鄧曉霖 厲周
[摘要] 腫瘤細胞的特征性代謝性方式是有氧性糖酵解,即Warburg效應(yīng)。己糖激酶作為糖酵解的關(guān)鍵酶,在腫瘤細胞中廣泛高表達,被認為與腫瘤代謝、凋亡和自噬緊密相關(guān)。本文通過對己糖激酶及其上下游的研究,可以找到潛在的能適用于多種腫瘤的基因靶向治療方法。
[關(guān)鍵詞] 己糖激酶;Warburg效應(yīng);糖酵解;凋亡;自噬腫瘤
[中圖分類號] R73-36 [文獻標識碼] A [文章編號] 1673-9701(2018)13-0164-05
Research progress of the effects of hexokinase on tumor
DENG Xiaolin LI Zhou
Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
[Abstract] Objective The characteristic metabolic way of tumor cells is aerobic glycolysis, the Warburg effect. Hexokinase is the key enzyme of glycolysis and highly and widely expressed in tumor cells. It is considered to be related with metabolism, apoptosis and autophagy of tumor. By conducting researches on hexokinase and its upstream and downstream, it would be possible to find out the potential gene targeting therapy which could be effective to several kinds of tumors.
[Key words] Hexokinase; Warburg Effect; Glycolysis; Apoptosis; Autophagy; Tumor
腫瘤細胞具有快速增殖和抵抗死亡的特點,為了滿足自身需求,需要大量持續(xù)快速產(chǎn)生的能量,因此在含氧量充足的情況下仍優(yōu)先進行能夠快速產(chǎn)能的糖酵解,大量消耗葡萄糖產(chǎn)生乳酸,這一現(xiàn)象稱為Warburg效應(yīng)。Warburg效應(yīng)已經(jīng)成為腫瘤代謝的重要特征之一。己糖激酶是糖代謝過程的關(guān)鍵酶,催化糖酵解的第一個步驟葡萄糖磷酸化成6-磷酸-葡萄糖。研究證實,己糖激酶在多種類型的腫瘤當中高表達,既與Warburg效應(yīng)有緊密聯(lián)系,又具有抑制細胞凋亡的作用,所以具有潛在的腫瘤發(fā)生發(fā)展、治療的研究前景。
1 己糖激酶(Hexokinase,HK)的分類及作用
哺乳動物中發(fā)現(xiàn)有5種己糖激酶同工酶,HKⅠ、HKⅡ、HKⅢ、HKⅣ和HKDC1(Hexokinase domain containing 1)。HKⅠ主要分布在腦;HKⅡ主要分布在心肌、脂肪和骨骼;HKⅢ主要分布在骨髓、肺和脾;HKⅣ又稱葡萄糖激酶,在胰內(nèi)調(diào)控胰島素分泌而在肝內(nèi)則起調(diào)控葡萄糖攝取與糖原合成分解作用[1]。HKⅠ和HKⅡ均具有一段N端疏水的15個氨基酸序列,從而有與兩性á-螺旋兼容的特質(zhì)并且能夠與線粒體外膜結(jié)合。HKⅢ和HKⅣ則沒有這段序列,無法自行與線粒體外膜結(jié)合[2]。HKDC1是在第10號染色體上發(fā)現(xiàn)與HKⅠ基因相鄰的人類己糖激酶樣基因,HKⅠ和HKDC1基因首尾排列,表明它們是串聯(lián)基因復(fù)制事件的產(chǎn)物。NCBI EST數(shù)據(jù)庫的搜索結(jié)果表明HKDC1因其序列預(yù)測完整的917個氨基酸的開放閱讀框而被表達,被認為具有己糖激酶的功能。HKDC1同樣具有疏水序列,能夠與線粒體外膜結(jié)合[3]。
目前研究普遍認為HKⅡ在腫瘤細胞中具有雙重作用:一種是誘導(dǎo)糖酵解,細胞糖酵解水平與HKⅡ表達量及活性呈正相關(guān);另一種是與電壓依賴性陰離子通道(Volt-dependent anion channel,VDAC)在線粒體外膜結(jié)合抑制凋亡[4]。
HKⅡ除了代謝作用以外,隨著近年的研究進展還被認為是一種保護性分子,心肌細胞在葡萄糖供應(yīng)不足的情況下HKⅡ結(jié)合并抑制雷帕霉素激酶機制作用目標(Mechanistic target of rapamycinkinase,mTORC)觸發(fā)細胞自噬自我保護[5]。
2 己糖激酶的表達與活性調(diào)控
2.1腫瘤相關(guān)通路調(diào)控表達
磷脂酰肌醇-4,5-二磷酸3-激酶催化亞基á/絲氨酸/蘇氨酸激酶1/雷帕霉素激酶機制作用目標(Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit á/Serine/thereonine kinase 1/mechanistic target of rapamycin kinase,PI3K/Akt/mTORC)通路是重要的樞紐性通路,能大范圍激活下游多種類型的通路,因此能調(diào)節(jié)多種生物學(xué)行為包括糖代謝、細胞增殖、細胞凋亡等[1]。因此該通路對腫瘤的發(fā)生發(fā)展息息相關(guān)。過度活躍的mTORC1足以增加HKⅡ表達而且一篇全面無偏倚的分析報告也支持mTORC1介導(dǎo)HKⅡ表達上調(diào)的觀點[6]。已經(jīng)有大量研究證實,HKⅡ表達與此通路的活性緊密相關(guān),HKⅡ能被PI3K/Akt通路激活,而抑制PI3K/Akt通路也可以抑制有氧性糖酵解而且能被外源性HKⅡ逆轉(zhuǎn)。例如,TRAF4通過抑制由Akt途徑介導(dǎo)的GLUT1和HKⅡ的表達而削弱肺癌細胞葡萄糖代謝[7]。黃岑黃素在缺氧下提升胃癌AGS細胞對5-FU的敏感性。另外,黃岑黃素通過促進磷酸酶和張力蛋白同系物(Phosphatase and tensin homologue,PTEN)堆積抑制低氧誘導(dǎo)的Akt磷酸化,從而削減缺氧誘導(dǎo)型因子(Hypoxia inducible factor-1, HIF-1)的表達[8]。還有一種分離自真菌Albatrellusconfluens的理想小分子化合物Neoalbaconol(NA),能夠作用于3-磷酸肌醇依賴型蛋白激酶1(3-phosphoinositide-dependent protein kinase 1,PDK1),抑制其下游的PI3K/Akt-HKⅡ通路。通過作用于PDK1,NA減少了葡萄糖消耗和ATP生成,經(jīng)由各自獨立的通路激活了自噬和凋亡[9]。由此可見PI3K/Akt/mTORC通路與HKII的緊密調(diào)控關(guān)系,因此能成為腫瘤代謝的研究重點之一。
2.2 轉(zhuǎn)錄因子調(diào)控表達
HIF-1是一種轉(zhuǎn)錄因子,它的á亞單位在缺氧條件下變得穩(wěn)定,進而激活轉(zhuǎn)錄程序以使細胞適應(yīng)缺氧的條件。HKⅡ啟動子與HIF-1的主要結(jié)構(gòu)一致且HKⅡ的表達能被缺氧加強,在缺氧時對細胞提供保護,這也是腫瘤細胞糖酵解水平高的機制之一。有關(guān)胰腺癌的研究發(fā)現(xiàn)沉默高流動性B組2型(High mobility group B2,HMGB2)基因降低了HIF-1蛋白水平,抑制了HIF-1á介導(dǎo)的糖酵解進程[10]。棘皮動物微管相關(guān)蛋白樣4-間變性淋巴瘤激酶(Echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase,EML4-ALK)在其mRNA轉(zhuǎn)錄活性和PI3K-AKT通路的聯(lián)合作用下誘導(dǎo)非缺氧依賴但葡萄糖依賴的HIF-1á蛋白質(zhì)的合成堆積[11]。
c-Myc和轉(zhuǎn)錄信號轉(zhuǎn)導(dǎo)和激活因子3(Signal transducer and activator of transcription 3,STAT3)的組合也能調(diào)控HKⅡ的表達。c-Myc編碼的蛋白質(zhì)與相關(guān)的轉(zhuǎn)錄因子MAX形成異源二聚體,該復(fù)合物結(jié)合E盒DNA共有序列并調(diào)節(jié)特定靶基因的轉(zhuǎn)錄。STAT3在對細胞因子和生長因子的響應(yīng)中,STAT家族成員被受體相關(guān)的激酶磷酸化,然后形成易位到細胞核的同源或異源二聚體,在那里它們起轉(zhuǎn)錄激活劑的作用。已有研究發(fā)現(xiàn)轉(zhuǎn)錄因子c-Myc和STAT3參與白細胞介素22誘導(dǎo)的HKⅡ的表達上調(diào)[12],人參皂苷20(S)Rg3通過下調(diào)STAT3調(diào)節(jié)HKⅡ[13],新型喹諾酮-吲哚酮偶聯(lián)物QIC1[9-氟-3,7-二氫-3-甲基-10-(4-甲基-1-哌嗪基)-6-(2-氧代-1,2 -二氫-吲哚-3-亞基甲基)-7-氧代-2H-(1,4)惡嗪并(2,3,4-ij)喹啉] 通過下游STAT3介導(dǎo)的HKⅡ信號通路減弱了表皮生長因子受體(Epithelial growth factor receptor,EGFR)的活性,因此抑制增殖并誘導(dǎo)細胞凋亡與磷酸-EGFR-磷酸化STAT3-HK2的表達降低有關(guān)[14]。
2.3 miRNA調(diào)控表達和活性
microRNAs(miRNA)是一類非編碼小分子調(diào)控RNA,能夠作用于靶基因的信使RNA(mRNA)使其降解來干擾靶基因轉(zhuǎn)錄或翻譯,從而實現(xiàn)對腫瘤細胞糖酵解的調(diào)控。研究發(fā)現(xiàn)miR-4458在結(jié)腸癌細胞中下調(diào),HKⅡ上調(diào),同時miR-4458過表達能抑制有氧和缺氧條件下的增殖、糖酵解和乳酸產(chǎn)生。螢光素酶活性測定顯示HKⅡ是miR-4458的直接靶標[15]。miR-181b通過直接作用于HKⅡ的3'非翻譯區(qū)抑制其表達水平,負性調(diào)節(jié)胃癌的糖酵解水平[16]。前列腺癌中miR-143的作用目標是HKⅡ,抑制了細胞增殖[17,18],miR-199a-5p對肝癌細胞的代謝過程進行重新編程[19]。
3己糖激酶對腫瘤細胞線粒體的作用
3.1促進糖酵解
HKⅡ能夠與鑲嵌在線粒體外膜上的VDAC結(jié)合,以促進ATP對HKⅡ的糖酵解的優(yōu)先進入,維持恒定的腫瘤細胞增殖能量來源。分子動力學(xué)模擬結(jié)果顯示HKⅡ的結(jié)合限制了VDAC1 N-末端螺旋的移動。因此,VDAC1大部分時間保持在開放狀態(tài),且可能保障了對HKⅡ的糖酵解恒定的ATP供應(yīng)[20]。
3.2抑制凋亡
根據(jù)大量的研究結(jié)果,已知HKⅠ和HKⅡ均能與VDAC直接結(jié)合,并抑制細胞色素c釋放從而抑制線粒體介導(dǎo)的細胞凋亡,但分子機制尚不明確。一個模型提出,VDAC1是由促凋亡刺激激活的滲透轉(zhuǎn)換孔(Permeability transition pores,PTP)的組成部分[21]。另一個模型提出Bax與VDAC1相互作用,導(dǎo)致細胞色素c通過線粒體外膜滲透[22]。第三個模型提出,關(guān)閉VDAC1通道可阻止細胞質(zhì)和線粒體基質(zhì)之間的ATP和ADP的有效交換,然后線粒體外膜腫脹破裂。參照這個模型,Azouley-Zohar[23]證實HKⅠ和HKⅡ能有效結(jié)合VDAC,對線粒體外膜進行重構(gòu)而改變其通透性使通道保持關(guān)閉狀態(tài)。最新的模型提出VDAC1寡聚化作為介導(dǎo)促凋亡蛋白的釋放[24]。
4 腫瘤的治療
4.1 促進線粒體結(jié)合的HK(mitochondrial-HK,m-HK)解離
由于腫瘤細胞中HK-VDAC結(jié)合普遍升高而抑制了細胞凋亡,因此使用化合物促使HK從VDAC解離能起到促進凋亡從而治療腫瘤的效果。類黃酮FV-429觸發(fā)細胞凋亡,同時抑制乳腺癌MDA-MB-231細胞的糖酵解。FV-429顯著降低了HK II活性及其在線粒體中的數(shù)量,并且減弱了HKⅡ與VDAC之間的相互作用,刺激了HKⅡ從線粒體中分離,導(dǎo)致線粒體PTP開放促凋亡[25]。應(yīng)用白楊素治療后,線粒體上的HKⅡ與VDAC1結(jié)合體明顯減少,造成Bax從胞漿轉(zhuǎn)移至線粒體并引發(fā)細胞凋亡[26]。在HeLa細胞中,pHK-PAS使線粒體膜電位去極化,抑制線粒體呼吸和糖酵解,并削減了胞內(nèi)ATP水平。這些效應(yīng)與內(nèi)源性全片段HKⅡ從線粒體脫離和細胞色素c釋放有關(guān)[27]。神經(jīng)母細胞瘤細胞中的下游調(diào)控元件拮抗調(diào)節(jié)劑(Downstream regulatory element antagonist modulator,DREAM)過表達減少了HKⅠ在分離的線粒體上的定位。DREAM與HKⅠ的相互作用可能在調(diào)節(jié)神經(jīng)元凋亡中起重要作用[28]。綜合以上證據(jù),促進m-HK與線粒體解離是通過HK治療腫瘤的重要手段。
4.2 抑制糖酵解
根據(jù)已有的研究結(jié)果,抑制HK的表達和活性可以達到抑制糖酵解的目的。2-DG競爭性抑制HKⅡ來抑制腫瘤相關(guān)巨噬細胞的糖酵解,足以阻擋其轉(zhuǎn)移前表型的形成,從而逆轉(zhuǎn)胰腺膽管癌腫瘤相關(guān)巨噬細胞支持的血管形成、溢出增加和EMT(Epithelial-to-mesenchymal transition)[29]。三陰乳腺癌細胞中4-羥基他莫昔芬(4-OHT)促進SLUG基因表達,被姜黃素阻斷,進一步的研究顯示SLUG通過結(jié)合HKⅡ啟動子激活HKⅡ的轉(zhuǎn)錄[21]。ErbB2通過增加HKⅡ與線粒體外膜的結(jié)合來上調(diào)HKⅡ的活性,葡萄糖代謝失調(diào)誘導(dǎo)了ErbB2高表達的乳腺癌細胞對葡萄糖饑餓和糖酵解抑制的易感性[30]。此外,為了研究作用于由BRCA1缺失誘導(dǎo)的代謝表型的治療方法,有人采用了舊藥新用的方法,并認定阿司匹林為抵消HKⅡ增加和由BRCA1損傷誘導(dǎo)的糖酵解增加的藥劑[31]。還有研究發(fā)現(xiàn),姜黃素一方面對HCT116和HT29細胞中HKⅡ的表達和活性具有濃度依賴性的下調(diào),但對其他關(guān)鍵糖酵解酶(PFK,PGM,LDH)影響不大;另一方面,姜黃素誘導(dǎo)HKⅡ從線粒體解離,引起線粒體介導(dǎo)的細胞凋亡。姜黃素還通過Akt磷酸化線粒體HKⅡ負責誘導(dǎo)的HKⅡ解離[32]。除此以外,上述調(diào)控HK的轉(zhuǎn)錄因子和miRNA也成為腫瘤治療的研究熱點。
4.3 調(diào)控細胞自噬
自噬是一種天然且具有破壞性的機制,細胞通過這種機制降解并回收不必要或功能失調(diào)的成分。在應(yīng)激或營養(yǎng)被剝奪的條件下,自噬往往被激活以維持代謝穩(wěn)態(tài)和細胞存活。自噬被認為在腫瘤發(fā)生中起承上啟下的雙重作用:能通過阻止致癌轉(zhuǎn)化來抑制腫瘤的發(fā)生;相反在已發(fā)生的腫瘤中,自噬在不利于腫瘤的微環(huán)境中可被用于延長癌細胞的存活期[33]。研究發(fā)現(xiàn)肝癌中自噬與糖酵解水平呈負相關(guān),證實HKⅡ作為選擇性自噬的底物,被TRAF6和SQSTM1介導(dǎo)的泛素化系統(tǒng)識別并誘導(dǎo)自噬調(diào)節(jié)糖酵解[34]。藥理研究證實HKⅡ的抑制劑2-DG(2-deoxy-D-glucose)通過誘導(dǎo)細胞凋亡和自噬來抑制人和小鼠肺癌細胞的生長,HKⅡ是Kras被激活且p53功能損失的非小細胞肺癌的潛在治療靶點[35]。自噬也被認為在癌細胞對放射和化學(xué)療法的耐藥性中起關(guān)鍵作用。在乳腺癌MDA-MB-435和MDA-MB-231細胞中,HKⅡ的抑制劑3-羥基丙酮酸(3-Bromopyruvic,3-BrPA)引發(fā)自噬,氯喹通過刺激ROS形成增強3-BrPA誘導(dǎo)的細胞死亡,增加用3-BrPA處理的細胞抗癌效用。因此,抑制自噬可能是乳腺癌輔助化療的創(chuàng)新策略[36]。以上證據(jù)顯示,HK在細胞自噬的作用成為了腫瘤治療的新方向。
4.4 放射治療
三種細胞系乳腺癌MCF-7、結(jié)腸癌HCT116和膠質(zhì)細胞瘤U87在單次5 Gy放療后表現(xiàn)出mTOR快速重定位于線粒體,伴隨著乳酸產(chǎn)生降低、線粒體ATP合成升高和耗氧量升高。應(yīng)用雷帕霉素抑制mTOR能阻斷上述放射誘導(dǎo)的mTOR重定位及其效應(yīng),降低存活率。在被放射后的細胞里,mTOR與HKⅡ形成復(fù)合體,降低了HKⅡ的酶活性,此可逆的細胞能量代謝應(yīng)可被用于增加腫瘤細胞對抗癌治療的敏感度[37]。
5 總結(jié)與展望
己糖激酶與腫瘤發(fā)生發(fā)展聯(lián)系緊密,涵蓋廣泛的腫瘤類型,其對腫瘤影響的研究已經(jīng)有了初步的成果。研究結(jié)果表明,可以針對腫瘤的不同基因型定制不同的治療靶點,使用包括miRNA和化學(xué)物質(zhì)來直接抑制己糖激酶或抑制其相關(guān)的信號通路,從而達到抑制腫瘤生長、增殖,調(diào)控腫瘤自噬凋亡的目的,提供了解決腫瘤尤其是耐藥腫瘤的靶向治療思路,但是己糖激酶作用的具體分子機制尚未清楚闡明,大多只是在基因表達和活性水平層面上調(diào)控己糖激酶,所以未來己糖激酶的研究可以繼續(xù)向分子機制方面深入。
[參考文獻]
[1] Roberts DJ,Miyamoto S. Hexokinase II integrates energy metabolism and cellular protection:Akting on mitochondria and TORCing to autophagy[J]. Cell Death Differ,2015,22(2):248-257.
[2] Mathupala SP,Ko YH,Pedersen PL. Hexokinase II:cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria[J]. Oncogene,2006,25(34):4777-4786.
[3] Irwin DM,Tan H. Molecular evolution of the vertebrate hexokinase gene family:Identification of a conserved fifth vertebrate hexokinase gene[J]. Comp Biochem Physiol Part D Genomics Proteomics,2008,3(1):96-107.
[4] Shoshan-Barmatz V,Mizrachi D. VDAC1:from structure to cancer therapy[J]. Front Oncol,2012,2:164.
[5] Tan VP,Miyamoto S. HK2/hexokinase-II integrates glycolysis and autophagy to confer cellular protection[J]. Autophagy,2015,11(6):963-964.
[6] Robey,R. B. and N. Hay. Is Akt the "Warburg kinase"?-Akt-energy metabolism interactions and oncogenesis[J]. Semin Cancer Biol,2009,19(1):25-31.
[7] Li W,Peng C,Lee MH,et al. TRAF4 is a critical molecule for Akt activation in lung cancer[J]. Cancer Res,2013,73(23):6938-6950.
[8] Chen F,Zhuang M,Zhong C,et al. Baicalein reverses hypoxia-induced 5-FU resistance in gastric cancer AGS cells through suppression of glycolysis and the PTEN/Akt/HIF-1alpha signaling pathway[J]. Oncol Rep,2015,33(1):457-463.
[9] Deng Q,Yu X,Xiao L,et al. Neoalbaconol induces energy depletion and multiple cell death in cancer cells by targeting PDK1-PI3-K/Akt signaling pathway[J]. Cell Death Dis,2013,4:e804.
[10] Cai X,Ding H,Liu Y,et al. Expression of HMGB2 indicates worse survival of patients and is required for the maintenance of Warburg effect in pancreatic cancer[J]. Acta Biochim Biophys Sin(Shanghai),2017,49(2):119-127.
[11] Ma Y,Yu C,Mohamed EM,et al. A causal link from ALK to hexokinase II overexpression and hyperactive glycolysis in EML4-ALK-positive lung cancer[J]. Oncogene,2016,35(47):6132-6142.
[12] Liu Y,Xiang F,Huang Y,et al. Interleukin-22 promotes aerobic glycolysis associated with tumor progression via targeting hexokinase-2 in human colon cancer cells[J]. Oncotarget,2017,8(15):25372-25383.
[13] Li J,Liu T,Zhao L,et al. Ginsenoside 20(S)Rg3 inhibits the Warburg effect through STAT3 pathways in ovarian cancer cells[J]. Int J Oncol,2015,46(2):775-781.
[14] Liu YH,Wei XL,Hu GQ,et al. Quinolone-indolone conjugate induces apoptosis by inhibiting the EGFR-STAT3-HK2 pathway in human cancer cells[J]. Mol Med Rep,2015,12(2):2749-2756.
[15] Li LQ,Yang Y,Chen H,et al. MicroRNA-181b inhibits glycolysis in gastric cancer cells via targeting hexokinase 2 gene[J].Cancer Biomark,2016,17(1):75-81.
[16] Qin,Cheng YC,Lu H,et al. miR-4458 suppresses glycolysis and lactate production by directly targeting hexokinase2 in colon cancer cells[J]. Biochem Biophys Res Commun,2016,469(1):37-43.
[17] Zhou P,Chen WG ,Li XW. MicroRNA-143 acts as a tumor suppressor by targeting hexokinase 2 in human prostate cancer[J]. Am J Cancer Res,2015,5(6):2056-2063.
[18] Peschiaroli A,Giacobbe A,F(xiàn)ormosa A,et al. miR-143 regulates hexokinase 2 expression in cancer cells[J]. Oncogene,2013,32(6):797-802.
[19] Guo W,Qiu Z,Wang Z,et al. MiR-199a-5p is negatively associated with malignancies and regulates glycolysis and lactate production by targeting hexokinase 2 in liver cancer[J]. Hepatology,2015,62(4):1132-1144.
[20] Zhang D,Yip YM,Li L. In silico construction of HK2-VDAC1 complex and investigating the HK2 binding-induced molecular gating mechanism of VDAC1[J]. Mitochondrion,2016,30:222-228.
[21] Geng CJ,Li F,Ding,et al. Curcumin suppresses 4-hydroxytamoxifen resistance in breast cancer cells by targeting SLUG/Hexokinase 2 pathway[J]. Biochem Biophys Res Commun,2016,473(1):147-153.
[22] Tsujimoto Y,Shimizu S. Role of the mitochondrial membrane permeability transition in cell death[J]. Apoptosis,2007,12(5):835-840.
[23] Azoulay-Zohar H,Israelson A,Abu-Hamad S,et al. In self-defence:hexokinase promotes voltage-dependent anion channel closure and prevents mitochondria-mediated apoptotic cell death[J]. Biochem J,2004,377(Pt 2):347-355.
[24] Shimizu S,Konishi A,Kodama T,et al. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death[J]. Proc Natl Acad Sci USA,2000,97(7):3100-3105.
[25] Zhou Y,Lu N,Qiao C,et al. FV-429 induces apoptosis and inhibits glycolysis by inhibiting Akt-mediated phosphorylation of hexokinase II in MDA-MB-231 cells[J]. Mol Carcinog, 2016, 55(9):1317-1328.
[26] Xu D,Jin J,Yu H,et al. Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2[J]. J Exp Clin Cancer Res,2017, 36(1):44.
[27] Woldetsadik AD,Vogel MC,Rabeh WM,et al. Hexokinase II-derived cell-penetrating peptide targets mitochondria and triggers apoptosis in cancer cells[J]. FASEB J,2017,31(5):2168-2184.
[28] Craig TA,Ramachandran PL,Bergen HR,et al. The regulation of apoptosis by the downstream regulatory element antagonist modulator/potassium channel interacting protein 3(DREAM/KChIP3) through interactions with hexokinase I[J]. Biochem Biophys Res Commun,2013,433(4):508-512.
[29] Penny HL,Sieow JL,Adriani G,et al. Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma[J]. Oncoimmunology,2016,5(8):e1191731.
[30] Gao S,Chen X,Jin H,et al. Overexpression of ErbB2 renders breast cancer cells susceptible to 3-BrPA through the increased dissociation of hexokinase II from mitochondrial outer membrane[J]. Oncol Lett,2016,11(2):1567-1573.
[31] Chiyoda T, Hart PC,Eckert MA,et al. Loss of BRCA1 in the cells of origin of ovarian cancer induces glycolysis:A window of opportunity for ovarian cancer chemoprevention[J]. Cancer Prev Res (Phila),2017,10(4):255-266.
[32] Wang K,F(xiàn)an H,Chen Q,et al. Curcumin inhibits aerobic glycolysis and induces mitochondrial-mediated apoptosis through hexokinase Ⅱ in human colorectal cancer cells in vitro[J]. Anticancer Drugs,2015,26(1):15-24.
[33] Mizushima N,Komatsu M. Autophagy:Renovation of cells and tissues[J]. Cell,2011,147(4):728-741.
[34] Jiao L,Zhang HL,Li DD,et al. Regulation of Glycolytic Metabolism by Autophagy in Liver Cancer Involves Selective Autophagic Degradation of HK2(hexokinase 2)[J].Autophagy,2018,14:28.
[35] Wang H,Wang L,Zhang Y,et al. Inhibition of glycolytic enzyme hexokinase II(HK2) suppresses lung tumor growth[J]. Cancer Cell Int,2016,16(38):9.
[36] Zhang Q,Zhang Y,Zhang P,et al. Hexokinase II inhibitor,3-BrPA induced autophagy by stimulating ROS formation in human breast cancer cells[J]. Genes Cancer,2014,5(3-4):100-112.
[37] Lu,CL,Qin L,Liu HC,et al. Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase Ⅱ inhibition-a Warburg-reversing effect[J]. PLo S One,2015,10(3):e0121046.
(收稿日期:2018-01-28)