国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

F—box基因FOF2在擬南芥鹽和冷脅迫響應(yīng)中的功能分析

2018-07-18 11:10劉選明孫孟思李新梅賀熱情屈麗娜唐冬英趙小英
關(guān)鍵詞:功能分析擬南芥

劉選明 孫孟思 李新梅 賀熱情 屈麗娜 唐冬英 趙小英

摘 要:FOF2為F-box蛋白家族成員,其生物學(xué)功能尚不清楚.采用實(shí)時(shí)熒光定量PCR和生理學(xué)實(shí)驗(yàn)相結(jié)合的方法,對(duì)FOF2基因的表達(dá)模式及其在擬南芥抗鹽和冷脅迫響應(yīng)中的作用進(jìn)行了分析.研究發(fā)現(xiàn),F(xiàn)OF2在擬南芥根、莖生葉和果莢中表達(dá)較高,并且其表達(dá)受鹽和冷脅迫誘導(dǎo).FOF2過(guò)表達(dá)株系對(duì)鹽脅迫敏感,與野生型相比種子萌發(fā)率低、幼苗主根較短;相反,fof2突變體對(duì)鹽脅迫的敏感性則減弱.FOF2過(guò)表達(dá)和缺失突變體種子萌發(fā)對(duì)冷脅迫無(wú)響應(yīng),但其主根在冷處理中分別比野生型短或者長(zhǎng).鹽處理下,F(xiàn)OF2過(guò)表達(dá)株系中鹽脅迫反應(yīng)相關(guān)基因的表達(dá)量顯著降低,fof2突變體中則升高;冷處理下,F(xiàn)OF2過(guò)表達(dá)株系中冷脅迫反應(yīng)相關(guān)基因的表達(dá)量顯著升高,fof2突變體中則降低.結(jié)果表明,F(xiàn)OF2在植物抗鹽脅迫響應(yīng)中起負(fù)調(diào)控作用,在抗冷脅迫響應(yīng)中則可能起正調(diào)控作用.

關(guān)鍵詞:功能分析;FOF2;F-box基因;逆境脅迫;擬南芥

中圖分類(lèi)號(hào):Q94 文獻(xiàn)標(biāo)志碼:A

Abstract:FOF2 is one of the F-box protein family members and its biological function remains unclear. The expression patterns and function of FOF2 in response to salt and cold stress in Arabidopsis were analyzed by real-time quantitative PCR and physiological method. The results showed that FOF2 was highly expressed in root, cauline leaf and silique in Arabidopsis, and its transcriptional level was induced by salt and cold stress. The seed germination and root elongation of FOF2 overexpression lines were hypersensitive to salt stress, while the fof2 mutant showed reduced sensitivity to salt stress compared with wild type. The seed germination of both the FOF2 overexpression lines and fof2 mutant showed no phenotype in response to cold, but their primary root length was shorter or longer than the wild type plant during cold stress, respectively. The salt stress responsive marker genes were down-regulated in FOF2 overexpression lines, but up-regulated in fof2 mutant under salt stress. The cold stress responsive marker genes were up-regulated in FOF2 overexpression lines, but down-regulated in fof2 mutant under cold stress. These results indicate that the FOF2 plays a negative role in salt tolerance, but positive role in cold tolerance in Arabidopsis.

Key words:functional analysis; FOF2; F-box gene; abiotic stress; Arabidopsis

在擬南芥基因組中約有700個(gè)基因編碼F-box蛋白家族.F-box蛋白家族的共同特點(diǎn)是在氨基酸序列中含有一段F-box基序,它們?cè)谥参锷L(zhǎng)發(fā)育過(guò)程中發(fā)揮了重要調(diào)控作用[1-5].除了植物,F(xiàn)-box蛋白在動(dòng)物中也起到了重要的作用,如控制骨和軟骨的形成[6].F-box蛋白通常通過(guò)形成SCF復(fù)合物行使功能[7].SCF復(fù)合物包含4個(gè)亞基分別為Cullin、SKP1、RBX1和F-box蛋白[8],每個(gè) F-box蛋白家族成員的 N端都至少含 1個(gè)大約40~50個(gè)保守氨基酸的F-box基序, 并與Skp1結(jié)合; C端是結(jié)構(gòu)不同的蛋白-蛋白相互作用結(jié)構(gòu)域,包括富含亮氨酸的重復(fù)序列(LRR)、Kelch和WD40等[9].F-box蛋白通過(guò)識(shí)別并結(jié)合底物蛋白,介導(dǎo)靶蛋白通過(guò)泛素化蛋白酶體途徑降解.例如在生長(zhǎng)素調(diào)節(jié)通路中,生長(zhǎng)素作為信號(hào)分子觸發(fā)F-box蛋白TRI1形成SCF復(fù)合物,促使IAA/ARFs復(fù)合體中的IAA被泛素化降解,釋放出ARFs來(lái)調(diào)控下游的基因表達(dá),進(jìn)而調(diào)節(jié)植物的生長(zhǎng)發(fā)育、開(kāi)花及逆境脅迫等等[10-12].此外,赤霉素[13]和茉莉酸甲酯[14]等均以類(lèi)似的方式調(diào)控下游基因表達(dá)及植物的生長(zhǎng)發(fā)育過(guò)程.

近年來(lái),已有研究報(bào)道F-box蛋白參與植物逆境響應(yīng)[15].有數(shù)據(jù)分析表明,在水稻中超過(guò)43種不同類(lèi)型的F-box蛋白來(lái)應(yīng)對(duì)不同類(lèi)型的逆境脅迫[16],它們?cè)谀婢持锌赡艽蠖鄶?shù)起正調(diào)節(jié)作用,其他還有辣椒、菜豆和小麥也有類(lèi)似的表達(dá)結(jié)果[10,17-18].霍冬英等[19]在對(duì)谷子進(jìn)行轉(zhuǎn)錄組分析時(shí)鑒定出525個(gè)F-box蛋白, 其中19個(gè)在干旱脅迫下表達(dá)量上調(diào).F-box基因AtPP2-B11過(guò)表達(dá)明顯減弱植株對(duì)干旱的抗性;AtPP2-B11蛋白可與LEA14蛋白相互作用, 表明AtPP2-B11很可能作為一個(gè)負(fù)調(diào)節(jié)因子, 通過(guò)調(diào)節(jié)LEA14蛋白的水平調(diào)控植物的干旱抗性[20].Zhang等發(fā)現(xiàn)F-box蛋白DOR,在干旱響應(yīng)中起到負(fù)調(diào)節(jié)的作用,dor突變體對(duì)干旱的耐受性增強(qiáng)[21];EDL3在干旱中也起到了一定的調(diào)節(jié)作用,通過(guò)ABA信號(hào)通路調(diào)控植物的抗干旱脅迫能力[22];MAX2作為獨(dú)腳金內(nèi)酯的合成基因也參與了植物干旱脅迫響應(yīng),與野生型相比, max2突變體的氣孔關(guān)閉對(duì)ABA敏感程度降低, 抗旱能力較弱[2, 23-24].

F-box蛋白還參與植物抗冷脅迫和鹽脅迫響應(yīng).低溫脅迫下,miR393表達(dá)上調(diào),導(dǎo)致F-box基因TIR1 mRNA降解,抑制其翻譯過(guò)程, 因而降低生長(zhǎng)素效應(yīng)并抑制植物生長(zhǎng), 進(jìn)而提高植物的低溫適應(yīng)性[25].枳是柑橘的變種, 廣泛種植在低溫環(huán)境條件下.研究發(fā)現(xiàn), 低溫馴化處理的枳中F-box基因在轉(zhuǎn)錄及蛋白表達(dá)水平上均提高[26].在鹽脅迫中, 水稻F-box基因OsMsr9被快速誘導(dǎo)表達(dá).當(dāng)在水稻和擬南芥中過(guò)表達(dá)OsMsr9時(shí), 轉(zhuǎn)基因植株表現(xiàn)出較強(qiáng)的耐鹽性,耐鹽相關(guān)基因的表達(dá)量提高,表明OsMsr9正向調(diào)節(jié)植物的耐鹽性[27].

我們研究發(fā)現(xiàn)F-box基因FOF2(F-box of flowering)調(diào)控植物開(kāi)花[28],但該基因是否參與植物抗逆境響應(yīng)過(guò)程尚不清楚.本研究采用實(shí)時(shí)熒光定量PCR和生理學(xué)方法相結(jié)合,研究了FOF2基因的表達(dá)模式,及其在植物抗鹽和冷脅迫響應(yīng)過(guò)程中的作用,為深入研究其調(diào)控機(jī)制奠定了基礎(chǔ).

1 材料與方法

1.1 植物材料和載體

擬南芥野生型 Col-4和Col-0,F(xiàn)OF2過(guò)表達(dá)株系MycFOF2ox1, MycFOF2ox2和MycFOF2ox6,以及fof2突變體(SALK_016168C)均為哥倫比亞生態(tài)型,由本實(shí)驗(yàn)室保存.

1.2 脅迫處理

擬南芥種子經(jīng)過(guò)15% bleach浸泡5 min,然后用無(wú)菌水洗7~8次,在4 ℃冰箱放置2~3 d后,播種在1/2MS固體培養(yǎng)基上.放置在連續(xù)光照培養(yǎng)箱培養(yǎng)12 d后,將幼苗拔出放置于NaCl溶液中進(jìn)行鹽脅迫處理,或者將培養(yǎng)皿轉(zhuǎn)移到4 ℃進(jìn)行冷脅迫處理不同時(shí)間,收集樣品,液氮速凍后,保存在-70 ℃冰箱中,用于后續(xù)的RNA分析.

1.3 種子萌發(fā)分析

擬南芥種子經(jīng)過(guò)15% bleach浸泡5 min,然后用無(wú)菌水洗7~8次后將一部分種子播種于添加150 mM NaCl的1/2MS固體培養(yǎng)基上,放置在22 ℃連續(xù)光照培養(yǎng)箱中培養(yǎng);另一部分種子播種于1/2MS培養(yǎng)基上,在11 ℃連續(xù)光照培養(yǎng)箱中培養(yǎng).

每個(gè)處理播種50粒種子.以種子露出胚根為標(biāo)準(zhǔn),于第2 d統(tǒng)計(jì)種子萌發(fā)率,連續(xù)統(tǒng)計(jì)6 d.

1.4 主根伸長(zhǎng)分析

擬南芥種子經(jīng)過(guò)15% bleach浸泡5 min,用無(wú)菌水洗7~8次,在4 ℃冰箱放置2~3 d后,播種在1/2MS固體培養(yǎng)基上.連續(xù)光照培養(yǎng)箱中垂直培養(yǎng)7 d后,分別進(jìn)行鹽處理和冷處理.鹽脅迫處理:將幼苗轉(zhuǎn)移到添加0、100、150、或250 mM NaCl的1/2MS培養(yǎng)基上,垂直培養(yǎng)5 d,測(cè)量幼苗主根的長(zhǎng)度.冷脅迫處理:將幼苗直接轉(zhuǎn)入11 ℃連續(xù)光照培養(yǎng)箱中垂直培養(yǎng)5 d測(cè)量幼苗主根的長(zhǎng)度.每個(gè)處理至少測(cè)量10株幼苗.

1.5 實(shí)時(shí)熒光定量PCR

采用RNAiso Plus (TakaRa, Japan)提取總RNA,按照PrimeScript RT regent Kit With gDNA Eraser (TakaRa, Japan)試劑盒說(shuō)明合成cDNA.cDNA模板稀釋10~20倍,在實(shí)時(shí)熒光定量PCR儀(Mx3000P)上,按照SYBR Premix Ex TaqTM(Perfect Real time)(TakaRa)試劑盒的說(shuō)明進(jìn)行實(shí)時(shí)熒光定量PCR分析.PCR反應(yīng)程序?yàn)?4 ℃預(yù)變性10 min,94 ℃變性30 s,57 ℃退火30 s,72 ℃延伸30 s,共45個(gè)循環(huán).每個(gè)實(shí)驗(yàn)重復(fù)3次,看家基因ACTIN2作為分子內(nèi)標(biāo).用于定量PCR的引物序列見(jiàn)表1.

2 結(jié) 果

2.1 FOF2組織器官表達(dá)模式分析

基因的時(shí)空表達(dá)模式暗示了它可能存在的功能,可為基因的生物學(xué)功能研究提供重要線索[29].采用實(shí)時(shí)熒光定量PCR檢測(cè)FOF2基因在擬南芥不同組織器官中的表達(dá),發(fā)現(xiàn)FOF2在根、莖生葉和果莢中的表達(dá)水平相對(duì)較高,比種子和幼苗中的表達(dá)量約高5倍(圖1).根是植物吸收水分的器官,根部越發(fā)達(dá)更有利于逆境生存.FOF2在不同組織器官中的表達(dá)量暗示了FOF2可能主要在根和果莢的生長(zhǎng)發(fā)育中發(fā)揮作用.

2.2 FOF2基因表達(dá)對(duì)鹽和冷脅迫的響應(yīng)

利用plantCARE(http://bioinformati cs.psb.ugent.be/webtools/plantcare/html/)網(wǎng)站,對(duì)FOF2基因上游1 440 bp啟動(dòng)子序列中的順式作用元件進(jìn)行分析,結(jié)果發(fā)現(xiàn)系列脅迫響應(yīng)相關(guān)元件HSE和TC-rich repeats.因此推測(cè)FOF2基因的表達(dá)很可能受到逆境脅迫調(diào)控.

為了進(jìn)一步分析FOF2基因表達(dá)是否響應(yīng)逆境脅迫,采用實(shí)時(shí)熒光定量PCR檢測(cè)了冷脅迫和鹽脅迫條件下,F(xiàn)OF2基因的表達(dá)情況.從圖2中可看出,F(xiàn)OF2基因的表達(dá)量受鹽和冷處理誘導(dǎo),分別在0.5 h和1 h達(dá)到最高,隨后降低,處理6 h時(shí),開(kāi)始有所回升(圖2).表明FOF2為鹽和冷脅迫反應(yīng)響應(yīng)相關(guān)基因,可能在鹽脅迫和冷脅迫響應(yīng)過(guò)程中發(fā)揮作用.

2.3 FOF2過(guò)表達(dá)株系和缺失突變體種子萌發(fā)和主根伸長(zhǎng)對(duì)鹽脅迫的響應(yīng)

為了進(jìn)一步研究FOF2是否參與擬南芥抗鹽脅迫響應(yīng),我們分析了FOF2在擬南芥種子萌發(fā)和幼苗生長(zhǎng)時(shí)期的抗鹽脅迫作用.試驗(yàn)中,分別將FOF2的過(guò)表達(dá)株系(MycFOF2ox)、缺失突變體fof2,以及野生型(Col-4和Col-0)的種子播種于添加了150 mM NaCl的1/2MS培養(yǎng)基中,在播種后的第2 d開(kāi)始統(tǒng)計(jì)萌發(fā)率,連續(xù)統(tǒng)計(jì)6 d.統(tǒng)計(jì)分析結(jié)果顯示,在150 mM NaCl處理下,擬南芥種子萌發(fā)受到抑制.與野生型相比,過(guò)表達(dá)株系MycFOF2ox種子萌發(fā)對(duì)NaCl更加敏感,種子萌發(fā)率比野生型低;相反,fof2突變體的種子萌發(fā)率則比野生型高.培養(yǎng)第6 d時(shí),過(guò)表達(dá)株系MycFOF2ox種子萌發(fā)約30%,而野生型(Col-4)的種子萌發(fā)率為71%;fof2突變體種子萌發(fā)率為68%,野生型(Col-0)的種子萌發(fā)率為55%(圖3(a)).

隨后,分析了不同濃度NaCl處理下擬南芥幼苗主根的伸長(zhǎng)情況.試驗(yàn)中將過(guò)表達(dá)MycFOF2ox與野生型(Col-4),以及缺失突變體fof2與野生型(Col-0)播種在1/2MS培養(yǎng)基上,垂直培養(yǎng)7 d后轉(zhuǎn)移到含有0、100、 150、250 mM NaCl的1/2MS培養(yǎng)基上,繼續(xù)垂直培養(yǎng)5 d,測(cè)量主根長(zhǎng)度,結(jié)果顯示,隨著NaCl處理濃度增加,主根伸長(zhǎng)受到抑制,MycFOF2ox與野生型(Col-4),以及缺失突變體fof2與野生型(Col-0)之間的主根長(zhǎng)度差異越明顯(圖3(a)).在150 mM NaCl處理下,主根長(zhǎng)差異最為明顯,過(guò)表達(dá)株系MycFOF2ox主根比野生型短約4 cm,fof2突變體比野生型長(zhǎng)約3 cm(圖3(b)).以上研究結(jié)果表明,F(xiàn)OF2過(guò)表達(dá)導(dǎo)致種子萌發(fā)和植株主根伸長(zhǎng)對(duì)鹽更加敏感,對(duì)鹽的耐受性減弱;fof2突變體對(duì)鹽的敏感性則減弱,說(shuō)明FOF2在抗鹽脅迫響應(yīng)過(guò)程中抑制種子萌發(fā)和主根伸長(zhǎng).

2.4 FOF2過(guò)表達(dá)株系和缺失突變體種子萌發(fā)和主根伸長(zhǎng)對(duì)冷脅迫的響應(yīng)

為了進(jìn)一步研究FOF2是否參與擬南芥抗冷脅迫響應(yīng),我們測(cè)定了冷處理下,過(guò)表達(dá)株系MycFOF2ox和缺失突變體fof2的種子萌發(fā)率和主根伸長(zhǎng)情況.試驗(yàn)中,分別將MycFOF2ox過(guò)表達(dá)株系、fof2缺失突變體,以及野生型(Col-4和Col-0)播種于1/2MS培養(yǎng)基中,然后放置于11 ℃培養(yǎng)箱培養(yǎng),在播種后的第2 d開(kāi)始統(tǒng)計(jì)萌發(fā)數(shù),連續(xù)統(tǒng)計(jì)6 d.結(jié)果顯示,冷處理?xiàng)l件下,過(guò)表達(dá)MycFOF2ox、缺失突變體fof2的種子萌發(fā)率與野生型之間并無(wú)顯著性差異(圖4(a)),表明FOF2過(guò)表達(dá)或者缺失對(duì)冷處理?xiàng)l件下的種子萌發(fā)并無(wú)明顯影響.隨后,檢測(cè)冷處理?xiàng)l件下主根的伸長(zhǎng)情況.結(jié)果顯示,與野生型相比,過(guò)表達(dá)株系MycFOF2ox主根伸長(zhǎng)對(duì)冷更為敏感,其主根比野生型短;fof2突變體幼苗主根伸長(zhǎng)對(duì)冷的敏感性則減弱,其主根比野生型長(zhǎng)(圖4(b)),表明FOF2在冷脅迫響應(yīng)中,主要抑制主根伸長(zhǎng).

2.5 FOF2過(guò)表達(dá)和缺失突變體中鹽脅迫和冷脅迫相關(guān)基因表達(dá)分析

為了進(jìn)一步了解FOF2在鹽脅迫響應(yīng)過(guò)程中的作用機(jī)制,采用實(shí)時(shí)熒光定量PCR檢測(cè)了鹽處理?xiàng)l件下,過(guò)表達(dá)MycFOF2ox、缺失突變體fof2,以及野生型(Col-4和Col-0)中脅迫反應(yīng)關(guān)鍵基因SOS1,SOS2和SOS3的表達(dá)[30-36].結(jié)果顯示,SOS1,SOS2和SOS3均受鹽處理誘導(dǎo),但在過(guò)表達(dá)MycFOF2ox中的水平低于野生型Col-4,在突變體fof2中的表達(dá)水平則高于野生型Col-0(圖5(a)),表明FOF2負(fù)調(diào)節(jié)鹽脅迫響應(yīng)相關(guān)基因的表達(dá).

為了探究FOF2是否對(duì)冷脅迫下游基因產(chǎn)生影響,我們檢測(cè)了冷脅迫相關(guān)基因CBF1,CBF3和COR15a[37-40],在過(guò)表達(dá)MycFOF2ox、缺失突變體fof2及野生型中的表達(dá).實(shí)時(shí)熒光定量PCR結(jié)果顯示,CBF1,CBF3和COR15a受冷處理迅速誘導(dǎo),它們?cè)谶^(guò)表達(dá)株系MycFOF2ox中的表達(dá)量高于野生型Col-4,而在突變體的表達(dá)量則低于野生型Col-0(圖5(b)),表明FOF2上調(diào)冷脅迫響應(yīng)相關(guān)基因表達(dá).

3 討 論

植物在抵御不同脅迫環(huán)境下產(chǎn)生了不同的響應(yīng)機(jī)制[37].在鹽脅迫處理中,過(guò)表達(dá)MycFOF2ox種子萌發(fā)和主根長(zhǎng)度的敏感性高于野生型,鹽脅迫關(guān)鍵基因SOS1,SOS2和SOS3[30-36]的轉(zhuǎn)錄水平均低于野生型,這說(shuō)明FOF2在鹽脅迫響應(yīng)中抑制種子萌發(fā)和主根伸長(zhǎng),負(fù)調(diào)節(jié)脅迫反應(yīng)相關(guān)基因的表達(dá).冷條件處理下,F(xiàn)OF2過(guò)表達(dá)株系的主根伸長(zhǎng)表現(xiàn)為對(duì)冷更為敏感,但是種子萌發(fā)對(duì)冷并沒(méi)有明顯響應(yīng),說(shuō)明FOF2在冷脅迫響應(yīng)中可能具有生長(zhǎng)發(fā)育時(shí)期階段性.COR15A,CBF1和CBF3是冷脅迫中的關(guān)鍵基因[38-42].這些基因在冷處理過(guò)表達(dá)株系MycFOF2ox中的增加程度高于野生型Col-4,在缺失突變體fof2中的表達(dá)量則低于野生型Col-0,這與鹽脅迫響應(yīng)機(jī)制不同,F(xiàn)OF2在冷脅迫響應(yīng)中正調(diào)節(jié)脅迫反應(yīng)相關(guān)基因的表達(dá).因此推測(cè),F(xiàn)OF2在植物抗冷脅迫中可能起正調(diào)控作用,這還需要從生理生化水平上作進(jìn)一步研究.

F-box蛋白是在植物泛素化降解過(guò)程中充當(dāng)識(shí)別底物的作用,通過(guò)調(diào)節(jié)不同底物蛋白的水平行使多種功能.在本研究中,我們發(fā)現(xiàn)F-box蛋白FOF2參與了逆境脅迫,不同非生物脅迫的處理中,F(xiàn)OF2的功能表現(xiàn)并不完全一致,表明FOF2在植物抗逆境脅迫響應(yīng)中的多重性特征.今后,我們將進(jìn)一步通過(guò)鑒定其靶蛋白深入研究其調(diào)控逆境脅迫響應(yīng)過(guò)程的分子機(jī)制.

參考文獻(xiàn)

[1] LECHNER E, ACHARD P, VANSIRI A, et al. F-box proteins everywhere[J]. Curr Opin Plant Biol, 2006, 9(6): 631-638.

[2] SHEN H, ZHU L, BU Q Y, et al. MAX2 affects multiple hormones to promote photomorphogenesis[J]. Mol Plant, 2012, 5(3): 750-762.

[3] LIU Y, JI X, NIE X, et al. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs[J]. New Phytologist, 2015, 207(3):692-709.

[4] GAGNE J M, SMALLE J, GINGERICH D J, et al. Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation[J]. Proc Natl Acad Sci U S A, 2004, 101(17): 6803-6808.

[5] SEKI M, ISHIDA J, NARUSAKA M, et al. Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray[J]. Funct Integr Genomics, 2002, 2(6): 282-291.

[6] YUMIMOTO K, MATSUMOTO M, ONOYAMA I, et al. F-box and WD repeat domain-containing-7 (Fbxw7) protein targets endoplasmic reticulum-anchored osteogenic and chondrogenic transcriptional factors for degradation[J]. J Biol Chem, 2013, 288(40): 28488-28502.

[7] MCGINNIS K M, THOMAS S G, SOULE J D, et al. The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase[J]. Plant Cell, 2003, 15(5): 1120-1130.

[8] DESHAIES R J. SCF and Cullin/Ring H2-based ubiquitin ligases[J]. Annu Rev Cell Dev Biol, 1999, 15: 435-467.

[9] KIPREOS E T, PAGANO M. The F-box protein family[J].Genome Biology, 2000, 1(5):1-7.

[10]CHEN R, GUO W, YIN Y, et al. A novel F-box protein CaF-box is involved in responses to plant hormones and abiotic stress in pepper (Capsicum annuum L.)[J]. Int J Mol Sci, 2014, 15(2): 2413-2430.

[11]KEPINSKI S, LEYSER O. The Arabidopsis F-box protein TIR1 is an auxin receptor[J]. Nature, 2005, 435(7041): 446-451.

[12]TAN X, CALDERON-VILLALOBOS L I, SHARON M, et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase[J]. Nature, 2007, 446(7136): 640-645.

[13]MURASE K, HIRANO Y, SUN T P, et al. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1[J]. Nature, 2008, 456(7221): 459-463.

[14]XIE D X, FEYS B F, JAMES S, et al. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility[J]. Science, 1998, 280(5366): 1091-1094.

[15]GUPTA S, GARG V, KANT C, et al. Genome-wide survey and expression analysis of F-box genes in chickpea[J]. BMC Genomics, 2015, 16(1): 67.

[16]JAIN M, NIJHAWAN A, ARORA R, et al. F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress[J]. Plant Physiol,2007, 143(4): 1467-1483.

[17]ZHOU S, SUN X, YIN S, et al. The role of the F-box gene TaFBA1 from wheat (Triticum aestivum L.) in drought tolerance[J]. Plant Physiol Biochem, 2014, 84: 213-223.

[18]MALDONADO-CALDERON M T, SEPULVEDA-GARCIA E, ROCHA-SOSA M. Characterization of novel F-box proteins in plants induced by biotic and abiotic stress[J]. Plant Sci, 2012, 185/186: 208-217.

[19]霍冬英, 鄭煒君, 李盼松, 等. 谷子 F-box 家族基因的鑒定, 分類(lèi)及干旱響應(yīng)[J]. 作物學(xué)報(bào), 2014, 40(9): 1585-1594.

HUO D Y, ZHENG W J, LI P S, et al. Identification, classification, and drought response of F-box gene family in foxtail millet [J]. Acta Agronomica Sinica, 2014, 40(9): 1585-1594. (In Chinese)

[20]LI Y, JIA F, YU Y, et al. The SCF E3 Ligase AtPP2-B11 plays a negative role in response to drought stress in arabidopsis[J]. Plant Molecular Biology Reporter,2014, 32(5): 943-956.

[21]ZHANG Y, XU W, LI Z, et al. F-box protein DOR functions as a novel inhibitory factor for abscisic acid-induced stomatal closure under drought stress in Arabidopsis[J]. Plant Physiol, 2008, 148(4): 2121-2133.

[22]KOOPS P, PELSER S, IGNATZ M, et al. EDL3 is an F-box protein involved in the regulation of abscisic acid signalling in Arabidopsis thaliana[J]. J Exp Bot, 2011, 62(15): 5547-5560.

[23]BU Q, LV T, SHEN H, et al. Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis[J]. Plant Physiol, 2014, 164(1): 424-439.

[24]NELSON D C, SCAFFIDI A, DUN E A, et al. F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana[J]. Proc Natl Acad Sci U S A, 2011, 108(21): 8897-8902.

[25]謝兆輝. 內(nèi)源小RNAs在植物脅迫反應(yīng)中的作用[J]. 遺傳, 2009, 31(8): 809~817.

XIE Z H. The role of endogenous small RNAs in plant stress responses [J]. Hereditas,2009, 31(8): 809~817. (In Chinese)

[26]YAN Y S, CHEN X Y, YANG K, et al. Overexpression of an F-box protein gene reduces abiotic stress tolerance and promotes root growth in rice[J]. 分子植物(英文版),2011, 4(1): 190-197.

[27]XU G, CUI Y, WANG M, et al. OsMsr9, a novel putative rice F-box containing protein, confers enhanced salt tolerance in transgenic rice and Arabidopsis[J]. Molecular Breeding, 2014, 34(3): 1055-1064.

[28]HE R,LI X, ZHONG M,et al. A photo-responsive F-box protein FOF2 regulates floral initiation by promoting FLC expression in Arabidopsis[J]. The Plant Journal, 2017, 91: 788-801.

[29]趙小英, 謝敏敏, 賀熱情, 等. 擬南芥 AtWNK9 基因的定位及表達(dá)分析[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2013, 40(10): 87-92.

ZHAO X Y, XIE M M, HE R Q, et al. Localization and expression analysis of AtWNK9 in arabidopsis [J]. Journal of Hunan University(Natural Sciences),2013, 40(10): 87-92. (In Chinese)

[30]ZHU J K. Salt and drought stress signal transduction in plants[J]. Annu Rev Plant Biol, 2002, 53(53): 247-273.

[31]ZHU J, LIU J, XIONG L. Genetic analysis of salt tolerance in arabidopsis: evidence for a critical role of potassium nutrition[J]. Plant Cell, 1998, 10(7): 1181-1191.

[32]YE J, ZHANG W, GUO Y. Arabidopsis SOS3 plays an important role in salt tolerance by mediating calcium-dependent microfilament reorganization[J]. Plant Cell Reports, 2013, 32(1): 139-148.

[33]YUE Y, ZHANG M, ZHANG J, et al. SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio[J]. Journal of Plant Physiology, 2012, 169(3): 255-261.

[34]CHENG N, PITTMAN J K, ZHU J, et al. The protein kinase SOS2 activates the arabidopsis H+/Ca2+ antiporter CAX1 to integrate calcium transport and salt tolerance[J]. Journal of Biological Chemistry, 2004, 279(4): 2922.

[35]LIU J, ISHITANI M, HALFTER U, et al. The arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance[J]. Proc Natl Acad Sci U S A, 2000, 97(7): 3730-3734.

[36]劉選明,王文文,楊遠(yuǎn)柱,等.水稻基因OsDHHC13參與氧化脅迫響應(yīng)的初步研究[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,43(12):110-116.

LIU X M, WANG W W, YANG Y Z, et al. Preliminary study on a rice OsDHHC13 gene involving in the response to oxidative stress[J]. Journal of Hunan University(Natural Sciences), 2016, 43(12): 110-116. (In Chinese)

[37]HALFTER U, ISHITANI M, ZHU J. The arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3[J]. Proc Natl Acad Sci U S A, 2000, 97(7): 3735-3740.

[38]KANAYA E, NAKAJIMA N, MORIKAWA K, et al. Characterization of the transcriptional activator CBF1 from Arabidopsis thaliana. Evidence for cold denaturation in regions outside of the DNA binding domain[J]. The Journal of Biological Chemistry, 1999, 274(23): 16068.

[39]NOVILLO F, MEDINA J, SALINAS J. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF region[J]. Proc Natl Acad Sci U S A, 2007, 104(52): 21002-21007.

[40]MARUYAMA K, SAKUMA Y, KASUGA M, et al. Identification of cold-inducible downstream genes of theArabidopsisDREB1A/CBF3 transcriptional factor using two microarray systems[J]. The Plant Journal, 2004, 38(6): 982-993.

[41]BAKER S S, WILHELM K S, THOMASHOW M F. The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression[J]. Plant Molecular Biology, 1994, 24(5): 701-713.

[42]SHINOZAKI K, YAMAGUCHI S K. Gene networks involved in drought stress response and tolerance[J]. J Exp Bot, 2007, 58(2): 221-227.

猜你喜歡
功能分析擬南芥
熱脅迫對(duì)轉(zhuǎn)TasHSP16.9擬南芥幼苗生長(zhǎng)生理特性的影響
淺析道具在漢族民間舞中的功能
高校多媒體教室設(shè)備選型和布局
關(guān)于大學(xué)音樂(lè)欣賞教育與素質(zhì)教育的功能分析
寧波工程學(xué)院排課管理系統(tǒng)功能及數(shù)據(jù)分析
擬南芥
口水暴露了身份
3種擬南芥突變體生長(zhǎng)發(fā)育研究
一株特立獨(dú)行的草
商水县| 正镶白旗| 吉首市| 江永县| 伊春市| 宜兰市| 邹平县| 盐池县| 固阳县| 昌邑市| 台北市| 游戏| 全南县| 田阳县| 富顺县| 鸡泽县| 佛学| 兴和县| 梅河口市| 大新县| 黄冈市| 化隆| 白玉县| 临洮县| 辰溪县| 唐山市| 新营市| 鄂州市| 江源县| 弥勒县| 临江市| 莎车县| 阳江市| 顺平县| 菏泽市| 会泽县| 鄂尔多斯市| 曲靖市| 临桂县| 金湖县| 金平|