天然pTEF1[71]。
釀酒酵母雜合啟動(dòng)子的構(gòu)建也可以采用將不同來源的啟動(dòng)子核心區(qū)域與調(diào)節(jié)區(qū)域融合的方式。其中,在釀酒酵母中應(yīng)用最多的異源啟動(dòng)子為細(xì)菌的四環(huán)素操縱子。1997年,Gari等[72]構(gòu)建了一系列由tetO-CYC1雜合啟動(dòng)子驅(qū)動(dòng)的表達(dá)載體,在缺乏抑制劑多西霉素的環(huán)境下,基因的表達(dá)活性可以提高1 000倍,該啟動(dòng)子可應(yīng)用于P-蛋白和羊毛甾醇脫甲基酶的表達(dá)[73-74]。而后Belli團(tuán)隊(duì)構(gòu)建了一個(gè)釀酒酵母四環(huán)素操縱子誘導(dǎo)基因表達(dá)的雙系統(tǒng),將反式激活因子中的tetR進(jìn)行突變優(yōu)化并命名為tetR’,通過外源施加的四環(huán)素可快速激活下游基因表達(dá)[75-76]。
另外,也有利用雜合轉(zhuǎn)錄因子調(diào)節(jié)目標(biāo)基因表達(dá)的可調(diào)控系統(tǒng)。例如,Shimizu-Sato等[77]通過表達(dá)兩種嵌合蛋白光敏色素的Gal4-DNA結(jié)合域和PIF3-Gal4激活域,進(jìn)而實(shí)現(xiàn)光信號(hào)調(diào)控下的基因表達(dá)調(diào)控目標(biāo),構(gòu)建了一個(gè)可精確定量的誘導(dǎo)表達(dá)系統(tǒng),有利于工業(yè)生產(chǎn)的大規(guī)模應(yīng)用。也有應(yīng)用人類激素來調(diào)控啟動(dòng)子的活性,構(gòu)建含有β-雌二醇受體、Gal4結(jié)合域,以及皰疹病毒蛋白的轉(zhuǎn)錄激活結(jié)構(gòu)域的雜合轉(zhuǎn)錄激活因子,通過添加β-雌二醇可以顯著提高下游基因的表達(dá)水平[78]。2016 年,Hector等[79]利用芽孢桿菌中的DNA結(jié)合阻遏因子(XylR)與pTEF形成的新型雜合啟動(dòng)子,使pTEF的表達(dá)強(qiáng)度在木糖培養(yǎng)條件下增加25倍。
釀酒酵母啟動(dòng)子的優(yōu)化在代謝工程精細(xì)調(diào)節(jié)方面擁有巨大的潛能,為了突出比較上述4種啟動(dòng)子優(yōu)化策略的特點(diǎn),現(xiàn)將其優(yōu)缺點(diǎn)總結(jié)如下(表4)。
表4 釀酒酵母啟動(dòng)子優(yōu)化類型的優(yōu)缺點(diǎn)
釀酒酵母是一種食品級(jí)、基因組結(jié)構(gòu)最為簡單的真核微生物,具備安全、遺傳操作便捷、培養(yǎng)簡單和繁殖迅速等優(yōu)勢,是生產(chǎn)重組蛋白較理想的表達(dá)系統(tǒng)之一。啟動(dòng)子是代謝工程中最基本的功能元件,是最有效的調(diào)節(jié)代謝途徑的工具。通過改造釀酒酵母啟動(dòng)子從而改變其自身的代謝途徑來高效地獲取目標(biāo)天然產(chǎn)物已成為一種極具前景的策略。本文梳理了當(dāng)前利用釀酒酵母合成天然產(chǎn)物過程中的啟動(dòng)子結(jié)構(gòu)和在釀酒酵母工程菌中使用的4類天然啟動(dòng)子,總結(jié)概括了每一類別的特點(diǎn)。此外,為了提高釀酒酵母啟動(dòng)子活性達(dá)到能夠更加高效的合成目標(biāo)天然產(chǎn)物的目的,歸納了釀酒酵母啟動(dòng)子突變和雜合的兩種優(yōu)化策略,以及該技術(shù)在實(shí)際生產(chǎn)中的一些應(yīng)用。
近年來,隨著合成生物學(xué)的發(fā)展和技術(shù)手段的更新,越來越多的研究人員在探索原核啟動(dòng)子模型中做出了巨大貢獻(xiàn),如通過在原核啟動(dòng)子上采用“絕緣化”和“非門”(NOT gate)功能基因網(wǎng)絡(luò)預(yù)測的方法,表明該方法可以顯著提高它們的模塊化屬性和組裝過程的可預(yù)測性[84]。此外,Rohlhill等[85]采用熒光激活細(xì)胞分類術(shù)(FACS)和高通量篩選對(duì)大腸桿菌甲醛誘導(dǎo)啟動(dòng)子進(jìn)行精確地定量分析,確定了單核苷酸分辨率,從而更高效的協(xié)調(diào)基因表達(dá),并在合成生物學(xué)和代謝工程中建立了可預(yù)測的基因電路。基于當(dāng)前的研究,越來越多的研究者也會(huì)對(duì)真核啟動(dòng)子進(jìn)行深入探索,有望提高啟動(dòng)子控制基因的表達(dá)效率。
未來,通過啟動(dòng)子工程技術(shù),釀酒酵母啟動(dòng)子將朝著以下幾個(gè)方向進(jìn)行改進(jìn):(1)研發(fā)基因表達(dá)量可控的組成型啟動(dòng)子;(2)研發(fā)培養(yǎng)條件溫和、操作簡單、誘導(dǎo)劑成本低廉的誘導(dǎo)型啟動(dòng)子;(3)具有高效轉(zhuǎn)錄效率的異源啟動(dòng)子并在發(fā)酵培養(yǎng)過程中得到有效控制;(4)研發(fā)能夠更加高效、穩(wěn)定、可控、成本低廉、可工業(yè)化的釀酒酵母啟動(dòng)子將是未來啟動(dòng)子工程技術(shù)突破的關(guān)鍵。這些研究成果的推廣與應(yīng)用,將有力地推進(jìn)人工構(gòu)建生命系統(tǒng)的研究進(jìn)程,從而滿足人們?cè)诮】?、醫(yī)療、環(huán)境、食品等領(lǐng)域的高層次需求。
[1]Galanie S, Thodey K, Trenchard IJ, et al. Complete biosynthesis of opioids in yeast[J]. Science, 2015, 349(6252):1095.
[2]Li M, Kildegaard KR, Chen Y, et al. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae[J]. Metab Eng, 2015, 32:1-11.
[3]Zhou K, Qiao K, Edgar S, et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products[J]. Nature Biotechnology, 2015, 33(4):377-383.
[4]許靜, 徐俊. 海洋共附生微生物天然產(chǎn)物生物合成基因研究進(jìn)展[J]. 微生物學(xué)報(bào) , 2008, 48(7):975-979.
[5]王勇. 新本草計(jì)劃——基于合成生物學(xué)的藥用植物活性代謝物研究[J]. 生物工程學(xué)報(bào), 2017, 33(3):478-485.
[6]Jiang H, Wood KV, Morgan JA. Metabolic engineering of the phenylpropanoid pathway in Saccharomyces cerevisiae[J]. Appl Environ Microbiol, 2005, 71(6):2962-2969.
[7]Kannan K, Gibson DG. Yeast genome, by design[J]. Science,2017, 355(6329):1024.
[8]Galanie S, Thodey K, Trenchard IJ, et al. Complete biosynthesis of opioids in yeast[J]. Science, 2015, 349(6252):1095-1100.
[9]Dai Z, Liu Y, Zhang X, et al. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides[J]. Metabolic Engineering, 2013, 20(5):146-156.
[10]Xie W, Liu M, et al. Construction of a controllable β-carotene bio-synthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae[J]. Biotechnol Bioeng, 2014, 1:125-133.
[11]Westfall PJ, Pitera DJ, Lenihan JR, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin[J]. Proc Natl Acad Sci USA, 2012, 109(3):111-118.
[12]Leonard E, et al. Investigation of two distinct flavone synthases for plant-specific flavone biosynthesis in Saccharomyces cerevisiae[J]. Appl Environ Microbiol, 2005, 71(12):8241.
[13]Medina VG, Almering MJH, Maris AJAV, et al. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor[J]. Appl Environ Microbiol, 2010, 76(1):190-195.
[14]Chen X, Nielsen KF, Borodina I, et al. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism[J]. Biotechnol Biofuels, 2011, 4(1):21.
[15]Yu KO, Ju J, Kim SW, et al. Synthesis of faees from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase[J]. Biotechnol Bioeng, 2012, 1:110-115.
[16]Peraltayahya PP, Ouellet M, Chan R, et al. Identification and microbial production of a terpene-based advanced biofuel[J].Nature Communications, 2011, 2(1):483.
[17]Sauer M, Branduardi P, Valli M, et al. Production of l-ascorbic acid by metabolically engineered Saccharomyces cerevisiae and Zygosaccharomyces bailii[J]. Appl Environ Microbiol, 2004, 70(10):6086-6091.
[18]Raab AM, Gebhardt G, Bolotina N, et al. Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid[J]. Metab Eng, 2010, 12(6):518-525.
[19]Maris AJAV, Geertman JMA, Vermeulen A, et al. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a c2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast[J]. Appl Environ Microbiol,2004, 70(1):159-166.
[20]Zhao L, Wang J, Zhou J, et al[modification of carbon flux in Sacchromyces cerevisiae to improve l-lactic acid production][J].Acta Microbiologica Sinica, 2011, 51(1):50.
[21]Blazeck J, Alper HS. Promoter engineering:Recent advances in controlling transcription at the most fundamental level[J].Biotechnol J, 2013, 8(1):46-58.
[22]Basehoar AD, Zanton SJ, Pugh BF. Identification and distinct regulation of yeast tata box-containing genes[J]. Cell, 2004, 116(5):699-709.
[23]Rando OJ, Winston F. Chromatin and transcription in yeast[J].Genetics, 2012, 190(2):351.
[24]Redden H, Alper HS. The development and characterization of synthetic minimal yeast promoters[J]. Nature Communications,2015, 6:7810.
[25]Giniger E, et al. Specific DNA binding of gal4, a positive regulatory protein of yeast[J]. Cell, 1985, 40(4):767-774.
[26]Hahn S, Young ET. Transcriptional regulation in Saccharomyces cerevisiae:Transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators[J].Genetics, 2011, 189(3):705-736.
[27]Partow S, Siewers V, Bj?rn S, et al. Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae[J]. Yeast, 2010, 27(11):955-964.
[28]Wang D, Wang L, Hou L, et al. Metabolic engineering of Saccharomyces cerevisiae for accumulating pyruvic acid[J].Annals of Microbiology, 2015, 65(4):2323-2331.
[29]Sun J, Shao Z, Zhao H, et al. Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae[J]. Biotechnol Bioeng, 2012, 8:2082.
[30]Blount BA, Weenink T, et al. Rational diversification of a promoter providing fine-tuned expression and orthogonal regulation for synthetic biology[J]. PLoS One, 2012, 7(3):e33279.
[31]Monfort A, Finger S, Sanz P, et al. Evaluation of different promoters for the efficient production of heterologous proteins in baker’s yeast[J]. Biotechnology Letters, 1999, 21(3):225-229.
[32]Hubmann G, et al. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae[J].Methods Mol Biol, 2014, 1152:17-42.
[33]Emmerstorfer A, et al. Over-expression of ice2 stabilizes cytochrome p450 reductase in Saccharomyces cerevisiae and pichia pastoris[J]. Biotechnol J, 2015, 10(4):623-635.
[34]Zacharioudakis I, et al. Bimodal expression of yeast gal genes is controlled by a long non-coding rna and a bifunctional galactokinase[J]. Biochem Biophys Res Commun, 2017, 1 :63-69.
[35]Horák J. Regulations of sugar transporters:Insights from yeast[J]. Current Genetics, 2013, 59(1-2):1-31.
[36]Ro DK, Paradise EM, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J].Nature, 2006, 440(7086):940.
[37]Yan X, Fan Y, Wei W, et al. Production of bioactive ginsenoside compound k in metabolically engineered yeast[J]. Cell Research, 2014, 24(6):770-773.
[38]Bahieldin A, et al. Efficient production of lycopene in Saccharomyces cerevisiae by expression of synthetic crt genes from a plasmid harboring the adh2 promoter[J]. Plasmid, 2014, 72 :18.
[39]Lee KK, Da SN, Kealey JT. Determination of the extent of phosphopantetheinylation of polyketide synthases expressed in escherichia coli and Saccharomyces cerevisiae[J]. Analytical Biochemistry, 2009, 394(1):75-80.
[40]Bernal DAN. Metabolic Engineering of Saccharomyces cerevisiae for the production of aromatic componds[D]. Brisbane: School of Chemistry and Molecular Biosciences, University of Queensland,2012.
[41]Kim SI, Ha BS, et al. Evaluation of copper-inducible fungal laccase promoter in foreign gene expression in pichia pastoris[J].Biotechnol Bioprocess Engineering, 2016, 1:53-59.
[42]Gross A, R?del G, Ostermann K. Application of the yeast pheromone system for controlled cell-cell communication and signal amplification[J]. Lett Appl Microbiol, 2011, 5:521-526.
[43]Ammerer G. Identification, purification, and cloning of a polypeptide(prtf/grm)that binds to mating-specific promoter elements in yeast[J]. Genes Dev, 1990, 4(2):299-312.
[44]Gancedo JM, Flores CL, Gancedo C. The repressor rgt1 and the camp-dependent protein kinases control the expression of the suc2 gene in Saccharomyces cerevisiae[J]. BBA-General Subjects,2015, 1850(7):1362-1367.
[45]Silva NAD, Srikrishnan S. Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae[J]. Fems Yeast Research, 2012, 12(2):197-214.
[46]Poor CB, Wegner SV, Li H, et al. Molecular mechanism and structure of the Saccharomyces cerevisiae iron regulator aft2[J].Proc Natl Acad Sci USA, 2014, 111(11):4043-4048.
[47]Zhu Y, Sun J, Zhu Y, et al. Endogenic oxidative stress response contributes to glutathione over-accumulation in mutant Saccharomyces cerevisiae y518[J]. Appl Microbiol Biotechnol,2015, 99(17):7069-7078.
[48]Noble J, Sanchez I, Blondin B. Identification of new Saccharomyces cerevisiae variants of the met2 and skp2 genes controlling the sulfur assimilation pathway and the production of undesirable sulfur compounds during alcoholic fermentation[J]. Microbial Cell Factories, 2015, 14(1):68.
[49]Anton C, Zanolari B, Arcones I, et al. Involvement of the exomer complex in the polarized transport of ena1 required for Saccharomyces cerevisiae survival against toxic cations[J].Molecular Biology of the Cell, 2017, mbc. E17-09-0549.
[50]Zhang C, Li Z, Zhang X, et al. Transcriptomic profiling of chemical exposure reveals roles of yap1 in protecting yeast cells from oxidative and other types of stresses[J]. Yeast, 2016, 33(1):5-19.
[51]Martínez JL, Liu L, Petranovic D, et al. Engineering the oxygen sensing regulation results in an enhanced recombinant human hemoglobin production by Saccharomyces cerevisiae[J].Biotechnol Bioeng, 2015, 112(1):181.
[52]Hubmann G, Thevelein JM, Nevoigt E. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae[M]. Springer New York, 2014.
[53]Williams TC, Averesch NJH, Winter G, et al. Quorum-sensing linked rna interference for dynamic metabolic pathway control in Saccharomyces cerevisiae[J]. Metab Eng, 2015, 29:124.
[54]Gueldener U, Heinisch J, Koehler GJ, et al. A second set of loxp marker cassettes for cre-mediated multiple gene knockouts in budding yeast[J]. Nucleic Acids Res, 2002, 30(6):e23.
[55]Redden H, Morse N, et al. The synthetic biology toolbox for tuning gene expression in yeast[J]. FEMS Yeast Res, 2014, 1 :1-10.
[56]Nevoigt E, Kohnke J, et al. Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae[J]. Appl Environ Microbiol, 2006, 8:5266-5273.
[57]Nevoigt E, Fischer C, Mucha O, et al. Engineering promoter regulation[J]. Biotechnol Bioeng, 2007, 96(3):550-558.
[58]張旭, 王晶晶, 劉建平. 基于啟動(dòng)子和宿主改造的釀酒酵母表達(dá)系統(tǒng)優(yōu)化研究[J]. 中國生物工程雜志, 2015(1):61-66.
[59]Jensen PR, Hammer K. Artificial promoters for metabolic optimization[J]. Biotechnol Bioeng, 2015, 58(2-3):191-195.
[60]Johnson AN, Weil PA. Identification of a transcriptional activation domain in yeast repressor activator protein 1(rap1)using an altered DNA-binding specificity variant[J]. Journal of Biological Chemistry, 2017, 292(14):5705-5723.
[61]Jeppsson M, Johansson B, Jensen PR, et al. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains[J]. Yeast, 2003, 20(15):1263.
[62]Rich MS, Payen C, et al. Comprehensive analysis of the sul1 promoter of Saccharomyces cerevisiae[J]. Genetics, 2016, 1 :191.
[63]Blazeck J, Garg R, Reed B, et al. Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters[J]. Biotechnol Bioeng, 2012, 109(11):2884-2895.
[64]Ruohonen L, Penttil? M, Ker?nen S. Optimization of bacillus alphaamylase production by Saccharomyces cerevisiae[J]. Yeast,1991, 7(4):337-346.
[65]Ruohonen L, Aalto MK, Ker?nen S. Modifications to the adh1 promoter of Saccharomyces cerevisiae for efficient production of heterologous proteins[J]. J Biotechnol, 1995, 3 :193-203.
[66]Denis CL, Ferguson J, Young ET. Mrna levels for the fermentative alcohol dehydrogenase of Saccharomyces cerevisiae decrease upon growth on a nonfermentable carbon source[J]. Journal of Biological Chemistry, 1983, 258(2):1165-1171.
[67]Wang S, Cheng G, Joshua C, et al. Furfural tolerance and detoxification mechanism in candida tropicalis[J]. Biotechnol Biofuels, 2016, 9(1):250.
[68]Kim S, Lee K, Bae SJ, et al. Promoters inducible by aromatic amino acids and γ-aminobutyrate(gaba)for metabolic engineering applications in Saccharomyces cerevisiae[J]. Appl Microbiol Biotechnol, 2015, 99(6):2705-2714.
[69]Leavitt JM, Tong A, Tong J, et al. Coordinated transcription factor and promoter engineering to establish strong expression elements in Saccharomyces cerevisiae[J]. Biotechnol J, 2016, 11(7):866.
[70]Malakar P, Venkatesh KV. Gal regulon of Saccharomyces cerevisiae performs optimally to maximize growth on galactose[J]. Fems Yeast Research, 2014, 14(2):346-356.
[71]唐瑞琪, 熊亮, 白鳳武, 等. 釀酒酵母人工雜合啟動(dòng)子與天然啟動(dòng)子活性比較[J]. 生物技術(shù)通報(bào), 2017(1):120-128.
[72]Garí E, Piedrafita L, Aldea M, et al. A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae[J]. Yeast, 2010, 13(9):837-848.
[73]Wawiórka L, Molestak E, Szajwaj M, et al. The multiplication of ribosomal p-stalk proteins contributes to the fidelity of translation[J]. Mol Cell Biol, 2017, 37(17). Plie00060-17.
[74]Revankar SG, Fu J, et al. Cloning and characterization of the lanosterol 14α-demethylase(erg11)gene in cryptococcus neoformans[J]. Biochem Biophys Res Commun, 2004, 324(2):719-728.
[75]Blount BA, Weenink T, Ellis T. Construction of synthetic regulatory networks in yeast[J]. Febs Letters, 2012, 586(15):2112.
[76]Bellí G, Garí E, Piedrafita L, et al. An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast[J]. Nucleic Acids Res, 1998, 26(4):942-947.
[77]Shimizu-Sato S, Huq E, Tepperman JM, Quail PH. A lightswitchable gene promoter system[J]. Nature Biotechnology,2002, 20(10):1041-1044.
[78]Mcisaac RS, Gibney PA, Chandran SS, et al. Synthetic biology tools for programming gene expression without nutritional perturbations in Saccharomyces cerevisiae[J]. Nucleic Acids Res, 2014, 6 :e48.
[79]Hector RE, Mertens JA. A synthetic hybrid promoter for xyloseregulated control of gene expression in Saccharomyces yeasts[J].Molecular Biotechnology, 2017, 59(1):24-33.
[80]高義平, 趙和, 呂孟雨, 等. 易錯(cuò)PCR研究進(jìn)展及應(yīng)用[J].核農(nóng)學(xué)報(bào), 2013, 27(5):607-612.
[81]Jeppsson M, Johansson B, Jensen PR, et al. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains[J]. Yeast, 2003, 20(15):1263-1272.
[82]Wang S, Cheng G, Joshua C, et al. Furfural tolerance and detoxification mechanism incandida tropicalis[J]. Biotechnol Biofuels, 2016, 9(1):250.
[83]余君涵, 馬雯雯, 王智文, 等. 人工合成啟動(dòng)子文庫研究進(jìn)展[J]. 微生物學(xué)通報(bào), 2016, 43(1):198-204.
[84]Zong Y, Zhang HM, Cheng L, et al. Insulated transcriptional elements enable precise design of genetic circuits[J]. Nature Communications, 2017, 8(1):52.
[85]Rohlhill J, Sandoval NR, Papoutsakis ET. Sort-seq approach to engineering a formaldehyde-inducible promoter for dynamically regulated escherichia coli growth on methanol[J]. Acs Synthetic Biology, 2017, 6(8):1584-1595.