劉嬌陽 王沂峰
[摘要] Claudin-8是緊密連接蛋白家族claudins的重要成員之一,在構(gòu)建細(xì)胞緊密連接(tight junctions,TJs)、維持細(xì)胞屏障功能和參與細(xì)胞間分子傳遞等方面發(fā)揮作用。Claudin-8的表達(dá)失調(diào)導(dǎo)致緊密連接破壞,屏障功能和分子傳遞功能受損,在多種組織和細(xì)胞中有致病作用,尤其和生殖系統(tǒng)和消化系統(tǒng)疾病、上皮源性惡性腫瘤等疾病的關(guān)系顯著。本文就Claudin-8的研究進(jìn)行綜述。
[關(guān)鍵詞] 緊密連接;Claudin-8;泌尿生殖系統(tǒng)疾病;消化系統(tǒng)疾?。簧掀ぴ葱詯盒阅[瘤
[中圖分類號] R725.2 [文獻(xiàn)標(biāo)識碼] A [文章編號] 1673-9701(2018)18-0164-05
[Abstract] Claudin-8 is one of the important members in the family of tight junction protein claudins. It plays a role in constructing tight junctions(TJs), maintaining cell barrier function, and participating in intercellular molecule transfer. Deregulation of Claudin-8 leads to disruption of tight junctions and impaired barrier function and molecular transfer function, and it has pathogenic effects in many tissues and cells. In particular, it has a significant relationship with reproductive and digestive diseases and epithelial-derived malignancies. This article reviews the researches on claudin-8.
[Key words] Tight junction; Claudin-8; Urinary and reproductive diseases; Digestive diseases; Epithelial-derived malignancies
疾病的發(fā)生與發(fā)展受多方面因素共同作用,其中細(xì)胞間連接結(jié)構(gòu)的變化使得細(xì)胞極性失調(diào),黏附能力喪失,出現(xiàn)分子調(diào)控失序、腫瘤的侵襲與轉(zhuǎn)移等生物學(xué)特性改變。細(xì)胞連接主要分為封閉連接、錨定連接和通訊連接,緊密連接屬于封閉連接的一種重要表型,參與細(xì)胞間連接結(jié)構(gòu)的構(gòu)建以及細(xì)胞旁微環(huán)境的調(diào)節(jié)。緊密連接蛋白家族屬于膜蛋白家族的一種,是組成細(xì)胞間緊密連接的重要組成成分之一,目前已被證實(shí)的有閉合蛋白(occudins)、緊密連接蛋白(claudins)、單一跨膜蛋白和胞膜錨定蛋白等。Claudin-8是claudins蛋白家族之一,在維持細(xì)胞屏障功能和參與細(xì)胞間分子傳遞等方面發(fā)揮作用。Claudin-8的表達(dá)失調(diào)導(dǎo)致緊密連接破壞,屏障功能和分子傳遞功能受損,與多種疾病的發(fā)生發(fā)展密切相關(guān)。
1 緊密連接蛋白Claudin-8概況
1.1 Claudin-8的結(jié)構(gòu)
Claudins家族來源于同源基因,迄今已發(fā)現(xiàn)了27個(gè)claudins蛋白家族成員[1]。Claudins相對分子質(zhì)量在20~34 kDa之間,除了Claudin-13僅在嚙齒類動(dòng)物中表達(dá)外,均在人源組織或細(xì)胞中發(fā)現(xiàn)表達(dá)[2]。Claudin-8的分子量為22 kDa,結(jié)構(gòu)與其他claudins蛋白相似,有4個(gè)跨膜結(jié)構(gòu)域、2個(gè)細(xì)胞外環(huán)和2條胞內(nèi)尾區(qū)[3],尾區(qū)可與其他緊密連接蛋白結(jié)合或參與信號傳遞,例如在腎細(xì)胞中,C端尾區(qū)可與多PDZ結(jié)構(gòu)域蛋白1(multi-PDZ domain protein 1,MUPP1)的PDZ9結(jié)構(gòu)域結(jié)合,Claudin-8和MUPP1在上皮細(xì)胞的緊密連接中相互作用,共同構(gòu)成細(xì)胞間屏障[4]。
Claudin-8的編碼基因CLDN8位于21q22區(qū),有1個(gè)外顯子,至少有6個(gè)啟動(dòng)子位點(diǎn),這意味著CLDN8可進(jìn)行不同方式的轉(zhuǎn)錄,產(chǎn)生具有生物學(xué)功能差異的轉(zhuǎn)錄產(chǎn)物。對Claudin-8基因5端調(diào)控區(qū)序列的生物信息學(xué)分析結(jié)果表明,有HSF、AML-1a、Lyf-1、SRY、GCN4、CdxA等37個(gè)轉(zhuǎn)錄因子對Claudin-8基因的表達(dá)機(jī)制有潛在的調(diào)節(jié)作用,不同轉(zhuǎn)錄因子的組合可決定基因表達(dá)的特異性[5]。
1.2 Claudin-8的功能與調(diào)節(jié)
Claudins家族最主要的意義,在于參與構(gòu)建細(xì)胞的緊密連接框架,形成基本的細(xì)胞間屏障功能。Claudin-8除了可以單獨(dú)參與細(xì)胞連接的構(gòu)建外,還可以促使Claudin-4移動(dòng)至細(xì)胞膜區(qū)域,共同參與構(gòu)建緊密連接。敲除Claudin-8的表達(dá)后,Claudin-4在內(nèi)質(zhì)網(wǎng)和高爾基體結(jié)構(gòu)中停滯,無法參與胞膜的屏障構(gòu)成[6],與家族其他蛋白不同,Claudin-8具有單獨(dú)參與構(gòu)建連接和輔助其他連接蛋白的雙重功能。與此同時(shí),Claudins在細(xì)胞膜層面形成選擇滲透性的孔隙,這些孔隙具有分子大小或者電荷的特異選擇性,協(xié)調(diào)細(xì)胞間小分子傳遞,同時(shí)保持上皮細(xì)胞對大分子的屏障作用,有效維持細(xì)胞旁路運(yùn)輸通道的正常運(yùn)轉(zhuǎn)。Amasheh S等[7]發(fā)現(xiàn),Claudin-8在遠(yuǎn)端結(jié)腸上皮細(xì)胞中高表達(dá),通過影響ENaC通道增加Na+的吸收,參與維持Na+離子梯度,形成的屏障可同時(shí)防止Na+反向滲漏。Claudin-8形成的細(xì)胞旁通路通過調(diào)節(jié)電荷極性,影響離子的通過,在物質(zhì)代謝和酸堿平衡中起到重要作用。
需要注意的是,claudins蛋白的屏障隔離作用以及分子傳遞作用并存,導(dǎo)致其在多種上皮組織的表達(dá)水平出現(xiàn)截然相反的結(jié)果,這與claudins的排列特點(diǎn)有關(guān)。目前有假說[8]認(rèn)為,每個(gè)緊密連接結(jié)構(gòu)的分子鏈?zhǔn)怯啥喾N不同的連接蛋白,如閉合蛋白、緊密連接蛋白或其他跨膜蛋白連續(xù)交叉排列構(gòu)成,claudins在不同的分子鏈中有著不同的作用,可以發(fā)揮屏障功能或者選擇性運(yùn)輸功能,由此可以解釋Claudin-8在不同細(xì)胞中屏障或傳遞功能差異較大的情況。
2 Claudin-8的主要分布
Claudins家族在目前已知的上皮來源組織中均有表達(dá)。Gunzel D等[9]根據(jù)物種來源和序列相似性將claudins蛋白家族分為4個(gè)集群以及8個(gè)亞集群,其中集群Ⅰ類包括Claudin-3、-4、-5、-6、-8、-9和-17,Claudin-8、-17同屬于Ⅰ類下的B亞群。來源和基因序列的相似程度決定了Claudin-8和同集群中的其他蛋白可能存在高度相似的表達(dá)和分布,這在探索Claudin-8蛋白的分布和功能的過程中,具有重要的參考價(jià)值。在哺乳動(dòng)物的腎單位中,Claudin-8主要分布于髓袢降支細(xì)段、遠(yuǎn)端小管、連接小管和集合管組織[10],可充分發(fā)揮離子選擇性傳遞功能,參與物質(zhì)代謝和重吸收。在嚙齒類動(dòng)物的消化道中,Claudin-8的表達(dá)水平按照小腸到結(jié)腸的消化道空間順序依次增加[11],各段消化道區(qū)域的物質(zhì)傳遞功能不同,而Claudin-8隨之呈現(xiàn)出梯度分布,Claudin-8很可能在各區(qū)段的分子傳遞中發(fā)揮不同的作用。此外,Claudin-8在前列腺、膀胱、乳腺、皮膚、骨骼肌、味蕾和耳蝸等組織中也有表達(dá)[12,13]。由此可見,Claudin-8廣泛分布于上皮源性細(xì)胞,在營養(yǎng)分子或代謝產(chǎn)物交換頻繁的組織中表達(dá)更為顯著,例如腎小球和腸道上皮等區(qū)域。這種分布的特異性表明Claudin-8作為膜蛋白的一員,不僅構(gòu)成細(xì)胞連接,維護(hù)完整的上皮細(xì)胞結(jié)構(gòu),同時(shí)參與正常物質(zhì)運(yùn)輸和傳遞,在維持生理性活動(dòng)的動(dòng)態(tài)平衡中有著不可或缺的作用。
3 Claudin-8與疾病的關(guān)系
3.1 Claudin-8與泌尿生殖系統(tǒng)疾病
腎通過尿液的生成和排泄,參與維持機(jī)體內(nèi)環(huán)境的穩(wěn)定。Claudin-8表達(dá)異常,使得腎小管上皮細(xì)胞電解質(zhì)傳遞失調(diào),重吸收及分泌功能障礙。Hou J等[6]研究表明,抑制Claudin-8的表達(dá)可降低腎集合管細(xì)胞旁通路對Cl-的滲透性,對Na+的滲透性無影響。戈登綜合征(Gordons syndrome)是常染色體顯性遺傳病,臨床表現(xiàn)為高血壓、高血氯、高血鉀等癥狀,目前尚無有效的預(yù)防方法。KLHL3是一種E3連接酶泛素離子通道蛋白,是戈登綜合征的致病蛋白之一,研究[14]發(fā)現(xiàn)Claudin-8可被KLHL3直接結(jié)合,導(dǎo)致Claudin-8泛素化和降解,Cl-通透性改變,進(jìn)一步引起血壓升高和電解質(zhì)紊亂。由此推斷,人為調(diào)整Claudin-8的表達(dá)有望改善細(xì)胞連接的物質(zhì)傳遞功能,治療遺傳性腎臟代謝障礙。糖尿病腎病的預(yù)后不佳,腎細(xì)胞的損傷與Claudin-8表達(dá)有關(guān)。Eduardo Molina-Jijon等[15]發(fā)現(xiàn),在Ⅰ型糖尿病模型小鼠的腎單位中,醛固酮通過SGK1和WNK4通路促進(jìn)Claudin-8的轉(zhuǎn)錄與表達(dá),異??s緊緊密連接結(jié)構(gòu),降低細(xì)胞旁通路離子滲透性,導(dǎo)致糖尿病腎損害。Guan M等[16]發(fā)現(xiàn)在非洲裔美國人群中,Claudin-8的表達(dá)與2型糖尿病導(dǎo)致的終末期腎衰竭有關(guān)。靶向干擾Claudin-8的表達(dá),有望緩解糖尿病腎病的進(jìn)展。腎細(xì)胞癌簡稱腎癌,是泌尿系統(tǒng)最常見的腫瘤之一,晚期轉(zhuǎn)移患者生存率低。尋找分子及細(xì)胞標(biāo)志物進(jìn)行精確的早期監(jiān)測診斷和預(yù)后評估,具有重要意義。有研究[17]表明,編碼基因CLDN8在腎癌組織中表達(dá)下調(diào)。然而,Zhu J等[18]發(fā)現(xiàn)和局限性腎癌(localized renal cell carcinoma,lRCC)相比,轉(zhuǎn)移性腎癌(metastatic renal cell carcinoma,mRCC)中Claudin-8的表達(dá)水平反而明顯升高。由此推斷,claudin-8在腎癌進(jìn)展的不同階段可能發(fā)揮截然不同的作用,有待進(jìn)一步探索,為腎癌分子靶向治療提供依據(jù)。
前列腺癌近年來在國內(nèi)的發(fā)病率不斷增加,大多數(shù)為雄激素依賴型。Ashikari D等[19]發(fā)現(xiàn)編碼基因CLDN8是雄激素的下游作用位點(diǎn)。雄激素對CLDN8的影響呈時(shí)間依懶性,可激活CLDN8啟動(dòng)子區(qū)域的雄激素受體結(jié)合位點(diǎn),參與CLDN8的轉(zhuǎn)錄翻譯,促進(jìn)雄激素依賴性前列腺癌細(xì)胞的增殖和遷移。雄激素通過調(diào)節(jié)Claudin-8的表達(dá)影響前列腺癌的進(jìn)展,靶向干擾CLDN8的轉(zhuǎn)錄翻譯,有望阻斷雄激素的作用鏈,抑制腫瘤細(xì)胞的發(fā)展,具有潛在的研究價(jià)值。
3.2 Claudin-8與消化系統(tǒng)疾病
感染性腹瀉由腸道中的病原體菌群引起,新病原體的出現(xiàn)以及耐藥性的增加增加治療和預(yù)后評估的難度。腸道細(xì)胞中四環(huán)素的殘留可下調(diào)Claudin-8的表達(dá),破壞緊密連接屏障,出現(xiàn)菌群失調(diào)[20]。布氏弓形桿菌和小腸結(jié)腸炎耶爾森菌的感染可導(dǎo)致腸上皮細(xì)胞Claudin-8表達(dá)下調(diào)[21,22],由Claudin-8介導(dǎo)的跨膜運(yùn)輸遭到破壞,電解質(zhì)轉(zhuǎn)運(yùn)失衡,引起腹瀉。Hering NA等[23]研究表明乳鐵蛋白可通過抑制c-Jun激酶通路,上調(diào)耶爾森菌感染模型細(xì)胞中Claudin-8的表達(dá),恢復(fù)緊密連接結(jié)構(gòu),由此可見,Claudin-8可作為檢測感染性腹瀉的預(yù)后指標(biāo)。
炎癥性腸?。╥nflammatory bowel disease,IBD)包括潰瘍性結(jié)腸炎(ulcerative colitis,UC)和克羅恩?。–rohn's disease,CD),是一組慢性非特異性的腸道炎性疾病,在我國的發(fā)病率逐年上升。目前其病因尚未明確,治療采用氨基水楊酸、糖皮質(zhì)激素、免疫抑制劑等綜合治療,尚未找到有效的精準(zhǔn)治療手段。Zeissig S等[24]發(fā)現(xiàn)在克羅恩病患者病理組織中,Claudin-8的表達(dá)降低同時(shí)重新分布,結(jié)腸上皮細(xì)胞的胞膜陽離子滲透性改變。Clark PM等[25]發(fā)現(xiàn)在克羅恩病的病理組織中,編碼基因CLDN8表達(dá)下調(diào),而潰瘍性結(jié)腸炎病理組織中無明顯變化。Wang H等[26]發(fā)現(xiàn)miR-223可直接作用于Claudin-8,抑制Claudin-8活性,進(jìn)而激活I(lǐng)L-23信號通路,促使炎癥性腸病的產(chǎn)生。緊密連接結(jié)構(gòu)的變化使得屏障功能被破壞,上皮細(xì)胞過度增生,出現(xiàn)腸道炎性病變。針對性調(diào)整miR-223和Claudin-8的表達(dá),有望為炎癥性腸病患者提供新的治療手段。
產(chǎn)氣莢膜梭菌腸毒素(Clostridium perfringens enterotoxin,CPE)和多種胃腸道疾病相關(guān),包括壞死性腸炎、胃腸道惡性腫瘤等。CPE的C端結(jié)構(gòu)域可與claudins蛋白的第二細(xì)胞外環(huán)結(jié)合[27],改變CPE的毒素產(chǎn)生,作為受體誘導(dǎo)療法的新成員,在腫瘤治療和藥物傳遞中發(fā)揮作用。Archana Shrestha等[28]研究表明,Claudin-8可傳遞CPE毒性,維持致病濃度,Claudin-8編碼基因中S151的定點(diǎn)突變可進(jìn)一步增強(qiáng)Claudin-8與CPE的結(jié)合作用,促進(jìn)CPE相關(guān)胃腸道疾病的進(jìn)展。值得注意的是,在使用CPE治療時(shí),可能對表達(dá)Claudin-8的正常組織也產(chǎn)生毒副作用,在未來臨床應(yīng)用中需要引起重視。
微陣列預(yù)測分析顯示Claudin-8的編碼基因CLDN8是進(jìn)行結(jié)腸癌預(yù)后風(fēng)險(xiǎn)評估的有效指標(biāo)[29],CLDN8在結(jié)腸癌組織中表達(dá)下調(diào)[17]。細(xì)胞DNA復(fù)制時(shí)錯(cuò)配修復(fù)基因失活,導(dǎo)致出現(xiàn)微衛(wèi)星不穩(wěn)定性(microsatellite instability,MSI)現(xiàn)象,與結(jié)腸癌的進(jìn)展有關(guān),研究[30]顯示與MSI復(fù)發(fā)組相比,CLDN8在Ⅲ期結(jié)腸癌患者的MSI未復(fù)發(fā)組中高表達(dá),CLDN8有望作為結(jié)腸癌預(yù)后檢測的新標(biāo)志物。Claudin-8在病變消化道組織中異常表達(dá)和分布,有望成為靶向治療消化系統(tǒng)疾病的新方向。
3.3 Claudin-8與其他系統(tǒng)疾病
近90%的惡性腫瘤來源于上皮細(xì)胞,上皮細(xì)胞來源腫瘤的特點(diǎn)是細(xì)胞極化的消失,細(xì)胞間黏附能力的改變是腫瘤侵襲轉(zhuǎn)移的關(guān)鍵因素,與claudins蛋白的作用直接相關(guān)。Ki67是一種反映細(xì)胞增殖活性的核抗原,Zhang X等[31]證實(shí)與正常鼻腔黏膜相比,Claudin-8在鼻咽癌細(xì)胞中表達(dá)量升高,且與淋巴轉(zhuǎn)移正相關(guān),與年齡、Ki67指數(shù)、病理分級及臨床分期之間無明顯關(guān)聯(lián)性,Claudin-8可能促進(jìn)鼻咽癌的發(fā)生與發(fā)展。Zhao XY等[32]發(fā)現(xiàn)與正常口腔黏膜細(xì)胞相比,Claudin-8在口腔鱗狀細(xì)胞癌(Oral squamous cell carcinoma,OSCC)組織中表達(dá)下調(diào),但Claudin-8表達(dá)量相對較高的的OSCC患者總體生存率降低,由此可見,Claudin-8在OSCC進(jìn)展的不同階段可能發(fā)揮截然不同的作用,有待進(jìn)一步探索。Lu SL等[33]發(fā)現(xiàn)Claudin-8在乳腺高級別浸潤性導(dǎo)管癌組織中出現(xiàn)高表達(dá),且以腔上皮型亞型為主,未來可根據(jù)Claudin-8分子特性和患者臨床分型制定個(gè)性化治療方案,更高地提高治療的安全性和有效性。
Claudin-8在診斷和疾病監(jiān)測方面有廣闊的應(yīng)用前景。特應(yīng)性皮炎是一種慢性易復(fù)發(fā)的反應(yīng)性皮膚病,尚未找到靈敏度高的預(yù)后評估手段。Claudin-8在特應(yīng)性皮炎中表達(dá)降低[34],Rozenblit M等[35]在環(huán)孢素治療特應(yīng)性皮炎的療效評估中發(fā)現(xiàn),治療至第12周時(shí),上皮細(xì)胞中Claudin-8表達(dá)水平較第2周明顯增加,驗(yàn)證了維持治療時(shí)間的重要性,Claudin-8在監(jiān)測特應(yīng)性皮炎的預(yù)后水平中靈敏度較好。Liu T等[36]發(fā)現(xiàn)在嗎啡尿檢陽性的美沙酮治療患者中,CLDN8的1號外顯子rs686364可編碼Claudin-8的第N151號氨基酸,使得γ干擾素誘導(dǎo)蛋白-10(interferon gamma-inducible protein 10,IP-10)表達(dá)增加,患者HIV/HCV感染的可能性增加。未來可將Claudin-8作為預(yù)測美沙酮治療患者感染幾率的指標(biāo)。
Claudin-8在分子靶向治療領(lǐng)域也具有極大的潛在應(yīng)用價(jià)值。骨肉瘤是人長骨干骺端最常見的原發(fā)性肉瘤。Xu JQ等[37]發(fā)現(xiàn)干擾Claudin-8的表達(dá)可阻斷骨肉瘤U2OS細(xì)胞周期從G1到S期的過渡,誘導(dǎo)癌細(xì)胞凋亡,為尋找骨肉瘤新的治療手段提供方向。Kielgast F等[38]研究表明在呼吸系統(tǒng)中,Claudin-8被證實(shí)在傳導(dǎo)性氣道的重吸收上皮中表達(dá),肺泡上皮中無表達(dá);敲除Claudin-8可導(dǎo)致閉合蛋白o(hù)ccudin無法參與構(gòu)建緊密連接結(jié)構(gòu)。糖皮質(zhì)激素可以通過糖皮質(zhì)激素受體上調(diào)Claudin-8表達(dá)水平,使得細(xì)胞旁通路對Cl-的滲透性增加,在靶向治療呼吸疾病導(dǎo)致的肺上皮細(xì)胞屏障功能受損有指導(dǎo)意義。
Baumholtz AI等[39]研究表明,敲除Claudin-8的編碼基因CLDN-8,可導(dǎo)致抗葉酸的神經(jīng)管開放性缺陷。Claudin-8通過Rho/ROCK通路干擾上游平面細(xì)胞極性,調(diào)節(jié)細(xì)胞的空間分布和肌動(dòng)蛋白收縮,從而在閉合過程中,促進(jìn)細(xì)胞匯聚延伸,促使神經(jīng)管形態(tài)形成。Claudin-8在胚胎神經(jīng)管裂的預(yù)防性治療領(lǐng)域有廣闊的應(yīng)用前景。
4 展望
目前關(guān)于Claudin-8的研究報(bào)道較少,但已發(fā)現(xiàn)不僅在維持正常生理功能中發(fā)揮作用,且在多種疾病中表達(dá)異常,尤其與生殖系統(tǒng)和消化系統(tǒng)疾病、上皮源性惡性腫瘤的發(fā)生發(fā)展密切相關(guān)。對于Claudin-8的表達(dá)情況和其調(diào)節(jié)因子的作用機(jī)制的深入探索,尋找或設(shè)計(jì)與其特異性結(jié)合的靶向因子,干擾細(xì)胞表型從而達(dá)到治療目的,有待進(jìn)一步研究和探討。
[參考文獻(xiàn)]
[1] Krug SM,Schulzke JD,F(xiàn)romm M.Tight junction,selective permeability, and related diseases[J]. Semin Cell Dev Biol,2014,36:166-176.
[2] Singh AB,Dhawan P. Claudins and cancer: Fall of the soldiers entrusted to protect the gate and keep the barrier intact[J]. Semin Cell Dev Biol,2015,42:58-65.
[3] Osanai M,Takasawa A,Murata M,et al. Claudins in cancer:bench to bedside[J]. Pflugers Arch,2017,469(1):55-67.
[4] Jeansonne B,Lu Q,Goodenough DA,et al. Claudin-8 interacts with multi-PDZ domain protein 1 (MUPP1) and reduces paracellular conductance in epithelial cells[J].Cell Mol Biol(Noisy-le-grand),2003,49(1):13-21.
[5] 周雯,蔡望偉,周代鋒,等.緊密連接蛋白claudin-8基因5'調(diào)控區(qū)序列的生物信息學(xué)分析[J].濱州醫(yī)學(xué)院學(xué)報(bào),2012,(6):415-418.
[6] Hou J,Renigunta A,Yang J,et al. Claudin-4 forms paracellular chloride channel in the kidney and requires claudin-8 for tight junction localization[J]. Proceedings of the National Academy of Sciences,2010,107(42):18010-18015.
[7] Amasheh S,Milatz S,Krug SM,et al. Na+ absorption defends from paracellular back-leakage by claudin-8 upregulation[J]. Biochem Biophys Res Commun,2009,378(1):45-50.
[8] Tsukita S,F(xiàn)uruse M.Pores in the wall[J].The Journal of Cell Biology,2000,149(1):13.
[9] Gunzel D,Haisch L,Pfaffenbach S,et al. Claudin function in the thick ascending limb of Henle's loop[J]. Ann NY Acad Sci,2009,1165:152-162.
[10] Li WY,Huey CL,Yu A SL. Expression of claudin-7 and-8 along the mouse nephron[J]. American Journal of Physiology-Renal Physiology,2004,286(6):F1063-F1071.
[11] Fujita H,Chiba H,Yokozaki H,et al. Differential expression and subcellular localization of Claudin-7,-8,-12,-13,and -15 along the mouse intestine[J]. Journal of Histochemistry & Cytochemistry,2006,54(8):933-944.
[12] Markov AG,Kruglova NM,F(xiàn)omina YA,et al. Altered expression of tight junction proteins in mammary epithelium after discontinued suckling in mice[J]. Pflugers Arch,2012,463(2):391-398.
[13] Barmeyer C,F(xiàn)romm M,Schulzke JD.Active and passive involvement of claudins in the pathophysiology of intestinal inflammatory diseases[J].Pflugers Arch, 2017,469(1):15-26.
[14] Gong Y,Wang J,Yang J,et al. KLHL3 regulates paracellular chloride transport in the kidney by ubiquitination of claudin-8[J]. Proc Natl Acad Sci USA,2015,112(14):4340-4345.
[15] Molina-Jijon E,Rodriguez-Munoz R,Gonzalez-Ramirez R,et al.Aldosterone signaling regulates the over-expression of claudin-4 and -8 at the distal nephron from type 1 diabetic rats[J]. PLoS One,2017,12(5):e177362.
[16] Guan M,Ma J,Keaton JM,et al. Association of kidney structure-related gene variants with type 2 diabetes-attributed end-stage kidney disease in African Americans[J].Hum Genet,2016,135(11):1251-1262.
[17] Ouban A,Ahmed AA. Claudins in human cancer:A review[J]. Histol Histopathol, 2010,25(1):83-90.
[18] Zhu J,Ma X,Zhang Y,et al. Establishment of a miRNA-mRNA regulatory network in metastatic renal cell carcinoma and screening of potential therapeutic targets[J].Tumor Biology,2016,37(12):15649-15663.
[19] Ashikari D,Takayama KI,Obinata D,et al. CLDN8,an androgen-regulated gene, promotes prostate cancer cell proliferation and migration[J]. Cancer Sci,2017,108(7):1386-1393.
[20] Gokulan K,Cerniglia CE,Thomas C,et al.Effects of residual levels of tetracycline on the barrier functions of human intestinal epithelial cells[J]. Food Chem Toxicol,2017,109(Pt 1):253-263.
[21] Bucker R,Troeger H,Kleer J,et al. Arcobacter butzleri induces barrier dysfunction in intestinal HT-29/B6 cells[J].J Infect Dis,2009,200(5):756-764.
[22] Hering NA,Richter JF,Krug SM,et al. Yersinia enterocolitica induces epithelial barrier dysfunction through regional tight junction changes in colonic HT-29/B6 cell monolayers[J]. Lab Invest, 2011,91(2):310-324.
[23] Hering NA,Luettig J,Krug SM,et al. Lactoferrin protects against intestinal inflammation and bacteria-induced barrier dysfunction in vitro[J]. Ann N Y Acad Sci,2017, 1405(1):177-188.
[24] Zeissig S,Burgel N,Gunzel D,et al.Changes in expression and distribution of claudin 2,5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease[J]. Gut,2007,56(1):61-72.
[25] Clark PM,Dawany N,Dampier W,et al.Bioinformatics analysis reveals transcriptome and microRNA signatures and drug repositioning targets for IBD and other autoimmune diseases[J]. Inflamm Bowel Dis,2012,18(12):2315-2333.
[26] Wang HL,Chao K,Ng SC,et al. Pro-inflammatory miR-223 mediates the cross-talk between the IL23 pathway and the intestinal barrier in inflammatory bowel disease[J].Genome Biol,2016,17:58.
[27] Shrestha A,Uzal FA,McClane BA.The interaction of Clostridium perfringens enterotoxin with receptor claudins[J].Anaerobe,2016,41:18-26.
[28] Shrestha A,McClane BA.Human claudin-8 and -14 are receptors capable of conveying the cytotoxic effects of Clostridium perfringens enterotoxin[J]. MBio,2013,4(1):594-612.
[29] Shangkuan W,Lin H,Chang Y,et al. Risk analysis of colorectal cancer incidence by gene expression analysis[J].PeerJ,2017,5:e3003.
[30] 成川華,李五生. Ⅲ期結(jié)腸癌患者復(fù)發(fā)相關(guān)基因差異表達(dá)的研究[J]. 臨床外科雜志, 2015,(8):619-621.
[31] Zhang X,Wang H,Li Q,et al. Differences in the expression profiles of claudin proteins in human nasopharyngeal carcinoma compared with non-neoplastic mucosa[J].Diagnostic Pathology,2018,13(1):1-9.
[32] Zhao XY,Sun S,Zeng X,et al. Expression profiles analysis identifies a novel three-mRNA signature to predict overall survival in oral squamous cell carcinoma[J].Am J Cancer Res,2018,8(3):450-461.
[33] Lu SL,Singh K,Mangray S, et al. Claudin expression in high-grade invasive ductal carcinoma of the breast:Correlation with the molecular subtype[J]. Mod Pathol, 2013, 26(4):485-495.
[34] Suarez-Farinas M,Ungar B,Correa DRJ,et al. RNA sequencing atopic dermatitis transcriptome profiling provides insights into novel disease mechanisms with potential therapeutic implications[J]. J Allergy Clin Immunol, 2015,135(5):1218-1227.
[35] Rozenblit M,Suarez-Farinas M,Shemer A,et al. Residual genomic profile after cyclosporine treatment may offer insights into atopic dermatitis reoccurrence[J]. J Allergy Clin Immunol,2014,134(4):955-957.
[36] Liu TH,Chung RH,Wang SC,et al. Missense mutation at CLDN8 associated with a high plasma interferon gamma-inducible protein 10 level in methadone-maintained patients with urine test positive for morphine[J]. PLoS One,2017,12(11):e187639.
[37] Xu JQ,Yang Y,Hao P,et al. Claudin 8 Contributes to Malignant Proliferation in Human Osteosarcoma U2OS Cells[J]. Cancer Biother Radiopharm,2015,30(9):400-404.
[38] Kielgast F,Schmidt H,Braubach P,et al. Glucocorticoids regulate tight junction permeability of lung epithelia by modulating claudin 8[J].Am J Respir Cell Mol Biol,2016, 54(5):707-717.
[39] Baumholtz AI,Simard A,Nikolopoulou E,et al. Claudins are essential for cell shape changes and convergent extension movements during neural tube closure[J]. Dev Biol,2017,428(1):25-38.
(收稿日期:2018-03-26)