張維 喬錄新 丁渭 陳德喜 張玉林
[摘要] 目的 探討長期使用核苷類似物(NAs)是否導(dǎo)致小鼠肝臟線粒體DNA(mtDNA)ND1和ND4區(qū)損傷。 方法 7周齡雌性Balb/c小鼠25只,采用簡單隨機(jī)分組法分為5組,對照組和4種核苷類似物組,每組各5只。實驗組司他夫定(D4T)50 mg/kg,齊多夫定(AZT)100 mg/kg,拉米夫定(3TC)50 mg/kg和去羥肌苷(DDI)50 mg/kg,對照組為雙蒸水,分別腹腔內(nèi)注射,每周5次,連續(xù)3個月。留取各組肝組織,應(yīng)用激光捕獲顯微技術(shù)獲取肝細(xì)胞,對mtDNA ND1和ND4區(qū)克隆和測序。 結(jié)果 其余各組肝細(xì)胞的mtDNA ND4序列距離與參考序列的平均距離與對照組比較,差異均有高度統(tǒng)計學(xué)意義(P < 0.01);AZT組肝細(xì)胞的mtDNA ND4平均dN與對照組比較,差異有統(tǒng)計學(xué)意義(P < 0.05);肝細(xì)胞mtDNA ND1的序列距離與參考序列的平均距離,AZT組和3TC組序列距離與對照組比較,差異均有統(tǒng)計學(xué)意義(P < 0.01);DDI組肝組織mtDNA ND1的平均dS與對照組比較,差異有統(tǒng)計學(xué)意義(P < 0.05);AZT組和3TC組肝細(xì)胞mtDNA ND1的平均dS與對照組比較,差異均有統(tǒng)計學(xué)意義(P < 0.05)。 結(jié)論 長期暴露于NAs可導(dǎo)致小鼠肝細(xì)胞mtDNA ND1和ND4區(qū)病變。
[關(guān)鍵詞] mtDNA ND1;mtDNA ND4;激光捕獲顯微切割;線粒體毒性;核苷類似物
[中圖分類號] R978.7;R512.91 [文獻(xiàn)標(biāo)識碼] A [文章編號] 1673-7210(2018)07(c)-0008-06
Mitochondrial DNA ND1 and ND4 mutation in liver and captured hepatocytes of mice after long-term nucleoside analogues exposure
ZHANG Wei1* QIAO Luxin1,2* DING Wei1 CHEN Dexi1,2 ZHANG Yulin1▲
1.Beijing You′an Hospital, Capital Medical University, Beijing 100069, China; 2.Beijing Institute of Hepatology, Beijing 100069, China
[Abstract] Objective To investigate whether long-term use of nucleoside analogues (NAs) can lead to damage of DNA (mtDNA) ND1 and ND4 regions in liver mitochondria of mice. Methods According to the simple random method, twenty-five 7-weeks-old female Balb/c mice were divided into 5 groups, with 5 cases in each group. The control group received double-distilled water by intraperitoneal injection 5 days per week for 3 months. The each test group was respectively given D4T 50 mg/kg, AZT 100 mg/kg,3TC 50 mg/kg,or DDI 50 mg/kg by intraperitoneal injection per day,5 days per week for 3 months. Single liver cell was captured from mouse liver tissues by laser capture microdissection. The products of mtDNA ND1 and ND4 region PCR amplicons were cloned and sequenced in mice liver cells. Results The mean distance to the reference sequence of mtDNA ND4 in the captured hepatocytes of AZT, D4T and 3TC groups were longer than that in the control group, the differences were statistically significant (P < 0.01). The mean mtDNA ND4 dN of the captured hepatocytes in the AZT group was higher than that in the control group, the difference was statistically significant (P < 0.05). The mean distance to the reference sequence of mtDNA ND1 in the captured hepatocytes of AZT and 3TC groups were longer than that in the control group, the differences were statistically significant(P < 0.01). The mean mtDNA ND1 dS of the liver tissue in the DDI group was higher than that in the control group, the difference was statistically significant (P < 0.05). The mean mtDNA ND1 dS of AZT and 3TC groups were higher than that in the control group, the differences were statistically significant(P < 0.05). Conclusion Long-term exposure to nucleoside analogue can result in mtDNA ND1 and ND4 regions lesion in mouse hepatocytes.
[Key words] mtDNA ND1; mtDNA ND4; Laser capture microdissection; Mitochondrial toxicity; Nucleoside analogue
核苷類似物(NAs)通過宿主細(xì)胞酶磷酸化為三磷酸形式,插入病毒DNA鏈,作為鏈終止劑和/或抑制人類免疫缺陷病毒(HIV)/乙型肝炎病毒(HBV)逆轉(zhuǎn)錄,用于抗HIV和HBV治療[1-2]。NAs也能抑制人細(xì)胞DNA聚合酶?捃(pol?捃),干擾線粒體DNA的合成和修復(fù),導(dǎo)致線粒體功能障礙[3],長期應(yīng)用導(dǎo)致相關(guān)系統(tǒng)疾病,如乳酸酸中毒、脂肪變性、胰腺炎、神經(jīng)肌肉病變等[4]。但NAs的肝毒性機(jī)制尚不清楚。前期研究表明長期暴露于NAs的小鼠存在肝細(xì)胞mtDNA D-loop區(qū)序列變化[5],但NAs對于mtDNA編碼基因的損傷尚不清楚。本研究擬通過分析NAs對位于mtDNA主環(huán)和小環(huán)上的編碼基因NADH脫氫酶亞單位4(ND4)和亞單位1(ND1)序列的影響,并通過激光捕獲顯微切割技術(shù)更精確研究NAs對組織獲取肝細(xì)胞的mtDNA損傷,探討NAs小鼠肝臟線粒體毒性。
1 材料與方法
1.1 實驗動物與分組
7周齡,體質(zhì)量28~30 g Balb/C雌性小鼠25只,采用簡單隨機(jī)分組法分為司他夫定(D4T)組、齊多夫定(AZT)組、拉米夫定(3TC)組、去羥肌苷(DDI)組和對照組,每組各5只小鼠。D4T、AZT、3TC、DDI均由東北制藥集團(tuán)有限責(zé)任公司惠贈。Balb/C小鼠購自軍事醫(yī)學(xué)科學(xué)院,合格證號:2012-0004。每組小鼠每天分別經(jīng)腹腔注射D4T 50 mg/kg、AZT 100 mg/kg、3TC 50 mg/kg和DDI 50 mg/kg,每周5 d,連續(xù)12周。對照組腹腔內(nèi)注射雙蒸水。5組小鼠給予相同光照、室溫、飼料等飼養(yǎng)條件。嚴(yán)格按照《首都醫(yī)科大學(xué)實驗室實驗動物使用管理規(guī)定》使用實驗動物。
1.2 小鼠肝組織的激光捕獲顯微切割(LCM)
每組小鼠均在12周給藥結(jié)束時,頸椎脫臼處死小鼠,迅速分離小鼠肝組織,于液氮中速凍。實驗時應(yīng)用最佳切片溫度(OCT)復(fù)合物包埋冰凍肝組織,-20℃將組織切為6 μm薄片,置于聚乙烯包被的玻片上。繼而進(jìn)行HE染色。風(fēng)干5 min后,染色的載玻片在2 h內(nèi)按照廠家說明通過P.A.L.M.自動微光束系統(tǒng)(Oberkochen公司,德國)對HE染色的小鼠肝組織切片進(jìn)行激光捕獲顯微切割,獲取組織肝細(xì)胞。
1.3 mtDNA ND1和ND4基因的克隆和測序
通過QIAGEN公司生產(chǎn)的DNA提取試劑盒,按說明書提取小鼠肝組織和肝細(xì)胞基因組DNA。PCR擴(kuò)增肝組織和肝細(xì)胞mtDNA ND1和ND4基因。每個反應(yīng)約10 ng基因組DNA作為模板。ND1引物對F1:5′-GAAGCAACCTTAATCCCAACAC-3′,R1:5′-GA-AGGATGAAGGGGTATGCTAT-3′;ND4引物對F1:5′-GAAGCAACCTTAATCCCAACAC-3′;R1:5′-GAAGGATGAAGGGGTATGCTAT-3′。引物由上海英峻公司合成。PCR反應(yīng)體系:雙蒸水33.5 μL+10×buffer 5 μL+dNTP Mix(2 mmol/L)4 μL+雙向引物各1 μL+TaqDNA聚合酶0.5 μL+DNA模板5 μL。雙蒸水作為陰性對照。PCR反應(yīng)條件:94°C變性3 min,繼而30個循環(huán)擴(kuò)增(94°C變性30 s,56℃退火30 s,72℃延伸1 min),最后72℃ 5 min。PCR產(chǎn)物克隆于pMD-18T載體,具體步驟參照分子生物學(xué)方法進(jìn)行[6]。運用ABI 3730基因分析儀器對每個樣本隨機(jī)選擇的10個克隆測序,通過BioEdit軟件對正反雙向測序核苷酸序列進(jìn)行連接,糾錯分析。
1.4 統(tǒng)計學(xué)方法
運用Mega 5.0軟件,通過Clustal W多序列比對程序?qū)y序序列與參考序列(NC_005089.1,GenBank)進(jìn)行比對。運用Mega 5.0軟件分析實驗序列與參考序列之間的核苷酸距離、同義替換率(dS)和錯義替換率(dN)。采用PASW 18.0統(tǒng)計學(xué)軟件進(jìn)行數(shù)據(jù)分析,計量資料數(shù)據(jù)用均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,組間比較采用Mann–Whitney非參數(shù)檢驗,以P < 0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1 顯微切割捕獲肝細(xì)胞前后圖片對比
應(yīng)用LCM技術(shù)每組每個鼠肝樣本獲取200個肝細(xì)胞,顯微切割前后具有代表性的圖片見圖1。經(jīng)HE染色后,肝細(xì)胞核染清楚,肝細(xì)胞核形態(tài)各異,從大圓形到卵圓形。其他細(xì)胞顯示小和黑染橢圓形和長圓形核。各NAs組肝小葉存在輕中度的脂肪變性。
2.2 NAs組mtDNA ND1序列的變異
肝組織mtDNA ND1序列距離與參考序列的平均距離,NAs組分別與對照組比較,差異無統(tǒng)計學(xué)意義(P > 0.05)。肝細(xì)胞mtDNA ND1序列距離與參考序列的平均距離,AZT組和3TC組長于對照組(P < 0.01)。肝組織與對照組的平均dS比較,DDI組較之對照組有較高的dS值(P < 0.05)。肝組織與對照組的平均dN比較,差異均無統(tǒng)計學(xué)意義(P > 0.05)。肝細(xì)胞平均dS比較,AZT和3TC組較之對照組有較高的dS值(P < 0.05)。肝細(xì)胞平均dN比較,NAs組與對照組比較,差異無統(tǒng)計學(xué)意義(P > 0.05)。見圖2。
2.3 NAs組mtDNA ND4序列的變異
肝組織mtDNA ND4與參考序列的平均距離,D4T組與對照組相比存在更遠(yuǎn)的距離(P < 0.05)。肝細(xì)胞的mtDNA ND4序列與參考序列的平均距離,除DDI組,余NAs組較之對照組差異均有統(tǒng)計學(xué)意義(P < 0.01)。與對照組比較,4種NAs組肝組織dS和dN差異均無統(tǒng)計學(xué)意義(P > 0.05)。與對照組比較,肝細(xì)胞的mtDNA ND4NAs組平均dS差異均無統(tǒng)計學(xué)意義(P > 0.05)。肝細(xì)胞的mtDNA ND4平均dN,與對照組比較,僅AZT組存在相對高的dN值,差異有統(tǒng)計學(xué)意義(P < 0.05)。見圖3。
2.4 NAs組肝組織和肝細(xì)胞mtDNA ND4基因突變
NAs組肝組織ND4區(qū)序列單堿基的轉(zhuǎn)換率分別與對照組比較,差異無統(tǒng)計學(xué)意義(P > 0.05)。各NAs組肝組織ND4的過渡亞型分別與對照組比較,差異無統(tǒng)計學(xué)意義(P > 0.05)。捕獲肝細(xì)胞的ND4序列單堿基的轉(zhuǎn)換率AZT組和D4T組均高于對照組(P < 0.05)。僅AZT組T→A轉(zhuǎn)化率高于對照組(P < 0.05)。D4T組T→A轉(zhuǎn)化率與對照組比較,差異無統(tǒng)計學(xué)意義(P > 0.05)。D4T組T→C轉(zhuǎn)化率高于對照組(P < 0.05)。見圖4。
2.5 NAs組肝組織和肝細(xì)胞mtDNA ND1基因突變
NAs組肝組織ND1區(qū)序列單堿基的轉(zhuǎn)換率分別與對照組比較,差異無統(tǒng)計學(xué)意義(P > 0.05)。3TC組肝組織ND4的過渡亞型高于對照組,差異有統(tǒng)計學(xué)意義(P < 0.05)。捕獲肝細(xì)胞的ND1序列單堿基的轉(zhuǎn)換率AZT組和3TC組均高于對照組,差異有統(tǒng)計學(xué)意義(P < 0.05);捕獲肝細(xì)胞的ND1序列單堿基的轉(zhuǎn)換率AZT組和3TC組均高于對照組,差異有統(tǒng)計學(xué)意義(P < 0.05)。3TC組和DDI組A→G轉(zhuǎn)化率均高于對照組(P < 0.05);AZT組和3TC組C→T轉(zhuǎn)化率數(shù)值均高于對照組(P < 0.05);AZT組和3TC組T→C轉(zhuǎn)化率數(shù)值均高于對照組(P < 0.05);3TC組A→T顛換率、3TC組T→G顛換率以及AZT組C→G顛換率數(shù)值與對照組比較,差異無統(tǒng)計學(xué)意義(P > 0.05)。見圖5。
3 討論
NAs易致肌細(xì)胞、神經(jīng)元細(xì)胞和脂肪細(xì)胞病變,導(dǎo)致肌病、周圍神經(jīng)病、胰腺炎、脂肪萎縮、肝脂肪變性和乳酸酸中毒等線粒體功能障礙相關(guān)的疾病,但機(jī)制尚不清楚[7-9]。一項臨床研究中,約20%接受抗逆轉(zhuǎn)錄病毒治療的患者表現(xiàn)出肝損傷[109]。另一研究12%接受干擾素聯(lián)合利巴韋林治療HIV/HCV合并感染患者,表現(xiàn)出無癥狀的線粒體毒性[11]。NAs的肝毒性可能促進(jìn)HIV/HCV合并感染患者的肝纖維化。此外,與CART相關(guān)的免疫重建似乎可減輕患者HCV相關(guān)肝損傷[12]。NAs可以導(dǎo)致肝臟相關(guān)的線粒體毒性[13],具體機(jī)制需要深入研究。此前研究表明長期暴露于NAs的小鼠存在肝細(xì)胞mt DNA D-loop區(qū)的缺失[5]。除D-loop區(qū),ND4和ND1是NADH脫氫酶的亞基,位于線粒體內(nèi)膜,由線粒體基因MT-ND4和MT-ND1編碼。MT-ND4基因的變異可導(dǎo)致遺傳性和年齡相關(guān)性疾病[14-16]。而MT-ND1基因變異相關(guān)疾病的出現(xiàn)類似于NAs誘導(dǎo)的線粒體功能障礙,包括線粒體腦肌病和乳酸酸中毒[15-17]。體外研究中,以10倍的藥物最大血漿濃度將NAs作用于HepG2細(xì)胞可導(dǎo)致mt DNA ND4的水平下降[18]。本研究表明,小鼠暴露于NAs 3個月后,小鼠肝細(xì)胞mtDNA編碼基因ND4和ND1出現(xiàn)變化,與本課題組此前小鼠暴露于NAs 4個月后,導(dǎo)致小鼠神經(jīng)元細(xì)胞mtDNA ND4和ND1的拷貝缺失的結(jié)果基本一致[19]。因此,推測NA導(dǎo)致的肝臟相關(guān)的線粒體毒性可通過影響基因水平的ND1和ND4,進(jìn)而引起mtDNA的損傷,對線粒體功能的影響仍需要深入研究。
[參考文獻(xiàn)]
[1] Seto WK,Liu K,Wong DK,et al. Patterns of hepatitis B surface antigen decline and HBV DNA suppression in Asian treatment-experienced chronic hepatitis B patients after three years of tenofovir treatment [J]. J Hepatol,2013,59(4): 709-716.
[2] Obiako OR,Abdu-Aguye I,Ogunniyi A. Effect of Stavudine-Based antiretroviral therapy on the severity of polyneuropathy in HIV/AIDS patients:a preliminary report from Zaria,Northern Nigeria [J]. West Afr J Med,2011,30(5): 354-358.
[3] Dragovic G,Jevtovic D. The role of nucleoside reverse transcriptase inhibitors usage in the incidence of hyperlactatemia and lactic acidosis in HIV/AIDS patients [J]. Biomed Pharmacother,2012,66(4):308-311.
[4] 胡倩倩,時麗麗,譚初兵.核苷類似物線粒體毒性機(jī)制及臨床表現(xiàn)[J].中國藥理學(xué)與毒理學(xué)雜志,2013,27(5):885-888.
[5] 張維,喬錄新,丁渭,等.核苷類似物對小鼠肝臟線粒體DNA D-loop區(qū)突變的影響[J].中國醫(yī)藥導(dǎo)報,2016,13(15):9-12.
[6] 任林柱,張英.分子生物學(xué)實驗原理與技術(shù)[M].北京:科學(xué)出版社,2015.
[7] Moyle G. Toxicity of antiretroviral nucleoside and nucleotide analogues:is mitochondrial toxicity the only mechanism?[J].Drug safety,2000,23(6),467-481.
[8] Dalakas MC. Peripheral neuropathy and antiretroviral drugs [J]. J Peripher Nerv Syst,2001,6(1),14-20.
[9] Youle M. Acetyl-L-carnitine in HIV-associated antiretroviral toxic neuropathy [J]. CNS Drugs,2007,21 Suppl 1: 25-30,45-46.
[10] Antoniades C,Macdonald C,Knisely A,et al. Mitochondrial toxicity associated with HAART following liver transplantation in an HIV-infected recipient [J]. Liver transpl,2004,10(5),699-702.
[11] Laguno M,Milinkovic A,de Lazzari E,et al. Incidence and risk factors for mitochondrial toxicity in treated HIV/HCV-coinfected patients [J]. Antivir Ther,2005,10(3),423-429.
[12] Macias J,Castellano V,Merchante N,et al. Effect of antiretroviral drugs on liver fibrosis in HIV-infected patients with chronic hepatitis C:harmful impact of nevirapine [J]. AIDS,2004,18(5),767-774.
[13] Antoniades C, Macdonald C, Knisely A, et al. Mitochondrial toxicity associated with HAART following liver transplantation in an HIV-infected recipient [J]. Liver Transpl,2004,10,699-702.
[14] Gu F,Chauhan V,Kaur K,et al. Alterations in mitochondrial DNA copy number and the activities of electron transport chain complexes and pyruvate dehydrogenase in the frontal cortex from subjects with autism [J]. Transl Psychiatry,2013,3,e299.doi:10.1038/tp.2013.68.
[15] Restrepo NA,Mitchell SL,Goodloe RJ,et al. Mitochondrial variation and the risk of age-related macular degeneration across diverse populations [J]. Pac Symp Biocomput,2015,243-254.
[16] Gurses C,Azakli H,Alptekin A,et al. Mitochondrial DNA profiling via genomic analysis in mesial temporal lobe epilepsy patients with hippocampal sclerosis [J]. Gene,2014,538(2),323-327.
[17] Zong NC,Li HM,Li H,et al. Integration of cardiac proteome biology and medicine by a specialized knowledgebase [J]. Circ Res,2013,113(9),1043-1053.
[18] Garlick K. The potential of combination drug therapy for hepatitis B to cause mitochondrial damage[J]. https://researchspace.auckland.ac.nz/handle/2292/22450.
[19] Zhang Y,Song F,Gao Z,et al. Long-term exposure of mice to nucleoside analogues disrupts mitochondrial DNA maintenance in cortical neurons [J]. PLoS One,2014,9(1): e85637.
(收稿日期:2018-03-05 本文編輯:李岳澤)