国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

關(guān)于正比例函數(shù)、一次函數(shù)和反比例函數(shù)教學(xué)的幾點(diǎn)思考

2018-08-23 06:09上海市嶺南中學(xué)劉華為郵編200435
關(guān)鍵詞:正比例反比例象限

上海市嶺南中學(xué) 劉華為 (郵編:200435)

1 關(guān)于四種典型教材不同處理方式的思考

筆者認(rèn)真研讀了人教版、北師大版、華師大版和上教版教材,對(duì)比各版本不同的處理方式,真切地感受到編者在進(jìn)度安排、內(nèi)容取舍和細(xì)節(jié)處理等方面的精心雕琢與匠心獨(dú)運(yùn),也對(duì)三個(gè)函數(shù)的教學(xué)有了全面的理解和深度的思考.

從進(jìn)度安排上來看,人教版教材把正比例函數(shù)和一次函數(shù)的教學(xué)安排在八年級(jí)《數(shù)學(xué)》下冊(cè)(第19章“一次函數(shù)”),反比例函數(shù)安排在九年級(jí)《數(shù)學(xué)》下冊(cè)(第26章“反比例函數(shù)”)學(xué)習(xí),期間還穿插學(xué)習(xí)了二次函數(shù);北師大版教材把正比例函數(shù)和一次函數(shù)的教學(xué)安排在八年級(jí)《數(shù)學(xué)》上冊(cè)(第4章“一次函數(shù)”),反比例函數(shù)安排在九年級(jí)《數(shù)學(xué)》上冊(cè)(第6章“反比例函數(shù)”)學(xué)習(xí);華師大版教材則把這三個(gè)函數(shù)的教學(xué)均安排在八年級(jí)《數(shù)學(xué)》下冊(cè)(第17章“函數(shù)及其圖象”);上教版教材把正比例函數(shù)和反比例函數(shù)的教學(xué)安排在八年級(jí)《數(shù)學(xué)》下冊(cè)(第18章“正比例函數(shù)和反比例函數(shù)”),一次函數(shù)則安排在八年級(jí)《數(shù)學(xué)》下冊(cè)(第20章“一次函數(shù)”)學(xué)習(xí).單就進(jìn)度安排而言,筆者更欣賞華師大版教材把三個(gè)函數(shù)安排在同一章節(jié)的處理策略,減少了由于跨時(shí)段學(xué)習(xí)引起的知識(shí)遺忘而造成的長時(shí)間舊知復(fù)習(xí)環(huán)節(jié),既突出三者之間的關(guān)聯(lián)性,又使教學(xué)一氣呵成,更有利于知識(shí)遷移和新知的有效生成;人教版教材把二次函數(shù)的學(xué)習(xí)放在反比例函數(shù)之前,使學(xué)生對(duì)函數(shù)圖象有了直線和拋物線兩種認(rèn)識(shí),為畫反比例函數(shù)圖象時(shí)需用光滑曲線連接相鄰兩點(diǎn)埋下了伏筆,降低了難度.特別是從函數(shù)解析式的特征來看,沿襲了從整式到分式的學(xué)習(xí)習(xí)慣,尊循了認(rèn)知規(guī)律,注重了學(xué)情發(fā)展;上教版教材把反比例函數(shù)教學(xué)穿插在正比例函數(shù)和一次函數(shù)之間,意在突出正比例函數(shù)和反比例函數(shù)在認(rèn)知方式的相似度和性質(zhì)學(xué)習(xí)的對(duì)比度,雖有一定的創(chuàng)新,但卻有違認(rèn)知規(guī)律之嫌,畢竟從正比例函數(shù)到一次函數(shù)的遷移更自然,兩者聯(lián)系也更緊密,尤其學(xué)生在掌握一次函數(shù)圖象也是一條直線后,更易理解畫反比例函數(shù)圖象時(shí)為什么相鄰兩點(diǎn)之間需用光滑曲線連接(后文將詳細(xì)闡述);相比較而言,北師大版教材卻顯得中規(guī)中矩,沿襲了傳統(tǒng)的進(jìn)度安排,自然也就缺少了創(chuàng)新味.

從內(nèi)容取舍來看,單就性質(zhì)而言,相同的是上述四個(gè)版本教材均把函數(shù)的單調(diào)性和反比例函數(shù)所在的象限與k的符號(hào)關(guān)系作為教學(xué)重點(diǎn),無論是新知生成還是性質(zhì)應(yīng)用都作了精心安排,以突出其重要性.不同的是,對(duì)于“正比例函數(shù)圖象與比例系數(shù)k的符號(hào)關(guān)系”和“一次函數(shù)圖象所經(jīng)過的象限與k和b的符號(hào)關(guān)系”,上教版教材均把二者歸納為性質(zhì),并作為教學(xué)重點(diǎn)以突顯其重要地位;人教版教材只把前者作為性質(zhì),至于后者則通過一道習(xí)題(配套教材99頁第12題)引導(dǎo)學(xué)生自我歸納整理,重要性自然也就打了折扣;而北師大版教材和華師大版教材對(duì)二者均淡化處理,不僅沒有作為性質(zhì),而且只是通過一道習(xí)題(分別見北師大版配套教材第99頁第8題和華師大版配套教材習(xí)題17.5第1題)對(duì)其中一兩種情形偶有涉及,學(xué)生能否全面掌握要取決于教師對(duì)教材的處理能力和學(xué)生的感悟與遷移能力,其重要性自然也就更加遜色了.那么學(xué)生掌握這兩個(gè)性質(zhì)究竟有沒有積極意義呢?首先有助于學(xué)生對(duì)函數(shù)單調(diào)性的理解與認(rèn)識(shí).試設(shè)想一下:當(dāng)k>0時(shí)學(xué)生腦海里浮現(xiàn)一次函數(shù)的圖象必經(jīng)過第三、第一象限,并自左至右逐漸上升,那自然就能理解函數(shù)值y是隨著x的增大而增大了;其次有利于對(duì)函數(shù)及其圖象的全面認(rèn)識(shí).眾所周知,研究圖形主要包括形狀、大小和位置,對(duì)于函數(shù)圖象當(dāng)然也不例外,更何況讓學(xué)生了解k決定一次函數(shù)圖象的形狀(即變化趨勢(shì))且b決定圖象的位置,還為高中學(xué)習(xí)直線的斜率與截距奠定了堅(jiān)實(shí)的基礎(chǔ);最后有利于學(xué)生能力的發(fā)展.在探究圖象位置與k和b的符號(hào)關(guān)系時(shí),對(duì)培養(yǎng)學(xué)生觀察能力、分析能力和歸納能力都大有裨益,特別是關(guān)于“若直線y=kx+b不經(jīng)過第一象限試確定k與b的取值范圍”這類逆向思考的問題,無疑就是訓(xùn)練學(xué)生思維嚴(yán)謹(jǐn)性的絕好素材.更何況增加這兩個(gè)性質(zhì)的學(xué)習(xí)并未過重增加學(xué)生的負(fù)擔(dān),反而為解決類似問題提供了知識(shí)基礎(chǔ)、思路引領(lǐng)和方法指導(dǎo),實(shí)乃有利無害也!

從細(xì)節(jié)處理來看,人教版教材關(guān)于性質(zhì)“k>0時(shí)正比例函數(shù)圖象經(jīng)過第三、第一象限”的表述就比上教版教材的“k>0時(shí)正比例函數(shù)圖象經(jīng)過第一、第三象限”的表述更為精妙與科學(xué),雖然有違數(shù)字從小到大的表達(dá)習(xí)慣,但卻與“圖象從左至右逐漸上升”及“y隨著x的增大而增大”性質(zhì)中關(guān)于x的變化趨勢(shì)的表述高度吻合,便于學(xué)生理解與掌握性質(zhì);北師大版教材非常注重知識(shí)生成過程的精心設(shè)計(jì),每條性質(zhì)的形成都要經(jīng)過“做一做”“想一想”和“議一議”等環(huán)節(jié),讓學(xué)生在動(dòng)手操作、獨(dú)立思考、相互討論和歸納完善后才逐步掌握.換言之,學(xué)生是性質(zhì)的建構(gòu)者,全程參與了知識(shí)的生成過程,自然對(duì)性質(zhì)的理解與應(yīng)用也就更加得心應(yīng)手;華師大版教材在注重知識(shí)生成過程的同時(shí)還更加注重生本互動(dòng)環(huán)節(jié)的精心設(shè)計(jì),每條性質(zhì)都沒有直接顯現(xiàn)在教材中,而需要填寫關(guān)鍵詞甚至關(guān)鍵句.這就有效避免了只重結(jié)果的走馬觀花式教材閱讀方式,促成學(xué)生要想得到性質(zhì)就必需完成教材設(shè)計(jì)的探究過程.特別是,學(xué)生獨(dú)立思考總結(jié)的性質(zhì)未必科學(xué)與完善,但經(jīng)歷與教師提供的標(biāo)準(zhǔn)答案對(duì)比反思后,必然能強(qiáng)化思維的嚴(yán)謹(jǐn)性和語言的規(guī)范性,從而提升歸納整理能力,可謂一舉多得也.

基于以上分析,筆者依托所執(zhí)教的上教版教材涵蓋內(nèi)容最為全面的特征,優(yōu)化整合其他版本教材的科學(xué)處理方式,圍繞“圖象所經(jīng)過象限與k和b的符號(hào)關(guān)系——單調(diào)性——平行性(兩個(gè)一次函數(shù)圖象的位置關(guān)系)——直線的傾斜度(或反比例函數(shù)圖象與兩坐標(biāo)軸的趨近度)與k的絕對(duì)值的大小關(guān)系”等性質(zhì),大膽設(shè)計(jì)出“正比例函數(shù)——一次函數(shù)——反比例函數(shù)”的一體化教學(xué)流程,采用“做一做——想一想——議一議”的互動(dòng)式學(xué)習(xí)模式,以促進(jìn)學(xué)生在參與性質(zhì)建構(gòu)的過程中認(rèn)識(shí)性質(zhì)理解性質(zhì)用好性質(zhì),也取得了不錯(cuò)的效果,但究竟是否科學(xué)還有待專家進(jìn)一步指正.不過,身為一線教師當(dāng)然更加期待能有一套能集眾家之長的完善教材為己所用,以求在教學(xué)實(shí)施中水平自然上升到一定的高度,從而大大提高課堂效率,造福學(xué)生,畢竟個(gè)人對(duì)教材的研究水平和處理能力皆十分有限.

2 關(guān)于課堂教學(xué)熱點(diǎn)的思考

2.1 由實(shí)際問題引入真的那么重要么?

據(jù)筆者調(diào)研,皆由實(shí)際問題引入三個(gè)函數(shù)的概念是所有教材(不僅局限于本文所涉及的四種教材)的共同處理方式,也是廣大同仁的統(tǒng)一授課模式,變化僅局限于所選取的背景材料不同而已.不過2017年5月8日在黃山市舉行的以“創(chuàng)新”為主題的第三屆全國名師展示課活動(dòng)中,筆者所執(zhí)教的“一次函數(shù)(第一課時(shí))”卻從平移入手,借寫出由正比例函數(shù)y=kx的圖象向上和向下平移后所對(duì)應(yīng)的函數(shù)解析式引入一次函數(shù)的概念(詳細(xì)過程請(qǐng)參考文),以突出了兩個(gè)函數(shù)間的本質(zhì)聯(lián)系,促成由正比例函數(shù)到一次函數(shù)各性質(zhì)的縱向遷移,體現(xiàn)了由舊知到新知的遞進(jìn)式發(fā)展模式(而教材均由實(shí)際問題引入?yún)s是一種獨(dú)立的平行關(guān)系,未能很好地反映兩個(gè)函數(shù)之間的本質(zhì)聯(lián)系),創(chuàng)新味濃厚,也得到了觀摩老師和與會(huì)專家裴光亞教授的充分肯定(見文).

但筆者在參加區(qū)職稱評(píng)審時(shí),同樣的設(shè)計(jì)卻受到某位評(píng)委的“質(zhì)疑”:如此設(shè)計(jì)難道不會(huì)給學(xué)生造成一次函數(shù)是由正比例函數(shù)圖象平移而來的誤解嗎?該專家指出一次函數(shù)就是來源于實(shí)際生活,課堂教學(xué)務(wù)必要尊重教材的處理方式,切不可隨意設(shè)計(jì).且不說一次函數(shù)是否一定由實(shí)際問題衍生而來,單就學(xué)生的認(rèn)知方式而言可謂是豐富多彩千變?nèi)f化,完全沒有必要被“數(shù)學(xué)來源于生活又服務(wù)于生活”的理念套死,更何況形式是為內(nèi)容服務(wù)的,無論一次函數(shù)是來源于生活提煉也好,還是來源于舊知遷移也罷,只要教學(xué)設(shè)計(jì)能引導(dǎo)學(xué)生主動(dòng)參與建構(gòu),凸顯知識(shí)間的本質(zhì)聯(lián)系,便于理解、掌握與運(yùn)用新知,推動(dòng)能力的發(fā)展,就不失為一種成功的創(chuàng)新設(shè)計(jì),完全不必刻意追究其源于何處成于何方.否則,就有固步自封甚至舍本逐末之嫌了,畢竟教材是用來用的而不是用來套的.

2.2 僅觀察圖象是否為學(xué)生獲取性質(zhì)的完善方式?

毫無疑問,先描點(diǎn)畫出函數(shù)圖象,再通過觀察圖象得出函數(shù)相關(guān)性質(zhì)是初中生學(xué)習(xí)函數(shù)的主要認(rèn)知方式,意在借助形的直觀性強(qiáng)化學(xué)生對(duì)函數(shù)性質(zhì)的認(rèn)識(shí)與理解,以突出數(shù)形結(jié)合思想,特別是用形研究數(shù)的優(yōu)越性.但筆者在教學(xué)實(shí)施中發(fā)現(xiàn)一個(gè)奇怪的現(xiàn)象:總有學(xué)生在運(yùn)用性質(zhì)處理問題時(shí)犯了“反用”的低級(jí)錯(cuò)誤(如對(duì)于正比例函數(shù)y=kx而言,常把k<0與k>0的結(jié)果相混淆),雖然經(jīng)過大量習(xí)題反復(fù)操練后似乎達(dá)到熟能生“巧”了,但隨著時(shí)間的推移這類錯(cuò)誤往往又會(huì)在部分學(xué)生中死灰復(fù)燃.

那么這類錯(cuò)誤形成的根源究竟何在?解決問題的突破口又在哪里?筆者經(jīng)過大量的調(diào)研后發(fā)現(xiàn),其根本原因在于學(xué)生對(duì)兩個(gè)函數(shù)性質(zhì)的學(xué)習(xí)只關(guān)注了記憶沒有注重理解,這當(dāng)然與教師對(duì)圖象與性質(zhì)的教學(xué)方式密不可分.首先,通過觀察圖象得出性質(zhì)就是一種典型的記憶性學(xué)習(xí),只不過突出了直觀性,便于加深印象而已;其次,教師的口訣式教學(xué)也對(duì)記憶性教學(xué)有推波助瀾之效.如口訣“撇大捺小吃定k、上正下負(fù)鎖死b;增大增大線為撇、增大減小線為捺(意思是指:直線為撇k為正,直線為捺k為負(fù);直線與y軸交點(diǎn)在x軸上方時(shí)b>0,直線與y軸交點(diǎn)在x軸下方時(shí)b<0;函數(shù)值y隨著自變量x的增大而增大直線為撇,函數(shù)值y隨著自變量x的增大而減小直線為捺)”雖然言簡(jiǎn)意賅生動(dòng)形象,但只加深記憶,根本無助于學(xué)生對(duì)性質(zhì)的理解;最后,大量重復(fù)操練的配套習(xí)題也只是發(fā)揮培養(yǎng)熟練工的“特”效,本質(zhì)上還在加強(qiáng)記憶,無法真正期待由量變引起質(zhì)變.總之,這些強(qiáng)化記憶性的教學(xué)策略,無論怎么挖掘抑或創(chuàng)新,都不能加深學(xué)生對(duì)性質(zhì)的理解,一旦出現(xiàn)記憶紊亂,即使面對(duì)經(jīng)過一三象限的一次函數(shù)圖象學(xué)生也想不起k>0了.

那么如何才能加深學(xué)生對(duì)性質(zhì)的理解呢?筆者的體會(huì)是對(duì)函數(shù)性質(zhì)教學(xué)切忌過于依賴形的直觀而忽視對(duì)數(shù)的分析,務(wù)必要加強(qiáng)“以式析性”(即根據(jù)解析式剖析性質(zhì)的理論依據(jù))研討,引導(dǎo)學(xué)生不僅經(jīng)歷“由形到數(shù)”的觀察,還體會(huì)“由數(shù)到形”的演繹,才能成“數(shù)形結(jié)合”兩全之美也(“數(shù)無形少直觀,形無數(shù)難入微”).具體地說,如對(duì)于正比例函數(shù)y=kx而言,由圖象得出“當(dāng)k>0時(shí)圖象經(jīng)過第三、第一象限和y隨著x的增大而增大”后,再從數(shù)的角度深入分析,引導(dǎo)學(xué)生理解:正是由于k>0,所以y與x同正同負(fù),對(duì)應(yīng)點(diǎn)的橫縱坐標(biāo)同號(hào),因此圖象必然經(jīng)過三一象限;同樣正是由于k>0,當(dāng)x1

2.3 畫反比例函數(shù)圖象的切入點(diǎn)究竟在哪里?

眾所周知,用描點(diǎn)法畫反比例函數(shù)圖象是教學(xué)的一大難點(diǎn),基于正比例函數(shù)與反比例函數(shù)的相關(guān)性,課堂教學(xué)往往通過回顧用描點(diǎn)法畫正比例函數(shù)圖象的基本步驟,引導(dǎo)學(xué)生仿畫反比例函數(shù)圖象.遺憾的是,學(xué)生畫出的反比例函數(shù)圖象往往錯(cuò)誤百出,如光滑曲線變成折線、兩支變一支、圖象與坐標(biāo)軸相交和圖象在無限趨近兩坐標(biāo)軸時(shí)突然轉(zhuǎn)向等.而造成上述錯(cuò)誤的“罪魁禍?zhǔn)住闭墙處熕O(shè)計(jì)的由畫正比例函數(shù)向畫反比例函數(shù)圖象遷移情境,由于兩個(gè)圖象差異較大(形狀由直到曲、數(shù)量由一條到兩支、與坐標(biāo)軸交點(diǎn)從有到無等),根本無法直接遷移,學(xué)生依葫蘆畫瓢,出錯(cuò)自然也就在所難免了.

對(duì)照問題3,可放手讓學(xué)生自己分析歸納,再次體驗(yàn)“由式想形”的過程,逐步歸納出:當(dāng)x逐漸減小時(shí)y的值逐漸增大,且越來越接近于0但始終小于0,所以圖象越來越接近于x軸(但始終在x軸的下方)且向左無限延伸;當(dāng)x值越來越接近于0(始終小于0)時(shí),y的值越來越小,所以圖象越來越接近于y軸(但始終在y軸的左側(cè))且向下無限延伸.

2.4 學(xué)生錯(cuò)把反比例函數(shù)圖象畫出折線的根源在何處?

描點(diǎn)法畫反比例函數(shù)圖象時(shí),學(xué)生常常把相鄰兩點(diǎn)用線段連接(即把圖象畫成折線).針對(duì)這一現(xiàn)象一般認(rèn)為是學(xué)生缺少由直線到曲線的必要遷移經(jīng)驗(yàn)所致,即在畫反比例函數(shù)圖象之前,學(xué)生只畫了直線型的一次函數(shù)圖象,因而不可能想到要用光滑的曲線連接.不過筆者對(duì)此卻有不同的思考,認(rèn)為缺乏對(duì)一次函數(shù)(含正比例函數(shù))圖象的深度解讀才是學(xué)生犯錯(cuò)的根本原因之所在.如果在學(xué)習(xí)一次函數(shù)時(shí)不只是讓學(xué)生掌握一次函數(shù)y=kx+b(k≠0)的圖象是一條直線,而且還了解常函數(shù)y=b的圖象是一條平行于x軸的直線、x=a表示的是一條垂直于x軸的直線;反之,平面直角坐標(biāo)系內(nèi)任一條不平行于坐標(biāo)軸的直線對(duì)應(yīng)的解析式只能是一次函數(shù)y=kx+b(k≠0),平行于x軸的直線的解析式只能為常函數(shù)y=b,垂直于x軸的直線只能表示為直線x=a,且線段和射線的表達(dá)式也只能是這三者之一,不同的是變量的取值范圍不再是一切實(shí)數(shù),而是其一部分.有此鋪墊,學(xué)生在畫反比例函數(shù)圖象時(shí),至少相鄰兩點(diǎn)不可能再用線段(或折線)連接了(也正因?yàn)槿绱?,上教版教材把一次函?shù)的教學(xué)安排在反比例函數(shù)學(xué)習(xí)之后就略顯不妥).至于為什么一定要用光滑曲線,不妨作如下解讀:由橫坐標(biāo)x的從小到大(或從大到小)依次取值排除了左右起伏的波浪線(其實(shí),這種圖形也不可能作為函數(shù)圖象,否則一個(gè)x值對(duì)應(yīng)多個(gè)y值,與函數(shù)的定義相矛盾),而根據(jù)函數(shù)值y隨著x的增大而減小(或增大)又可排除上下起伏的波浪線,故而只能用含一定變化趨勢(shì)的光滑曲線連接了.

2.5 “由式想形”畫圖象是否有違學(xué)生的認(rèn)知規(guī)律?

有同仁擔(dān)心:常規(guī)的處理策略(即教材的處理方式)是引導(dǎo)學(xué)生先用描點(diǎn)法畫出反比例函數(shù)的圖象,再觀察圖象得性質(zhì),而“由式想形”的處理策略卻是先依據(jù)解析式得出性質(zhì)再畫圖象,是否違背了學(xué)生的認(rèn)知規(guī)律?其實(shí)這就是“由形到數(shù)”和“由數(shù)到形”的問題,而這是“數(shù)形結(jié)合”的兩個(gè)方面,都是學(xué)生的認(rèn)知方式,并沒有違背認(rèn)知規(guī)律之嫌.更何況著名數(shù)學(xué)家華羅庚教授強(qiáng)調(diào)“數(shù)無形少直觀”且“形無數(shù)難入微”,只有把兩者有機(jī)地融合才是完善的認(rèn)知方式.但問題在于“先形后數(shù)”時(shí),由于學(xué)生缺乏必要的作圖經(jīng)驗(yàn)和認(rèn)知基礎(chǔ),無法獨(dú)立畫出圖象(除非事先知道形狀),只能依賴教師逐步糾錯(cuò)“引導(dǎo)”,強(qiáng)加味濃厚,可信度卻淡了不少.大有明知不可為卻偏為之的悲壯,意在讓學(xué)生體驗(yàn)作圖的操作過程,獲得的卻是錯(cuò)誤百出的尷尬.而且由于受前攝抑制的影響,這些先入為主的錯(cuò)誤往往會(huì)對(duì)學(xué)生后續(xù)學(xué)習(xí)造成不少負(fù)遷移.而“先數(shù)后形”卻不同,學(xué)生不僅易于接受由解析式剖析性質(zhì)的切入點(diǎn),還能獲得描點(diǎn)法正確作圖的成就感,最后體驗(yàn)由圖形觀察性質(zhì)的直觀感受,豈不兩全齊美?特別是“由式想形”的處理策略有利于培養(yǎng)學(xué)生“先理性分析再動(dòng)手操作”的良好思維習(xí)慣和處事習(xí)慣,對(duì)其后續(xù)發(fā)展更有深遠(yuǎn)的意義.更何況,先畫圖再糾錯(cuò)是強(qiáng)塞,而“由式想形”則基于理解,熟優(yōu)熟劣一目了然.

當(dāng)然,關(guān)于課堂教學(xué)的思考可謂“仁者見仁智者見智”,也很難有個(gè)統(tǒng)一標(biāo)準(zhǔn)或完美的答案.但不管怎樣,加強(qiáng)對(duì)不同版本教材和相關(guān)論文的研究,集百家教研成果之精華,并結(jié)合教學(xué)實(shí)踐大膽探索與反思,在基于知識(shí)理解和能力之上積極尋求突出重點(diǎn)的設(shè)計(jì)和突破難點(diǎn)的對(duì)策,不斷提高課堂效率,也許是每一位執(zhí)教者走向成熟并不斷提升的有效途徑.

猜你喜歡
正比例反比例象限
勘 誤
上期《〈反比例函數(shù)〉拓展精練》參考答案
復(fù)數(shù)知識(shí)核心考點(diǎn)綜合演練
《反比例函數(shù)》拓展精練
常數(shù)牽手象限暢游中考
反比例函數(shù)相關(guān)的隱含結(jié)論及其應(yīng)用
平面直角坐標(biāo)系典例分析
巧用點(diǎn)的坐標(biāo)解決反比例問題
人教版正比例函數(shù)概念的教學(xué)設(shè)計(jì)與點(diǎn)評(píng)
正比例的意義