賀玲 張小燕 楊雅芝 李劍
[摘要] 慢性粒細(xì)胞白血病是一種惡性骨髓增殖性疾病,隨著酪氨酸激酶等化療藥物的使用,使其臨床緩解率提高,但其耐藥性高達(dá)15%并逐年上升。最近的研究發(fā)現(xiàn),骨髓微環(huán)境(BM)中殘留的白血病干細(xì)胞(LSCs)在慢性粒細(xì)胞白血病患者獲得耐藥中起著重要作用。LSCs會(huì)分泌某些特定的細(xì)胞因子,起著重塑BM及建立保護(hù)性“壁龕”的作用,其中微環(huán)境中細(xì)胞因子CCL3可招募Nestin+間充質(zhì)干細(xì)胞(MSCs)組建保護(hù)性“壁龕”庇護(hù)LSCs;緊接著轉(zhuǎn)化生長(zhǎng)因子-β1使MSCs Nestin+轉(zhuǎn)化為α-SMA+MSCs,成為成熟的“壁龕”保護(hù)LSCs。從而耐受化療藥物的殺傷,導(dǎo)致疾病復(fù)發(fā)。另一方面,骨髓微環(huán)境能夠通過多種機(jī)制使LSCs的信號(hào)傳導(dǎo)途徑異常,表觀遺傳學(xué)改變及跨膜運(yùn)輸?shù)鞍椎幕钚栽黾?,?dǎo)致LSCs逃逸免疫系統(tǒng)的“監(jiān)察”。本文就BM與LSCs介導(dǎo)的慢性粒細(xì)胞白血病耐藥作一綜述。
[關(guān)鍵詞] 慢性粒細(xì)胞白血病;白血病干細(xì)胞;骨髓微環(huán)境;耐藥
[中圖分類號(hào)] R733.7? ? ? ? ? [文獻(xiàn)標(biāo)識(shí)碼] A? ? ? ? ? [文章編號(hào)] 1673-7210(2019)03(b)-0035-04
慢性粒細(xì)胞白血?。–ML)是由骨髓中的CD34+/CD38-/CD90-祖細(xì)胞功能失調(diào)引起的一種骨髓抑制性疾病[1]。通過使用酪氨酸激酶抑制劑,使CML患者完全細(xì)胞遺傳緩解率達(dá)85%,但仍然有15%左右的患者會(huì)發(fā)生耐藥,耐藥已成為CML治療失敗的主要原因。目前研究主要集中從白血病干細(xì)胞(LSCs)上尋找原因,并認(rèn)為L(zhǎng)SCs導(dǎo)致治療失敗的機(jī)制有以下幾種:如LSCs多藥耐藥機(jī)制、LSCs抗凋亡機(jī)制和備受關(guān)注的LSCs多亞克隆樹枝狀演化機(jī)制[2]。從以上的機(jī)制中尋找減少耐藥的方法,至今未獲得突破性進(jìn)展。目前高度關(guān)注LSCs和微環(huán)境之間的關(guān)系,研究[3-5]提示LSCs通過躲藏于微環(huán)境中特定的“壁龕”逃避治療,導(dǎo)致不能清除殘留的LSCs,從而導(dǎo)致疾病復(fù)發(fā)。
1 正常骨髓微環(huán)境
近些年來,檢測(cè)鑒定出了造血干細(xì)胞(hematopietic stem cells,HSCs)的各種功能性“壁龕”[5-7],如:倍受學(xué)者們關(guān)注的靜止性HSCs的保護(hù)性“壁龕”。骨髓微環(huán)境(BM)中的骨內(nèi)膜小動(dòng)脈周圍分布大量靜止性的HSCs,小動(dòng)脈血管周細(xì)胞Nestin+間充質(zhì)干細(xì)胞(mesenchymal stem cells,MSCs)是這種HSCs保護(hù)性“壁龕”的重要成員,能夠維持HSCs的靜止性,調(diào)控其功能[7-10]。最近有學(xué)者[10-13]發(fā)現(xiàn),巨核細(xì)胞也是這種保護(hù)性“壁龕”的重要組成成分,其可調(diào)控HSCs處于G0期。HSC的BM中各種“壁龕”深入的研究為進(jìn)一步了解白血病骨髓微環(huán)境(CML-BM)提供了理論基礎(chǔ)。
2 CML骨髓微環(huán)境
目前,關(guān)于CML-BM的研究主要集中在兩方向。第一個(gè)方向,腫瘤細(xì)胞在骨髓中無限增殖,破壞和重塑正常的BM,使得微環(huán)境中一些“壁龕”更適于LSCs生長(zhǎng),不利于正常造血細(xì)胞的生長(zhǎng),破壞骨髓的造血功能,導(dǎo)致治療失敗。第二個(gè)方向,關(guān)注CML-BM怎樣保護(hù)LSCs,使其逃避化療等治療。CML耐藥性的產(chǎn)生通常與位于BM的骨內(nèi)膜區(qū)域內(nèi)靜止的LSCs有關(guān)[3,14]。LSCs能夠與BM相互作用,影響周圍細(xì)胞的表型,增加了細(xì)胞的增殖潛能并降低對(duì)酪氨酸激酶抑制劑(TKIs)的敏感性或產(chǎn)生耐藥[15]。Raimondo等[16]研究CML發(fā)現(xiàn),治療后在BM的骨內(nèi)膜附近可發(fā)現(xiàn)殘余的LSCs,大多處于G0期,能抵抗藥物的殺傷作用,導(dǎo)致CML的復(fù)發(fā)。我國(guó)洪登禮實(shí)驗(yàn)室有同樣的發(fā)現(xiàn),利用小鼠做受體,移植人白血病細(xì)胞建立“人源性”的白血病小鼠,給這些小鼠進(jìn)行化療。在化療的刺激下,LSCs會(huì)分泌某些特定的細(xì)胞因子,重塑微環(huán)境并建立保護(hù)性“壁龕”,其中某些細(xì)胞因子可招募Nestin+MSCs到LSCs周圍,啟動(dòng)保護(hù)性“壁龕”的組建;緊接著轉(zhuǎn)化生長(zhǎng)因子-β(TGF-β)使“壁龕”中的MSC細(xì)胞上的Nestin+轉(zhuǎn)化為α-SMA+,形成成熟的“壁龕”來保護(hù)LSCs。他們將這種“壁龕”命名為治療誘導(dǎo)性“壁龕”(therapy-induced niche,TI-niche),這種“TI-niche”是首次在世界上報(bào)道。該實(shí)驗(yàn)室后續(xù)研究發(fā)現(xiàn),“壁龕”中的細(xì)胞能分泌Furin蛋白酶,能將應(yīng)激蛋白前體剪切成為成熟的激蛋白,后者刺激LSCs表面轉(zhuǎn)化生長(zhǎng)因子-βRⅡ的表達(dá),激活TGF-β信號(hào)通路,從而賦予LSCs抗藥和抗凋亡的特性。值得關(guān)注的是,在不緩解或復(fù)發(fā)的患者骨髓標(biāo)本中可檢查出TI-niche,而在臨床緩解的患者標(biāo)本中未發(fā)現(xiàn)。這說明白血病患者骨髓中的TI-niche的形成是導(dǎo)致其治療失敗的重要原因[17]。
除了LSCs與BM相互作用之外,BM還可以通過釋放外泌體及特異性轉(zhuǎn)移許多信號(hào)的微小囊泡(包括DNA,細(xì)胞因子、蛋白和miRNA)來促進(jìn)白血病的存活和耐藥[18-19]。Corrado等[20]提出,腫瘤來源的外泌體可以重新編程BM,抑制抗白血病免疫和介導(dǎo)耐藥性。研究證實(shí),白血病細(xì)胞釋放的外泌體內(nèi)含有膜相關(guān)TGF-β1,其能夠降低NK細(xì)胞破壞LSCs的能力,隨后誘導(dǎo)免疫抑制效應(yīng),從而幫助白血病細(xì)胞逃避免疫反應(yīng)[21]。研究[22-23]發(fā)現(xiàn)CML衍生的外泌體中通過配體-受體相互作用激活抗凋亡途徑,促進(jìn)腫瘤細(xì)胞的增殖和存活。同樣,從CML細(xì)胞釋放的外泌體可以刺激BM基質(zhì)細(xì)胞產(chǎn)生白介素(IL-8),反過來,IL-8能夠在體外和體內(nèi)積極調(diào)節(jié)白血病細(xì)胞的惡性表型和生存[24]。此外,在CML和基質(zhì)細(xì)胞中檢測(cè)到IL-8和/或其受體的表達(dá)增加,這表明IL-8具有調(diào)節(jié)腫瘤微環(huán)境的能力。不僅外泌體中的細(xì)胞因子能調(diào)節(jié)腫瘤微環(huán)境,外泌體中的miRNA同樣可以重塑微環(huán)境。Taverna等[25]在對(duì)LAMA84細(xì)胞系的外泌體研究發(fā)現(xiàn),miR-126過表達(dá)的外泌體,可誘導(dǎo)人臍靜脈內(nèi)皮細(xì)胞(HUVEC)中CXCL12和VCAM1表達(dá)的減少,并且負(fù)性調(diào)節(jié)LAMA84細(xì)胞的遷移性和粘附性,表明外泌體中的miRNA在BM中具有重要作用,可能影響疾病進(jìn)展。Taverna研究團(tuán)隊(duì)[26]發(fā)現(xiàn)LAMA84細(xì)胞系和CML患者血漿的外泌體都含有表皮生長(zhǎng)因子家族的成員AREG,該因子具有幾種功能,其中包括:①激活基質(zhì)細(xì)胞中的EGF受體信號(hào)傳導(dǎo),②增加SNAIL及其靶向的MPP9和IL-8的表達(dá),③過度表達(dá)膜聯(lián)蛋白A2,促進(jìn)黏附、生長(zhǎng)和侵襲白血病細(xì)胞。
3 LSCs和微環(huán)境對(duì)TKIs耐藥性的影響
臨床實(shí)踐中引入TKI顯著改善了CML患者的預(yù)后。盡管如此,對(duì)于某些人來說,由于耐藥性的出現(xiàn),治療必須停止或改變。在CML患者中,除了繼發(fā)性BCR-ABL1突變的機(jī)制,耐藥性的出現(xiàn)還與以下一些因素有關(guān),如:維持LSC生長(zhǎng)的信號(hào)傳導(dǎo)途徑異常激活,表觀遺傳學(xué)改變及跨膜運(yùn)輸?shù)鞍椎幕钚栽黾印F渲锌缒まD(zhuǎn)運(yùn)蛋白功能的改變是耐藥性的主要原因之一,即ATP結(jié)合盒(ABC)轉(zhuǎn)運(yùn)蛋白家族的幾個(gè)成員通過微環(huán)境釋放幾種因子在腫瘤細(xì)胞中表達(dá)增加[27]。事實(shí)上,ABC轉(zhuǎn)運(yùn)蛋白的表達(dá)受到BM復(fù)雜的信號(hào)網(wǎng)絡(luò)調(diào)控,獲得多藥耐藥(multidrug resistance MDR)表型[28-30]。由于跨膜轉(zhuǎn)運(yùn)蛋白的過度表達(dá),白血病細(xì)胞具有增加將藥物泵出細(xì)胞的能力。研究最為廣泛的ABC轉(zhuǎn)運(yùn)蛋白成員包括ABCB1/Pgp、ABCC1/MRP1和ABCG2/BCRP。在正常的HSCs中,這些轉(zhuǎn)運(yùn)蛋白通過調(diào)節(jié)細(xì)胞信號(hào)保護(hù)細(xì)胞免受有毒物質(zhì)的損傷,并參與HSC的靜止,分化和自我更新。已有研究[31-32]報(bào)道,對(duì)伊馬替尼耐藥的K562細(xì)胞中,ABCB1陽性細(xì)胞數(shù)量增多,表明TKI治療導(dǎo)致選擇以跨膜轉(zhuǎn)運(yùn)蛋白過表達(dá)為特征的LSC以及表達(dá)其他ABC成員如ABCC1和ABCG2的細(xì)胞增多。而在AP-CML患者在治療期間ABCB1陽性細(xì)胞數(shù)量增多,表明TKI治療導(dǎo)致CML-LSC的MDR表型不僅可以通過ABC轉(zhuǎn)運(yùn)蛋白的作用產(chǎn)生,還可以通過其他一些現(xiàn)象發(fā)生,如藥物通量減少和細(xì)胞生長(zhǎng)失衡、增殖和凋亡信號(hào)。除藥物外,一些TKIs攝入細(xì)胞還依賴于膜轉(zhuǎn)運(yùn)蛋白(如OCT1、OCTN2)。這些轉(zhuǎn)運(yùn)蛋白的低表達(dá)導(dǎo)致TKIs胞質(zhì)濃度的降低,在治療失敗中起重要作用[33]。盡管這些數(shù)據(jù)增強(qiáng)了轉(zhuǎn)運(yùn)蛋白對(duì)TKIs反應(yīng)或抗性的作用,但轉(zhuǎn)運(yùn)蛋白,LSCs和TKIs抗性之間關(guān)系仍然是一個(gè)未解決的問題。
4 結(jié)論
盡管各種新藥不斷出現(xiàn),CML的治療效果已經(jīng)有了顯著的提高。但由于LSCs的存在, CML依然存在難治愈、易復(fù)發(fā)的問題。一方面,LSCs會(huì)分泌CCL3、TGF-β等細(xì)胞因子,重塑微環(huán)境并建立保護(hù)性“壁龕”來保護(hù)LSCs,耐受化療藥物的殺傷作用,導(dǎo)致疾病復(fù)發(fā)。另一方面,BM能夠通過多種機(jī)制將LSCs隱藏到免疫系統(tǒng)中。在疾病發(fā)作時(shí),骨髓衍生的抑制細(xì)胞降低自然殺傷細(xì)胞的數(shù)量以及阻止LSCs的免疫消除。因此特異性地干擾LSCs與其干細(xì)胞微環(huán)境間的相互作用,對(duì)CML的治療具有重大意義。
[參考文獻(xiàn)]
[1]? Morrison SJ,Scadden DT. The bone marrow niche for hae-matopoietic stem cells [J]. Nature,2014,505(7483):327-334.
[2]? Rosti G,Castagnetti F,Gugliotta G,et al. Tyrosine kinase inhibitors in chronic myeloid leukaemia:Which,when,for whom [J]. Nat Rev Clin Oncol,2017,14(3):141-154.
[3]? Karanu FN,Murdoch B,Gallacher L,et al. The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells [J]. Exp Med,2000,192(9):1365-1372.
[4]? Medyouf H. The microenvironment in human myeloid malignancies:Emerging concepts and therapeutic implications [J]. Blood,2017,129(12):1617-1626.
[5]? Mukaida N,Tanabe Y,Baba T. Chemokines as a conductor of bone marrow microenvironment in chronic myeloid leukemia [J]. Int J Mol Sci,2017,18(8):830-835.
[6]? Christopher MJ,Liu F,Hilton MJ,et al. Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization [J]. Blood,2009,114(7):1331-1339.
[7]? Jin L,Tabe Y,Konoplev S,et al. CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells [J]. Mol Cancer Ther,2008,7(1):48-58.
[8]? Zhang B,Ho Y,Huang Q,et al. Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia [J]. Cancer Cell,2012,21(4):577-592.
[9]? Mendelson A,F(xiàn)renette PS. Hematopoietic stem cell niche maintenance during homeostasis and regeneration [J]. Nat Med,2014,20(8):833-846.
[10]? Bhatia R,McGlave PB,Dewald GW,et al. Abnormal function of the bone marrow microenvironment in chronic myelogenous leukemia:Role of malignant stromal macr-ophages [J]. Blood,1995,85(12):3636-3645.
[11]? Camacho V,McClearn V,Patel S,et al. Regulation of normal and leukemic stem cells through cytokine signaling and the microenvir-onment [J]. Int Hematol,2017,105(5):566-577.
[12]? Vanegas NDP,Vernot JP. Loss of quiescence and self-renewal capacity of hematopoietic stem cell in an in vitro leukemic niche [J]. Exp Hematol Oncol,2017,6(2):432-435.
[13]? Nievergall E,Reynolds J,Kok CH,et al. TGF-alpha and IL-6 plasma levels selectively identify CML patients who fail to achieve an early molecular response or progress in the first year of therapy [J]. Leukemia,2016,30(6):1263-1272.
[14]? Boyiadzis M,Whiteside TL. The emerging roles of tumor-derived exosomes in hema-tological malignancies [J]. Leu-kemia,2017,31(6):1259-1268.
[15]? Hong CS,Muller L,Whiteside TL,et al. Plasma exosomes as markers of therapeutic response in patients with acute myeloid leukemia [J]. Immunol,2014,10(5):160.
[16]? Raimondo S,Saieva L,Corrado C,et al. Chronic myeloid leukemia-derived exosomes promote tumor growth through an autocrine mechanism [J]. Cell Commun Signal,2015, 13(8):175-179.
[17]? Duan CW,Shi J,Chen J,et al. Leukemia propagating cells rebuild an evolving in response to therapy [J]. Cancer Cell,2014,25(6):778-793.
[18]? Denizot Y,F(xiàn)ixe P,Liozon E,et al. Serum interleukin-8(IL-8)and IL-6 concentrations in patients with hematologic malignancies [J]. Blood,1996,87(9):4016-4017.
[19]? Taverna S,Amodeo V,Saieva L,et al. Exosomal shuttling of miR-126 in endothelial cells modulates adhesive and migratory abilities of chronic myelogenous leukemia cells [J]. Mol Cancer,2014,11(13):169.
[20]? Corrado C,Saieva L,Raimondo S,et al. Chronic myelogenous leukaemia exosomes modulate bone marrow microenvironment through activation of epidermal growth factor receptor [J]. Cell Mol Med,2016,20(10):1829-1839.
[21]? Ng KP,Manjeri A,Lee KL,et al. Physiologic hypoxia promotes maintenance of CML stem cells despite effective BCR-ABL1 inhibition [J]. Blood,2016,123(21):3316-3326.
[22]? Corrado C,Raimondo S,Saieva L,et al. Exosome-mediated crosstalk between chronic myelogenous leukemia cells and human bone marrow stromal cells triggers an interleukin 8- dependent survival of leukemia cells [J]. Cancer Lett,2014,348(1/2):71-76.
[23]? Arrigoni E,Galimberti S,Petrini M,et al. ATP-binding cassette transmembrane transporters and their epigenetic control in cancer [J]. Expert Opin Drug Metab Toxicol,2016,12(12):1419-1432.
[24]? Chen KG,Sikic BI,et al. Molecular pathways:Regulation and therapeutic implications of multidrug resistance [J]. Clin Cancer Res,2012,18(7):1863-1869.
[25]? Taverna V,Di Luca A,Sousa D,et al. Multidrug resistant tumour cells shed more microvesicle-like EVs and less exosomes than their drugsensitive counterpart cells [J]. Biochim Biophys Acta,2016,1860(3):618-627.
[26]? Taverna L,Bergevoet SM,Gilissen C,et al. Hematopoietic stem cells exhibit a specific ABC transporter gene expression profile clearly distinct from other stem cells [J]. BMC Pharmacol,2010,13(10):1180-1186.
[27]? Raij L,Makers H Gilissen C,et al. ATP-binding-cassette transporters in hematopoietic stem cells and their utility as therapeutical targets in acute and chronic myeloid leukemia [J]. Leukemia,2007,21(10):2094-2102.
[28]? Illmer T,Schaich M,Platzbecker U,et al. P-glycoprotein-mediated drug efflux is a resistance mechanism of chronic myelogenous leukemia cells to treatment with imatinib mesylate [J]. Leukemia,2013,18(3):401-408.
[29]? Stromskaya TP,Rybalkina EY,Kruglov SS,et al. Role of P-glycoprotein in evolution of populations of chronic myeloid leukemia cells treated with imatinib [J]. Biochemistry,2011,73(1):29-37.
[30]? Alves R,F(xiàn)onseca AR,Goncalves AC,et al. Drug transporters play a key role in the complex process of Imatinib resistance in vitro [J]. Leuk Res,2015,39(3):355-360.
[31]? Hu H,Li Y,Gu J,et al. Antisense oligo-nucleotide against miR-21 inhibits migration and induces apoptosis in leukemic K562 cells [J]. Lymphoma,2016,51(4):694-701.
[32]? Gao SM,Xing CY,Chen CQ,et al. miR-15a and miR-16-1 inhibit the proliferation of leukemic cells by down-regulating WT1 protein level [J]. Exp Clin Cancer Res,2016,1(30):345-350
[33]? Irvine DA,Zhang B,Kinstrie R,et al. Deregulated hedgehog pathway signaling is inhibited by the smoothened antagonist LDE225 in chronic phase chronic myeloid leukaemia [J]. Sci Rep,2016,9(6):254-260.
(收稿日期:2018-06-19? 本文編輯:封? ?華)