国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于DOE和CAE技術的梯形懸置靜剛度分析和優(yōu)化

2018-10-09 10:08姚震黃年兵張裕軍潘兵兵
計算機輔助工程 2018年4期
關鍵詞:橡膠優(yōu)化

姚震 黃年兵 張裕軍 潘兵兵

摘要: 針對懸置系統(tǒng)設計過程中需要反復調整結構以滿足剛度性能要求的問題,采用DOE和CAE技術對梯形橡膠懸置靜剛度進行數值模擬試驗,研究主簧的寬度、長度、厚度和角度等結構參數對懸置靜剛度的影響,并根據試驗結果進行因子分析,獲得各結構參數對懸置靜剛度的影響規(guī)律和相應的回歸方程。運用回歸方程針對實物樣件目標剛度進行優(yōu)化分析,能夠快速獲得各結構參數值,表明該方法便捷、有效,可為梯形橡膠懸置的設計制造提供參考。

關鍵詞:梯形懸置; 橡膠; 靜剛度; 主簧; 優(yōu)化

中圖分類號: U463.334

文獻標志碼: B

Abstract:As to the issue that the suspension system structure should be adjusted repeatedly to meet the stiffness performance requirements during the design process, the numerical simulation test on the static stiffness of trapezoidal rubber suspension is carried out using DOE and CAE technologies. The influence of structural parameters of main spring on the suspension static stiffness is studied, such as the width, length, thickness, and angle. The factors of every structural parameter are analyzed according to the results of tests, and the influence of structural parameters on the static stiffness of suspension and the corresponding regression equation are obtained. The regression equations are used to optimize the target stiffness of the sample piece, and the value of each structure parameter can be obtained quickly. It shows that the method is of high conveniency and effectiveness. The result can provide reference for the design and manufacture of wedge rubber suspension.

Key words:wedge suspension; rubber; static stiffness; main spring; optimization

0 引 言

眾所周知,汽車動力總成是提供動力的裝置,是汽車的心臟。動力總成通過橡膠懸置安裝在汽車底盤或車身上。橡膠懸置不僅可以減少發(fā)動機向車架傳遞振動、降低整車振動和噪聲、改善乘坐舒適性,而且還可以減小路面激勵對動力總成的振動破壞,延長其使用壽命。[1]在車型設計初期,需要對懸置結構進行優(yōu)化。利用非線性有限元分析方法預測懸置的靜剛度性能,可以有效縮短設計開發(fā)周期、降低成本、提高效率。[2]國內外已對懸置剛度性能進行一系列研究[3-5],但是對于結構參數方面的研究較少。因此,本文以梯形懸置為例,探究不同結構參數對懸置靜剛度的影響,為懸置結構設計提供參考。

1 基于Abaqus的有限元模型

在仿真分析中,橡膠懸置靜剛度主要受橡膠材料和懸置結構2個方面的影響。在實際應用中發(fā)現,采用同一配方橡膠材料時,懸置三向靜剛度值與橡膠材料硬度成正比,即橡膠硬度值改變三向剛度值的大小,對三向剛度比值不產生影響[6],故本文不考慮懸置使用過程中橡膠硬度的變化。由于懸置橡膠硬度的邵氏硬度通常為45~55 HA,因此選取邵氏硬度為50 HA的橡膠作為研究對象。

1.1 橡膠懸置材料模型

橡膠材料是由長鏈、大分子和網狀交連結構構成的超彈性材料[7],具有高度非線性特性,主要表現為下列3個方面:在靜載荷作用下為非線性彈性行為;在循環(huán)載荷作用下為黏彈性行為;在預應力作用后具有應力軟化現象,即Mullins效應。[8]橡膠材料具有不可壓縮性,其力學行為對環(huán)境、溫度、應變歷史、加載速率和周圍介質等都非常敏感。為描述橡膠材料應力和應變的非線性特性,一般假設其外部載荷所做的功全部存儲于彈性體內,將反映其變形梯度與應變勢能函數關系的模型稱為超彈性本構模型。[9]

橡膠彈性理論研究目前仍在發(fā)展中,根據不同假設有諸多理論。橡膠材料的本構模型主要有基于分子統(tǒng)計理論的模型和基于唯象理論的模型2類,以此可推導基于唯象理論的MOONEY-RIVLIN模型、YEOH模型和OGDEN模型,以及基于熱力學或分子統(tǒng)計理論的ARRUDA-BOYCE模型和VAN DER WAALS模型等。[10]因基于唯象理論的多項式模型具有較高的精度,故本文使用工程上應用較廣泛的MOONEY-RIVLIN本構模型,其能夠較好地描述橡膠材料在150%以內的變形。MOONEY-RIVLIN本構模型的應變勢能函數為

1.2 橡膠懸置有限元模型

選取一款常用梯形懸置作為研究對象,對其結構進行解剖分析,研究主簧的長度L、寬度B、厚度H和角度R對懸置靜態(tài)剛度的影響。梯形懸置結構參數見圖1。

懸置結構復雜導致網格劃分和模型計算需要消耗大量的時間和系統(tǒng)資源。考慮到部分結構不會對懸置剛度產生明顯影響,故對模型進行適當簡化后進行網格劃分,采用六面體C3D8H單元,梯形懸置有限元模型見圖2。

2 基于MINITAB的DOE分析

將梯形懸置靜剛度作為衡量指標,將L、B、H和R列為試驗因素。各試驗因素水平的定義見表1。試驗采用四因素二水平全因子正交試驗矩陣[WTHX]L[WTBX]16(24)方法,在Abaqus中逐一進行模擬分析,并將依次記錄剛度結果,見表2。

3 試驗結果和案例分析

3.1 試驗結果

根據試驗數據分析各因子,可以得到各因子的殘差和Pareto,見圖3~5。以x向為例,由圖3a)可以發(fā)現:殘差在概率圖和直方圖中呈正態(tài)分布,符合隨機變量的分布規(guī)律;殘差在擬合值中隨機波動,說明殘差是等方差形式;殘差在觀測值順序中呈隨機波動,說明各試驗彼此之間獨立。由此可知該試驗結果有效。根據x向的Pareto圖可以發(fā)現,對x向剛度起顯著作用的因子從高到低排列為L>B>H>R>LH>LB>BH>LR>BR>HR。

各因子的主效應和交互作用見圖6~8。同樣以

x方向為例,從圖6a)中可以發(fā)現:主簧長度L與x向剛度負相關,即隨著長度的增加,x向靜剛度減小;其余因子均為正相關,即隨著長度的增加,x向靜剛度增大。在本次試驗中,各因子對主效應的影響從強到弱依次為L>B>H>R。從圖6b)還可以看到,兩兩因子之間存在一定的交互作用,但交互作用較弱,可以忽略不計。

對表2中的數據進行回歸分析,剔除對各方向靜剛度影響不顯著的項,可以得到包含Pareto圖中各顯著項的回歸方程,見表3。根據回歸方程,當知道各個結構參數的具體取值時,可以快速估算出各個方向的靜剛度值。

4.2 案例分析

以某進口散裝件為例,其x、y和z向靜態(tài)剛度分別為175、55和130 N/mm。當全因子試驗結果顯示橡膠材料邵氏硬度為50 HA時,根據表2可知,x向靜剛度值范圍為64.1~194.6 N/mm,y向靜剛度值范圍為18.4~53.2 N/mm,z向靜剛度值范圍為31.2~110.9 N/mm,因此須將該件各方向的目標剛度降至該方向的靜剛度值范圍內。按橡膠硬度每降低1 HA,各向靜剛度值降低5%(百分比根據橡膠配方確定)計算,此件硬度需降低5 HA,所得目標值見表4。

5 結 論

(1)選取主簧4個主要結構參數進行仿真分析,其中主簧長度L與各向靜剛度均為負相關,主簧寬度B和主簧厚度H與各向靜剛度均為正相關,主簧角度R與x、y向剛度為正相關,與z向靜剛度為負相關。各因子之間存在一定的交互作用,但影響較弱,可以忽略不計。

(2)根據全因子結果可以得到各向靜剛度的回歸方程,因此當已知主簧的各個參數值時可以估算各向靜剛度值,減少計算時間,提高效率。

(3)在進行同步開發(fā)的過程中,已知各向目標值要求時,可以通過MINITAB優(yōu)化得到各因子相應的參數值,再通過仿真進行驗證,縮短開發(fā)時間。

參考文獻:

[1] 陸曉黎, 胡培龍, 上官文斌. CAE技術在橡膠懸置靜剛度設計中的應用[J]. 橡膠工業(yè), 2011, 58(6): 356-358. DOI: 10.3969/j.issn.1000-890X.2011.06.008.

[2] 王文濤, 胡春平, 肖蘇華, 等. 車用橡膠懸置靜態(tài)剛度預測計算的影響因素研究[J]. 現代制造工程, 2014(8): 45-49. DOI: 10.3969/j.issn.1671-3133.2014.08.010.

[3] SHANGGUAN W B, LU Z H, SHI J J. Finite element analysis of static elastic characteristics of rubber isolators in automotive dynamic systems[J] . SAE Transactions, 2003, 112: 185-193. DOI: 10.4271/2003-01-0240.

[4] KIM J J, KIM H Y. Shape design of an engine mount by a method of parameter optimization[J]. Computer & Structure, 1997, 65(5): 725-731. DOI: 10.1016/S0045-7949(95)00118-2.

[5] 趙立杰, 周正, 曾文豪, 等. 液壓懸置橡膠剛度仿真分析與試驗對比驗證[J]. 機械工程師, 2016(5): 61-63. DOI: 10.3969/j.issn.1002-2333.2016.05.024.

[6] 吳志平. 汽車動力總成典型橡膠懸置結構三向靜剛度比的計算與實測[D]. 廣州: 華南理工大學, 2013.

[7] 王文濤, 上官文斌, 段小成. 超彈性本構模型對橡膠隔振器靜態(tài)特性預測影響的研究[J]. 汽車工程, 2012, 34(6): 543-550. DOI: 10.3969/j.issn.1000-680X.2012.06.014.

[8] 王浩. 橡膠材料的超彈性本構模型在輪胎分析中的應用[D]. 哈爾濱: 哈爾濱工業(yè)大學, 2008: 4-5.

[9] 徐明. 橡膠類超彈性材料非線性本構關系研究及有限元分析[D]. 北京: 北京航空航天大學, 2002: 78-79.

[10] 姚艷春, 王國權, 趙誠, 等. 基于MOONEY-RIVLIN本構模型橡膠防塵罩的非線性有限元分析[J]. 北京信息科技大學學報(自然科學版), 2013, 28(4): 52-56.

(編輯 武曉英)

猜你喜歡
橡膠優(yōu)化
優(yōu)化問題設計
為什么橡膠有彈性?
營商環(huán)境五方面持續(xù)優(yōu)化
優(yōu)化英語課堂教學策略的探索
促進學生認識發(fā)展 優(yōu)化初中化學復習
自制橡膠骨
印度橡膠進口量減少,國內橡膠供需不平衡
CAE軟件操作小百科(30)
印度橡膠產業(yè)要求撤銷進口橡膠稅
印度橡膠種植者聯(lián)盟要求對橡膠進口實施禁令
多伦县| 神农架林区| 建宁县| 滁州市| 义乌市| 平定县| 清水县| 乌什县| 津市市| 台北县| 大足县| 诏安县| 桑日县| 东城区| 绥滨县| 和平区| 虎林市| 方正县| 谷城县| 宜春市| 明光市| 桐柏县| 朝阳市| 顺平县| 长丰县| 海伦市| 扎赉特旗| 磴口县| 盐池县| 连平县| 营口市| 蓝田县| 丹江口市| 托克托县| 郁南县| 关岭| 遂平县| 罗甸县| 灌阳县| 玛多县| 宁南县|