胡杰,王鑫怡,王菲
?
家蠶BmCaspase-8-Like(BmCasp8L)的免疫負(fù)調(diào)控功能
胡杰,王鑫怡,王菲
(西南大學(xué)家蠶基因組生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室,重慶 400716)
【目的】在個體和細(xì)胞水平上探討家蠶()BmCaspase-8-Like(BmCasp8L)的免疫負(fù)調(diào)控功能,為研究昆蟲免疫負(fù)調(diào)控機(jī)制提供參考?!痉椒ā客ㄟ^RT-PCR技術(shù)克隆并進(jìn)行結(jié)構(gòu)域預(yù)測和進(jìn)化分析;利用熒光定量PCR檢測在家蠶各齡期、5齡第3天及預(yù)蛹期各組織中的時空表達(dá)特征和家蠶感染細(xì)菌后的免疫誘導(dǎo)表達(dá)特征;合成用于RNAi的dsRNA,通過注射dsRNA在個體中降低的表達(dá)水平,并檢測對抗菌肽基因表達(dá)水平的影響;構(gòu)建的細(xì)胞表達(dá)載體,通過質(zhì)?;騞sRNA的轉(zhuǎn)染在BmE細(xì)胞中過表達(dá)或降低的表達(dá)水平,并利用Western blot或定量PCR予以確認(rèn),同時檢測抗菌肽基因表達(dá)水平的變化及轉(zhuǎn)錄因子BmRelish的切割?!窘Y(jié)果】BmCasp8L與鱗翅目Caspase-6、哺乳動物Caspase-8同源,其序列與BmDredd、DmDredd N端分別具有61%、42%的相似性,但缺少C端的Caspase結(jié)構(gòu)域。時空表達(dá)特征分析表明,在眠蠶期表達(dá)量高于起蠶期,在預(yù)蛹期、蛹第7天、蛾第1天表達(dá)量明顯升高;在5齡第3天幼蟲體內(nèi),在血細(xì)胞中的表達(dá)量明顯高于其他組織,而在預(yù)蛹期,主要在絲腺中表達(dá)。免疫誘導(dǎo)表達(dá)譜顯示,5齡第3天家蠶在注射感染黑胸?cái)⊙挎邨U菌或粘質(zhì)沙雷氏菌1 h內(nèi),的表達(dá)水平上升,此后逐漸恢復(fù)正常。對5齡第2天家蠶注射dsCasp8L或dsEGFP,24 h后通過熒光定量PCR檢測到的表達(dá)量在注射dsCasp8L的家蠶中顯著下調(diào),而抗菌肽的表達(dá)水平顯著上調(diào)。在BmE細(xì)胞中過表達(dá),抗菌肽的表達(dá)水平與對照相比顯著降低,且轉(zhuǎn)錄因子BmRelish的切割受到抑制。在細(xì)胞中轉(zhuǎn)染dsRNA后,的表達(dá)水平被有效降低,抗菌肽的表達(dá)水平顯著上調(diào)?!窘Y(jié)論】進(jìn)化分析、表達(dá)特征以及細(xì)胞和個體上的功能研究表明BmCasp8L是一個具有免疫負(fù)調(diào)控作用的分子,通過抑制BmRelish的切割,抑制抗菌肽的表達(dá),從而負(fù)調(diào)控Imd信號通路,降低的表達(dá)水平則導(dǎo)致抗菌肽表達(dá)水平升高,有助于家蠶抵御微生物病原的侵染。
家蠶;免疫負(fù)調(diào)控;BmCaspase-8-Like(BmCasp8L);表達(dá)特征;抗菌肽;BmRelish
【研究意義】昆蟲靠進(jìn)化上保守的先天免疫系統(tǒng)抵御病原微生物的侵染,其免疫方式主要包括抗菌肽表達(dá)、吞噬作用、包埋作用和黑化作用,其中抗菌肽的表達(dá)主要依賴于兩條NF-κB信號通路——Toll和Imd信號通路[1-2]。但NF-κB信號通路的過度激活,往往導(dǎo)致昆蟲腸道菌群紊亂、壽命縮短、神經(jīng)退行性疾病等現(xiàn)象[3-8],因此,免疫負(fù)調(diào)控分子和負(fù)調(diào)控機(jī)制逐漸被認(rèn)可為免疫系統(tǒng)的一個重要組成部分。家蠶()作為鱗翅目模式昆蟲,對其免疫負(fù)調(diào)控機(jī)制的研究,有助于設(shè)計(jì)合理的抗病品系,同時有助于深入研究家蠶及其他昆蟲先天免疫系統(tǒng)?!厩叭搜芯窟M(jìn)展】昆蟲Imd信號通路主要由革蘭氏陰性細(xì)菌所激活,革蘭氏陰性細(xì)菌的胞壁組分DAP型肽聚糖(DAP-PGN)被細(xì)胞膜受體蛋白PGRP-LC或胞內(nèi)受體PGRP-LE所識別,進(jìn)而招募Imd分子,免疫信號經(jīng)Imd、FADD、Dredd分子傳遞,最終激活轉(zhuǎn)錄因子Relish[9]。在信號傳遞過程中,被認(rèn)為是哺乳動物Caspase-8同源分子的Dredd,既切割I(lǐng)md又切割Relish:切割后的Imd被E3泛素化連接酶DIAP2催化形成K63-多聚泛素化鏈從而招募TAK1和IKK使Relish磷酸化;而Relish經(jīng)Dredd切除其C端的錨蛋白重復(fù)序列(ankyrin repeat)后,具有轉(zhuǎn)錄活性的N端即進(jìn)入細(xì)胞核啟動抗菌肽分子的表達(dá)[10-11]。通過突變分析和全基因組RNAi等方法,已鑒定了多種參與Imd信號通路負(fù)調(diào)控的分子[12-14]。例如PGRP-LB、PGRP-SC1、PGRP-SC2等分泌型PGRPs能通過降解肽聚糖來抑制Imd信號通路的激活[15-18];Pirk通過干擾PGRP-LC、PGRP-LE和Imd的結(jié)合從而阻止信號的傳遞[19-21];IκB蛋白Pickle與Relish相互作用并招募HDAC1蛋白抑制Relish靶基因的啟動子活性[22];E3泛素連接酶Dnr1則通過促進(jìn)Dredd蛋白酶體降解來抑制Imd信號通路[23]。筆者研究團(tuán)隊(duì)在研究參與家蠶抗病毒免疫的BmSTING分子時,通過免疫共沉淀和質(zhì)譜鑒定了一個與BmSTING具有相互作用的蛋白,其氨基酸序列與BmDredd的N端序列相似性高,而缺少其C端酶活結(jié)構(gòu)域[24]?;谄湫蛄刑卣鳎瑢⑵涿麨锽mCaspase-8-Like(BmCasp8L)。過表達(dá)該分子降低了由BmSTING介導(dǎo)的抗病毒免疫應(yīng)答水平。該分子是否參與Imd信號通路的調(diào)控尚未可知。【本研究切入點(diǎn)】目前,對于Imd信號通路免疫負(fù)調(diào)控機(jī)制的認(rèn)識主要建立在對果蠅的研究上,而缺乏對其他昆蟲免疫負(fù)調(diào)控分子的鑒定和研究。本研究針對家蠶BmCasp8L,通過研究該分子對轉(zhuǎn)錄因子BmRelish的活化及抗菌肽基因表達(dá)的影響,解析其負(fù)調(diào)控機(jī)制?!緮M解決的關(guān)鍵問題】分析BmCasp8L的序列特征并構(gòu)建系統(tǒng)進(jìn)化樹,研究的時空表達(dá)及細(xì)菌免疫誘導(dǎo)表達(dá)特征,在此基礎(chǔ)上進(jìn)一步研究其對BmRelish的活化及抗菌肽基因表達(dá)的抑制作用。
試驗(yàn)于2016年9月至2018年3月在西南大學(xué)家蠶基因組生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室完成。
供試家蠶品種為大造,由西南大學(xué)家蠶基因庫提供。試驗(yàn)所用家蠶胚胎細(xì)胞系BmE,以及感染家蠶所需黑胸?cái)⊙挎邨U菌()和粘質(zhì)沙雷氏菌(),均由筆者實(shí)驗(yàn)室保存。
RNase抑制劑、反轉(zhuǎn)錄試劑盒、T7體外轉(zhuǎn)錄試劑盒均購自Promega公司;Total RNA Kit購自O(shè)MEGA公司;Tubulin抗體(AT819)、HRP標(biāo)記山羊抗小鼠抗體(A0216)、Myc抗體(AM933)、RIPA細(xì)胞裂解液、BCA蛋白濃度測定試劑盒均購自碧云天公司;彩色預(yù)染蛋白質(zhì)分子量標(biāo)準(zhǔn)、Super Signal West Femto化學(xué)發(fā)光檢測試劑均購自Thermo Scientific;DAP型肽聚糖(Peptidoglycan,DAP-PGN)、Flag抗體(F1804-200UG)均購自Sigma公司;細(xì)胞轉(zhuǎn)染試劑購自Roche公司;Grace昆蟲細(xì)胞培養(yǎng)基和胎牛血清均購自Gibco公司;熒光定量PCR相關(guān)試劑、pMD-19T載體均購自TaKaRa公司;Myc-BmRelish真核表達(dá)載體的構(gòu)建參考文獻(xiàn)[25]。
從家蠶基因組數(shù)據(jù)庫SilkDB(http://silkworm. genomics.org.cn/)中下載BmCasp8L序列BGIBMGA008021(GenBank登錄號:XP-012552745.1),通過ClustalX軟件進(jìn)行多個物種同源序列比對,采用MEGA 4.0軟件構(gòu)建系統(tǒng)發(fā)生樹。
取各齡期家蠶個體、5齡第3天幼蟲及預(yù)蛹期個體的各組織,液氮研磨后,用Trizol法提取總RNA,或采用Total RNA Kit提取細(xì)胞樣品的總RNA,按照反轉(zhuǎn)錄試劑盒說明書反轉(zhuǎn)錄為cDNA。
熒光定量PCR采用相對定量法,根據(jù)目標(biāo)基因序 列設(shè)計(jì)特異定量引物,以sw22934作為參比基因,引物序列見表1。擴(kuò)增程序?yàn)?5℃ 3 s,60℃ 30 s,共40個循環(huán),在退火/延伸階段進(jìn)行熒光信號數(shù)據(jù)采集,最后對熔解曲線進(jìn)行分析。
根據(jù)的mRNA序列,用Primer 5.0軟件設(shè)計(jì)引物BmCasp8L-FL(表1),經(jīng)PCR擴(kuò)增得到N端帶有FLAG標(biāo)簽的BmCasp8L全長cDNA,連接到pMD19-T載體,經(jīng)測序驗(yàn)證的陽性克隆用H I和I酶切后,插入pSL1180-A4載體中,用于真核細(xì)胞表達(dá)。
按照T7體外轉(zhuǎn)錄試劑盒的操作說明,用Primer 5.0軟件設(shè)計(jì)用于干涉和(對照)的特異引物dsCasp8L和dsEGFP(表1),并合成相應(yīng)的dsRNA,用于細(xì)胞和個體水平的基因干涉。
表1 引物序列
在27℃條件下,用含10%胎牛血清的Grace昆蟲細(xì)胞培養(yǎng)基培養(yǎng)BmE細(xì)胞,血球計(jì)數(shù)板計(jì)數(shù)后接種至12孔板中(1×105個細(xì)胞/孔),24 h后按照轉(zhuǎn)染試劑操作說明每孔轉(zhuǎn)染1 μg DNA或5 μg dsRNA。轉(zhuǎn)染48 h后加DAP-PGN刺激細(xì)胞12 h(10 μg·mL-1),收集細(xì)胞用于RNA提取或Western blot檢測。
用RIPA細(xì)胞裂解液裂解細(xì)胞后提取總蛋白,然后用BCA蛋白濃度測定試劑盒按照操作說明測定蛋白濃度,等量上樣進(jìn)行12% SDS-PAGE電泳,采用轉(zhuǎn)膜儀將蛋白轉(zhuǎn)移到PVDF膜上,5%脫脂奶粉封閉1 h后,用FLAG抗體、Myc抗體、Tubulin抗體室溫孵育1 h,TBST清洗5次后用二抗室溫孵育1 h,再用TBST清洗5次,最后用Super Signal West Femto化學(xué)發(fā)光檢測試劑進(jìn)行顯色反應(yīng)。
將黑胸?cái)⊙挎邨U菌和粘質(zhì)沙雷氏菌于37℃過夜培養(yǎng)并計(jì)數(shù)后4℃保存?zhèn)溆?。選取5齡第2天家蠶幼蟲60頭,分別用毛細(xì)管在腹部倒數(shù)第2對氣孔處注射dsEGFP、dsCasp8L(2 μg·μL-1,10 μL/頭),各注射30頭。注射24 h后各取3頭經(jīng)液氮速凍后保存于-80℃用于RNA提取和干涉效率的定量PCR檢測,其余幼蟲注射粘質(zhì)沙雷氏菌(1×102個/μL,10 μL/頭),并在注射后0、1、3、6、12和18 h各取3頭家蠶,經(jīng)液氮速凍后保存于-80℃用于RNA提取。另取5齡第3天家蠶幼蟲60頭,以同樣的方法直接注射黑胸?cái)⊙挎邨U菌或粘氏沙雷氏菌,各注射30頭,并在注射后0、0.5、1、3、6和12 h各取3頭家蠶,經(jīng)液氮速凍后保存于-80℃用于RNA提取。
熒光定量PCR依據(jù)各樣品中目標(biāo)基因和內(nèi)參基因的臨界循環(huán)數(shù)(Ct)值,利用2-??Ct計(jì)算分析。數(shù)據(jù)表示為平均值±標(biāo)準(zhǔn)偏差(SD),采用Student’s檢驗(yàn)進(jìn)行顯著性差異分析或ANOVA單因素方差分析。<0.05表示差異顯著,<0.01表示差異極顯著。
BmCasp8L CDS全長858 bp,編碼285個氨基酸,位于家蠶第9號染色體nscaf2889上,預(yù)測蛋白分子量大小為30 kD。其序列與BmDredd和DmDredd N端分別具有61%、42%的相似性,對該基因進(jìn)行結(jié)構(gòu)域預(yù)測,發(fā)現(xiàn)其缺少Dredd分子C端Caspase結(jié)構(gòu)域(圖1-A)。進(jìn)化分析表明BmCasp8L、BmDredd與鱗翅目昆蟲Caspase-6均為哺乳動物Caspase-8的同源分子(圖1-B)。除家蠶外,在野蠶基因組中也發(fā)現(xiàn)了缺少編碼Caspase結(jié)構(gòu)域的。但在其他鱗翅目昆蟲中,可能由于其基因組數(shù)據(jù)不完善,尚未鑒定到類似的。果蠅DmDredd具有多種剪接形式,其中Dredd-PF亞型缺乏Caspase酶活結(jié)構(gòu)域。人Caspase-8也有多種剪接異構(gòu)體,其中Caspase-8L亞型缺少C端酶活結(jié)構(gòu)域。
采用熒光定量PCR對5齡第3天各組織內(nèi)的表達(dá)水平進(jìn)行檢測,結(jié)果顯示在各組織均有表達(dá),在血細(xì)胞中表達(dá)量明顯高于其他組織(圖2-A)。對家蠶整個發(fā)育時期的表達(dá)情況進(jìn)行定量檢測,結(jié)果顯示的表達(dá)水平在眠蠶期顯著高于起蠶期;在發(fā)育變態(tài)期,如預(yù)蛹期、蛹第7天及蛾第1天的表達(dá)量顯著升高(圖2-B)。對在預(yù)蛹期各組織的表達(dá)水平進(jìn)行熒光定量PCR檢測,結(jié)果顯示在絲腺中表達(dá)量最高(圖2-C)。
5齡第3天家蠶個體在注射感染黑胸?cái)⊙挎邨U菌或粘質(zhì)沙雷氏菌后的1 h內(nèi),的表達(dá)水平上升,1 h后的表達(dá)水平逐漸恢復(fù)正常水平(圖2-D),而抗菌肽的表達(dá)量在注射粘質(zhì)沙雷氏菌后持續(xù)上升(圖2-E)。
對5齡第2天家蠶幼蟲注射 dsCasp8L(對照為dsEGFP),24 h后再注射感染粘質(zhì)沙雷氏菌,然后通過熒光定量PCR檢測家蠶中抗菌肽的表達(dá)量。結(jié)果顯示,注射dsCasp8L的家蠶與注射dsEGFP的對照家蠶相比,的表達(dá)水平下降了53%(圖3-A),且在感染粘質(zhì)沙雷氏菌后,抗菌肽的表達(dá)水平明顯升高(圖3-B)。這一結(jié)果說明下調(diào)的表達(dá)水平導(dǎo)致抗菌肽的表達(dá)升高。
BmE細(xì)胞轉(zhuǎn)染質(zhì)粒pSL1180-A4-Caspase-8-like后,對BmCasp8L的表達(dá)通過Western blot予以了驗(yàn)證(圖4-A)。用DAP-PGN刺激過表達(dá)BmCasp8L的細(xì)胞,其抗菌肽的表達(dá)顯著低于對照(圖4-B)。
將合成的dsRNA轉(zhuǎn)入BmE細(xì)胞中干涉的表達(dá),并用熒光定量RCR檢測干涉效率,結(jié)果顯示在轉(zhuǎn)染dsCasp8L的細(xì)胞中的表達(dá)水平下降了70%(圖4-C)。干涉48 h后用DAP-PGN刺激細(xì)胞,在干涉的細(xì)胞中,抗菌肽的表達(dá)水平與對照細(xì)胞相比顯著上升(圖4-D)。
BmE細(xì)胞共表達(dá)BmCasp8L和BmRelish后,用DAP-PGN刺激細(xì)胞,通過Western blot對BmRelish的切割水平進(jìn)行檢測。DAP-PGN的刺激導(dǎo)致BmRelish(BmRelishFL)的活化增強(qiáng),而過表達(dá)BmCasp8L后,BmRelish的活化形式(BmRelishact)明顯減弱(圖4-E)。這說明BmCasp8L的表達(dá)會抑制BmRelish的活化。
A:BmCasp8L與BmDredd、DmDredd結(jié)構(gòu)域預(yù)測Domain prediction of BmCasp8L compared with BmDredd and DmDredd;B:BmCasp8L系統(tǒng)進(jìn)化樹Phylogenetic tree of BmCasp8L
與哺乳動物類似,昆蟲的NF-κB信號通路受到嚴(yán)格的調(diào)控。Imd信號通路從信號識別、受體復(fù)合物的形成到信號傳遞及轉(zhuǎn)錄因子的切割活化等各階段,均存在不同的負(fù)調(diào)控分子。對家蠶免疫負(fù)調(diào)控研究發(fā)現(xiàn),Caspar的同源分子BmFAF,能與轉(zhuǎn)錄因子Relish結(jié)合并促進(jìn)其降解,從而抑制抗菌肽的表達(dá)[25-26];家蠶肽聚糖識別蛋白PGRP-S5能利用其酰胺酶活性負(fù)調(diào)控Imd信號通路[27]。本研究在細(xì)胞和個體水平上對家蠶BmCasp8L是否影響抗菌肽的表達(dá)和BmRelish的活化進(jìn)行了探索,結(jié)果表明其參與Imd信號通路的負(fù)調(diào)控。
和抗菌肽在家蠶受到細(xì)菌感染時,呈現(xiàn)相反的變化規(guī)律,暗示其可能對抗菌肽表達(dá)具有抑制作用。該抑制作用繼而在家蠶個體水平上和細(xì)胞水平給予了驗(yàn)證,并且在細(xì)胞中過表達(dá)BmCasp8L后,BmRelish的活化形式減少,進(jìn)一步說明BmCasp8L是通過抑制BmRelish的切割來抑制抗菌肽的表達(dá)。在預(yù)蛹期各組織的表達(dá)水平顯示其在絲腺中表達(dá)量最高。預(yù)蛹期為蠶剛吐完絲向蛹期變化的過渡時期,在這個時期高表達(dá)可能暗示其參與絲腺細(xì)胞的凋亡,但具體作用尚不明確。的時空表達(dá)譜還顯示,該基因在家蠶變態(tài)時期的表達(dá)水平顯著升高,說明除免疫功能外,BmCasp8L還可能參與家蠶的發(fā)育進(jìn)程。實(shí)際上,已有多項(xiàng)研究表明免疫負(fù)調(diào)控因子在昆蟲發(fā)育過程中發(fā)揮作用。例如,Imd信號通路負(fù)調(diào)控因子Trabid的缺失會造成果蠅壽命縮短[7]。
A:BmCasp8L的組織表達(dá)譜Expression profile of BmCasp8L in different tissues。1:頭部Head;2:表皮Integument;3:精巢Testis;4:卵巢Ovary;5:血細(xì)胞Hemocyte;6:中腸Midgut;7:絲腺Silk gland;8:脂肪體Fat body;9:馬氏管Malpighian tubule。B:BmCasp8L的時期表達(dá)譜Expression profile of BmCasp8L at different development stages。1:蟻蠶Hatch;2:1齡眠蠶1st-instar molting;3:2齡起蠶2nd-instar newly exuviated larva;4:2齡眠蠶2nd-instar molting;5:3齡起蠶3rd-instar newly exuviated larva;6:3齡眠蠶3rd-instar molting;7:4齡起蠶4th-instar newly exuviated larva;8:4齡眠蠶4th-instar molting;9:5齡起蠶5th-instar newly exuviated larva;10:5齡第3天3rd day of 5th-instar;11:5齡第7天7th day of 5th-instar;12:預(yù)蛹Prepupa;13:蛹第3天3rd day of pupa;14:蛹第7天7th day of pupa;15:蛾第1天1st day of moth。C:BmCasp8L預(yù)蛹期組織表達(dá)譜Expression profile of BmCasp8L in different tissues at prepupa stage。1:中腸Midgut;2:頭部Head;3:脂肪體Fat body;4:絲腺Silk gland;5:表皮Integument;6:馬氏管Malpighian tubule;7:血細(xì)胞Hemocyte;8:精巢Testis;9:卵巢Ovary。D:細(xì)菌感染家蠶后,BmCasp8L的表達(dá)Expression of BmCasp8L after injection of microbes。E:細(xì)菌感染家蠶后,抗菌肽BmCecropinA1的表達(dá)Expression of BmCecropinA1 after injection of microbes。P<0.05 *, P<0.01 **, P<0.001 ***
當(dāng)DAP-PGN刺激細(xì)胞后,由Imd招募FADD,F(xiàn)ADD通過其DED結(jié)構(gòu)域與BmDredd N端DED結(jié)構(gòu)域相互作用,從而形成復(fù)合物。而BmCasp8L與BmDredd N端相似性高達(dá)61%,因此BmCasp8L可能也具有與FADD結(jié)合的能力;通過與FADD的相互作用,干擾了BmDredd與FADD的結(jié)合,從而抑制了轉(zhuǎn)錄因子Relish的活化并最終影響了抗菌肽的表達(dá)。
A:注射不同dsRNA的家蠶中BmCasp8L的表達(dá)水平定量檢測Quantitative analysis of the expression level of BmCasp8L in B. mori injected with different dsRNA。1:dsCasp8L;2:dsEGFP。B:注射不同dsRNA的家蠶中抗菌肽BmCecropinA1的表達(dá)水平定量檢測Quantitative analysis of the expression level of BmCecropinA1 inB. mori injected with different dsRNAs。P<0.01 **, P<0.001 ***
A:BmCasp8L的Western blot檢測Western blot detection of BmCasp8L。1:轉(zhuǎn)染pSL1180-A4空質(zhì)粒的細(xì)胞Cells transfected with pSL1180-A4 empty vector;2:轉(zhuǎn)染pSL1180-A4-Caspase-8-like質(zhì)粒的細(xì)胞Cells transfected with pSL1180-A4-Caspase-8-like。B:轉(zhuǎn)染pSL1180-A4-Caspase-8-like并用DAP-PGN刺激后抗菌肽BmCecropinA1的定量檢測Quantitative analysis of BmCecropinA1 expression level. Cells transfected with pSL1180-A4-Caspase- 8-like, treated with DAP-PGN。C:BmCasp8L的定量檢測Quantitative analysis of BmCasp8L expression level。1:轉(zhuǎn)染dsEGFP的細(xì)胞Cells transfected with dsEGFP;2:轉(zhuǎn)染dsCasp8L的細(xì)胞Cells transfected with dsCasp8L。D:轉(zhuǎn)染dsCasp8L并用DAP-PGN刺激后抗菌肽BmCecropinA1的定量檢測Quantitative analysis of BmCecropinA1 expression level. Cells transfected with dsCasp8L, treated with DAP-PGN。E:BmRelish的Western blot檢測Western blot detection of BmRelish。1:轉(zhuǎn)染pSL1180-A4-Relish質(zhì)粒的細(xì)胞Cells transfected with pSL1180-A4-Relish;2:轉(zhuǎn)染pSL1180-A4-Relish質(zhì)粒并用DAP-PGN刺激的細(xì)胞Cells transfected with pSL1180-A4-Relish and treated with DAP-PGN;3:轉(zhuǎn)染pSL1180-A4-Relish及pSL1180-A4-Caspase-8-like質(zhì)粒并用DAP-PGN刺激的細(xì)胞Cells transfected with pSL1180-A4-Relish and pSL1180-A4-Caspase-8-like, treated with DAP-PGN。P<0.01 **, P<0.001 ***
有意義的是,果蠅和人均存在類似的與Caspase N端相似度高但缺乏其酶活結(jié)構(gòu)域的分子。果蠅的Dredd基因編碼5個轉(zhuǎn)錄本。亞型和亞型(Flybase數(shù)據(jù)庫中現(xiàn)命名為Dredd-PE和Dredd-PD亞型)編碼全長的Dredd蛋白,亞型(Dredd-PG亞型)編碼的蛋白缺失Dredd的1—54 aa,亞型(Dredd-PF亞型)的mRNA因包含第2個內(nèi)含子而導(dǎo)致蛋白翻譯提前終止,故缺失C端的Caspase結(jié)構(gòu)域。研究表明Dredd-PF亞型在不同組織中均有表達(dá),且Dredd-PF亞型能抑制細(xì)胞凋亡。凋亡誘導(dǎo)因子的活性會影響果蠅體內(nèi)Dredd-PE和Dredd-PF亞型之間的比例——負(fù)調(diào)控Dredd-PF亞型的積累;且缺失的果蠅在感染后存活率較野生型果蠅低,這些現(xiàn)象說明Dredd-PF亞型參與果蠅的發(fā)育和免疫,其高水平表達(dá)可能抑制果蠅的免疫應(yīng)答[28]。人Caspase-8也具有多個剪接異構(gòu)體,其中Caspase-8L缺少C端的Caspase結(jié)構(gòu)域,研究表明Caspase-8L是Caspase-8a(即全長Caspase-8)的抑制分子,它能與FADD和Caspase-8a結(jié)合從而阻止Caspase 8a與FADD結(jié)合,因此負(fù)調(diào)控Fas介導(dǎo)的細(xì)胞凋亡[29-30]。并且在自身免疫疾病系統(tǒng)性紅斑狼瘡患者的外周血細(xì)胞中,Caspase-8L mRNA的水平明顯低于正常個體,可能與過度免疫反應(yīng)相關(guān)[31]。因此,BmCasp8L是否與Dredd-PF和Caspase-8L類似,在細(xì)胞凋亡中發(fā)揮負(fù)調(diào)控作用,也值得深入研究。
從家蠶中克隆得到BmCasp8L,序列分析顯示該分子與Dredd同源,時空表達(dá)和免疫誘導(dǎo)表達(dá)檢測表明其具有免疫負(fù)調(diào)控分子特征,細(xì)胞及個體中該分子的過表達(dá)或干涉試驗(yàn)證明該分子能夠抑制轉(zhuǎn)錄因子BmRelish的切割,并且抑制抗菌肽的表達(dá)從而發(fā)揮其免疫負(fù)調(diào)控功能,為進(jìn)一步解析該分子在家蠶先天免疫信號通路中的負(fù)調(diào)控機(jī)制打下了基礎(chǔ)。
[1] Lemaitre B, Hoffmann J. The host defense of., 2007, 25: 697-743.
[2] Imler J L. Overview ofimmunity: a historical perspective., 2014, 42(1): 3-15.
[3] Dantoft W, DAVIS M M, Lindvall J M, Tang X, Uvell H, Junell A, Beskow A, Engstr?m Y. The Oct1 homolog Nubbin is a repressor of NF-κB-dependent immune gene expression that increases the tolerance to gut microbiota., 2013, 11: 99.
[4] Libert S, Chao Y, Chu X, Pletcher S D. Trade-offs between longevity and pathogen resistance inare mediated by NF-κB signaling., 2006, 5: 533-543.
[5] Kounatidis I, Chtarbanova S, Cao Y, Hayne M, Jayanth D, Ganetzky B, Ligoxygakis P. NF-κB immunity in the brain determines fly lifespan in healthy aging and age-related neurodegeneration., 2017, 19(4): 836-848.
[6] Cao Y,Chtarbanova S, Petersen A J, Ganetzky B. Dnr1 mutations cause neurodegeneration inby activating the innate immune response in the brain., 2013, 110(19): 1752-1760.
[7] Fernando M D, Kounatidis I, Ligoxygakis P. Loss of Trabid, a new negative regulator of theimmune- deficiency pathway at the level of TAK1, reduces life span., 2014, 10(2): e1004117.
[8] Bonnay F, COHEN-BERROS E, Hoffmann M, Kim S Y, Boulianne G L, Hoffmann J A, Matt N, Reichhart J M.gene modulates gut immune tolerance in., 2013, 110(8): 2957-2962.
[9] Myllymaki H, VALANNE S, Ramet M. Theimd signaling pathway., 2014, 192(8): 3455-3462.
[10] Meinander A, RUNCHEL C, Tenev t, Chen l, Kim C H, Ribeiro P S, Broemer M, Leulier F, Zvelebil M, Silverman N, Meier P. Ubiquitylation of the initiator caspase DREDD is required for innate immune signalling., 2012, 31(12): 2770-2783.
[11] 王菲, 李顯揚(yáng), 化曉婷, 夏慶友. 家蠶抗BmNPV細(xì)胞因子的篩選和分析. 中國農(nóng)業(yè)科學(xué), 2018, 51(4): 789-799.
WANG F, LI X Y, HUA X T, XIA Q Y. Screening and analysis of Anti-BmNPV cytokines in silkworm ()., 2018, 51(4): 789-799. (in Chinese)
[12] Foley E, O’farrell P H. Functional dissection of an innate immune response by a genome-wide RNAi screen., 2004, 2(8): e203.
[13] Brennan C A, Anderson K V.: The genetics of innate immune recognition and response., 2004, 22(1): 457-483.
[14] Hoffmann J A. The immune response of., 2003, 426(6962): 33-38.
[15] Bischoff V, Vignal C, Duvic B, Boneca I G, Hoffmann J A, Royet J. Downregulation of theimmune response by peptidoglycan-recognition proteins SC1 and SC2.2006, 2(2): e14.
[16] Zaidman-Remy A, HERVE M, Poidevin M, Pili-Floury S, Kim M S, Blanot D, Oh B H, Ueda R, Mengin-Lecreulx D, Lemaitre B. Theamidase PGRP-LB modulates the immune response to bacterial infection., 2006, 24(4): 463-473.
[17] 陳康康, 呂志強(qiáng). 昆蟲肽聚糖識別蛋白研究進(jìn)展. 昆蟲學(xué)報(bào), 2014, 57(8): 969-978.
Chen K K, Lü Z Q. Peptidoglycan recognition proteins (PGRPs) in insects., 2014, 57(8): 969-978. (in Chinese)
[18] Costechareyre D, Capo F, Fabre A, CHaduli D, KELLENBERGER C, ROUSSEL A, CHARROUX B, ROYET J. Tissue-specific regulation ofNF-κB pathway activation by peptidoglycan recognition protein SC., 2016, 8(1): 67-80.
[19] Kleino A, MYLLYMAKI H, Kallio J, Vanha-Aho L M, Oksanen K, Ulvila J, Hultmark D, Valanne S, Ramet M. Pirk is a negative regulator of theImd pathway., 2008, 180(8): 5413-5422.
[20] Aggarwal K, RUS F, Vriesema-Magnuson C, Ertürk- Hasdemir D, Paquette N, Silverman N. Rudra interrupts receptor signaling complexes to negatively regulate the IMD pathway., 2008, 4(8): e1000120.
[21] Lhocine N, RIBEIRO P S, Buchon N, Wepf A, Wilson R. Tenev T, Lemaitre B, Gstaiger M, Meier P, Leulier F. PIMS modulates immune tolerance by negatively regulatinginnate immune signaling., 2008, 4(2): 147-158.
[22] Morris O, LIU X, Domingues C, Runchel C, Chai A, Basith S, Tenev T, Chen H, Choi S, Pennetta G, Buchon N, Meier P. Signal integration by the IkappaB protein pickle shapesinnate host defense., 2016, 20(3): 283-295.
[23] Guntermann S, Primrose D A, Foley E. Dnr1-dependent regulation of theimmune deficiency signaling pathway., 2009, 33(1): 127-134.
[24] Hua X, Li B, Song L, Hu C, Li X, Wang D, Xiong Y, Zhao P, He H, Xia Q, Wang F. Stimulator of interferon genes (STING) provides insect antiviral immunity by promoting Dredd caspase- mediated NF-κB activation., 2018, 293(30): 11878-11890.
[25] Ma X J, Li X Y, Dong S F, Xia Q Y, Wang F. A Fas associated factor negatively regulates anti-bacterial immunity by promoting Relish degradation in., 2015, 63: 144-151.
[26] 馬曉娟, 李亞明, 胡翠美, 王菲, 夏慶友. 家蠶免疫負(fù)調(diào)控分子的功能. 中國農(nóng)業(yè)科學(xué), 2014, 47(15): 3085-3093.
Ma X J, Li Y M, Hu C M, Wang F, Xia Q Y. Functional characterization ofas an immune negative regulatory molecule in silkworm ()., 2014, 47(15): 3085-3093. (in Chinese)
[27] Chen K, Zhou L, Chen F, Peng Y, Lu Z. Peptidoglycan recognition protein-S5 functions as a negative regulator of the antimicrobial peptide pathway in the silkworm,., 2016, 61: 126-135.
[28] Di Fruscio M, STYHLER S, Wikholm E, Boulanger M C, Lasko P, Richard S.interacts genetically with/, andmutants alter the balance ofisoforms., 2003, 100(4): 1814-1819.
[29] Himeji D, HORIUCHI T, Tsukamoto H, Hayashi K, Watanabe T, Harada M. Characterization of caspase-8L:a novel isoform of caspase-8 that behave as an inhibitor of the caspase cascade., 2002, 99(11): 4070-4078.
[30] Miller M a, KARACAY B, Zhu X, O'dorisio M S, Sandler A D. Caspase 8L, a novel inhibitory isoform of caspase 8, is associated with undifferentiated neuroblastoma., 2006, 11(1): 15-24.
[31] Horiuchi T, HIMEJI D, Tsukamoto H, Harashima S I, Hashimura C, Hayashi K. Dominant expression of a novel splice variant of caspase-8 in human peripheral blood lymphocytes., 2000, 272(3): 877-881.
Functional Characterization of BmCaspase-8-Like (BmCasp8L) as an Immune Negative Regulatory Molecule in Silkworm ()
HU Jie, WANG XinYi, WANG Fei
(State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716)
【Objective】The objective of this study is to characterize BmCaspase-8-like (BmCasp8L) as an immune negative regulatory molecule in silkworm () cell line as well as inlarvae, and to provide a basis for further studies of negative regulation mechanism in insect immunity.【Method】Domain prediction and phylogenetic analysis were performed after cloning ofby RT-PCR. Then fluorescence quantitative PCR was used to investigate the spatial-temporal expression profile ofat different development stages and in different tissues extracted from the 3rd day of 5th-instar larvae and prepupa, as well as the larvae body after bacterial infection. The dsRNA for RNAi was synthesized to silencein thelarvae, and the effect ofon expression of the anti-microbial peptides was studied. The plasmid for expressingin cells was constructed. After transfection of BmE cells with the expression constructs or dsRNA, Western blot or quantitative PCR was performed to confirm the over-expression or knock-down ofin cells. Meanwhile, the change in expression of the anti-microbial peptides and cleavage of nuclear transcription factor BmRelish were detected.【Result】BmCasp8L is homologous to Lepidoptera Caspase-6 and mammalian Caspase-8. The similarity between BmCasp8L and N-terminal of BmDredd, DmDredd is 61% and 42%, respectively, but it lacks the C-terminal Caspase domain. Spatial-temporal expression profile showed that in molting larvaelevel was higher than in newly exuviated ones, and theexpression level was significantly increased in the prepupa, 7th day of pupa and 1st day of moth stage. theexpression level in the hemocyte was significantly higher than in other tissues in the 3rd day of 5th-instar, but in the prepupa stage, it was mainly expressed in the silk gland. theexpression level in the 3rd day of 5th-instar larvae increased within 1 h post infection ofor, and then gradually returned to normal. Injection of dsCasp8L or dsEGFPinto the 2nd day of 5th-instar larvae,the expression ofwas significantly down-regulated ininjected with dsCasp8L, while the expression of antimicrobial peptidewas up-regulated after 24 h. Over-expression ofin BmE cells led to a remarkable decrease of the anti-microbial peptide. In addition, over-expression ofsuppressed the cleavage of the transcription factor BmRelish. Moreover, the expression level ofcould be efficiently knocked down by dsRNA, at the same time, the expression level ofwas significantly up-regulated. 【Conclusion】Phylogenetic analysis, expression features and functional studies in cells as well as inlarvae all indicated that BmCasp8L acts as an immune negative regulatory molecule by suppressing the cleavage of BmRelish and the expression of anti-microbial peptides, thereby negatively regulating the Imd signaling pathway, and down-regulation ofresulted in an increase of anti-microbial peptides which would potentially increase the resistance oflarvae to bacterial infection.
; immune negative regulation; BmCaspase-8-Like (BmCasp8L); expression feature; anti-microbial peptide; BmRelish
10.3864/j.issn.0578-1752.2018.21.017
2018-06-26;
2018-08-15
國家自然科學(xué)基金面上項(xiàng)目(31672495)
胡杰,Tel:023-68250748;E-mail:swuHj2016@163.com。通信作者王菲,Tel:023-68251569;E-mail:fwangswu@gmail.com
(責(zé)任編輯 岳梅)