国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于貝葉斯傅里葉動態(tài)模型的橋梁極值應(yīng)力預(yù)測

2019-06-24 15:27樊學(xué)平屈廣劉月飛
關(guān)鍵詞:貝葉斯監(jiān)測數(shù)據(jù)極值

樊學(xué)平 屈廣 劉月飛

摘? ?要:研究了基于健康監(jiān)測應(yīng)力數(shù)據(jù)的橋梁極值應(yīng)力動態(tài)預(yù)測.考慮到監(jiān)測應(yīng)力的周期性、隨機性和動態(tài)性等特點,首先初次建立了橋梁監(jiān)測極值應(yīng)力的傅里葉動態(tài)非線性模型(Fourier Dynamic Nonlinear Model,F(xiàn)DNM),結(jié)合Taylor級數(shù)展開技術(shù),將FDNM近似轉(zhuǎn)化為傅里葉動態(tài)線性模型(Fourier Dynamic Linear Model,F(xiàn)DLM);然后采用貝葉斯方法,基于動態(tài)監(jiān)測極值應(yīng)力數(shù)據(jù),建立了無先驗信息的貝葉斯傅里葉動態(tài)線性模型(Bayesian Fourier Dynamic Linear Model: BFDLM),進而對監(jiān)測極值應(yīng)力的一步向前預(yù)測分布參數(shù)和后驗應(yīng)力狀態(tài)分布參數(shù)進行了預(yù)測分析;最后通過實際橋梁監(jiān)測極值應(yīng)力數(shù)據(jù)對本文所建模型和方法的合理性及適用性進行了驗證分析,結(jié)果表明本文所建BFDLM能夠反映橋梁極值應(yīng)力的周期性、隨機性以及動態(tài)性等特點.研究成果將為橋梁監(jiān)測極值應(yīng)力預(yù)測提供理論基礎(chǔ)和應(yīng)用方法.

關(guān)鍵詞:橋梁;傅里葉動態(tài)非線性模型;Taylor級數(shù)展開技術(shù);貝葉斯方法;橋梁極值應(yīng)力預(yù)測

中圖分類號:TU391; TU392.5? ? ? ? ? ? ? ? ? 文獻標志碼:A

Abstract: The dynamic prediction of bridge extreme stress based on health monitoring stress data was studied. Considering the monitored stresses periodicity, randomness, dynamic characteristics and so forth,firstly,the Fourier Dynamic Nonlinear Model(FDNM) of bridge monitored extreme stress was built,and, with Taylor series expansion technology, FDNM was approximately transferred into the Fourier Dynamic Linear Model(FDLM);secondly, with Bayes method, the Bayesian FDLM(BFDLM) was built based on the monitored extreme stress data,and the one-step forward prediction distribution parameters of monitored extreme stress and distribution parameters of posterior stress state were dynamically predicted; finally, the monitored extreme stress data of an actual bridge was provided to illustrate the application and feasibility of the proposed models and methods. The results show that the proposed BFDLM can reflect bridge extreme stresses' periodicity, randomness, dynamics and so forth,which can provide the theoretical foundation and application approach for bridge monitoring extreme stress prediction.

Key words: bridge;Fourier dynamic nonlinear model;Taylor series expansion technology;Bayesian approach; bridge extreme stress prediction

橋梁健康監(jiān)測系統(tǒng)在長期運營中積累了大量監(jiān)測數(shù)據(jù),如應(yīng)力、應(yīng)變、撓度、加速度等.發(fā)展至今,監(jiān)測數(shù)據(jù)合理應(yīng)用的研究主要集中在模態(tài)分析[1]、損傷識別與評估[1-2]、模型修正[3]以及可靠性評估[4-5]等領(lǐng)域,仍難以有效預(yù)測結(jié)構(gòu)的動態(tài)可靠性,因此如何有效利用監(jiān)測信息預(yù)測結(jié)構(gòu)可靠性仍是橋梁健康監(jiān)測領(lǐng)域備受關(guān)注的研究難點.而結(jié)構(gòu)可靠性主要跟抗力與荷載效應(yīng)相關(guān),因而合理動態(tài)預(yù)測荷載效應(yīng)就成為結(jié)構(gòu)可靠性預(yù)測的關(guān)鍵問題.

考慮到橋梁有限元建模和模型更新的復(fù)雜性和困難性,采用無需模型的分析方法逐漸成為橋梁健康監(jiān)測領(lǐng)域的研究趨勢.基于實際監(jiān)測數(shù)據(jù),采用無需模型的分析方法預(yù)測橋梁的荷載效應(yīng)已取得一些研究成果,但多為基于離線監(jiān)測信息的預(yù)測研究[5-7],而基于實時監(jiān)測信息的動態(tài)預(yù)測研究相對較少,且研究成果存在一定的局限性,如:Frangopol等[8-9]提出了基于監(jiān)測極值一次回歸函數(shù)的橋梁性能的可靠性預(yù)測方法,并于同年提出了基于貝葉斯更新的橋梁可靠性預(yù)測方法,兩種方法分析過程中分別采用一次回歸函數(shù)和常值函數(shù)進行荷載效應(yīng)動態(tài)預(yù)測,均未考慮監(jiān)測變量的動態(tài)隨機性和周期性;趙卓[10]采用ARMA模型動態(tài)預(yù)測了長春伊通河橋構(gòu)件的荷載效應(yīng)(撓度、加速度以及索力等),分析過程中亦未考慮監(jiān)測變量的動態(tài)隨機性和周期性,且存在模型長期預(yù)測精度不高的問題;樊學(xué)平等[11-13]利用監(jiān)測數(shù)據(jù),研究了基于貝葉斯動態(tài)線性模型和貝葉斯動態(tài)非線性模型的橋梁構(gòu)件可靠性動態(tài)預(yù)測方法,分析過程中存在以下兩個問題:a)荷載效應(yīng)的動態(tài)預(yù)測均未考慮監(jiān)測變量數(shù)據(jù)周期性的特點,即貝葉斯動態(tài)模型的狀態(tài)方程均未考慮監(jiān)測變量狀態(tài)的周期性;b)動態(tài)模型中監(jiān)測誤差的方差均為已知.綜上所述,本文作者經(jīng)過研究發(fā)現(xiàn),存在以下問題需要解決:1)如何建立考慮監(jiān)測數(shù)據(jù)動態(tài)性、隨機性以及周期性等特點的動態(tài)模型;2)在監(jiān)測誤差未知的情況下,如何采用貝葉斯方法對動態(tài)模型進行概率遞推.

鑒于上述問題,本文通過傅里葉函數(shù)來建立先驗信息未知的橋梁監(jiān)測極值應(yīng)力動態(tài)模型,采用貝葉斯方法對其進行概率遞推,實現(xiàn)橋梁極值應(yīng)力的動態(tài)預(yù)測.

1? ?研究流程及步驟考慮到監(jiān)測數(shù)據(jù)的動態(tài)性、隨機性以及周期性,本文所提的橋梁極值應(yīng)力動態(tài)預(yù)測的詳細流程圖如圖1所示.

結(jié)合圖1可得具體研究步驟為:1)利用橋梁系統(tǒng)歷史監(jiān)測極值應(yīng)力數(shù)據(jù),本文認為其為一個時間序列,對其進行五點三次平滑處理,近似得到極值應(yīng)力狀態(tài)數(shù)據(jù),采用傅里葉函數(shù)和Taylor級數(shù)展開技術(shù),近似得到極值應(yīng)力的線性狀態(tài)方程,并將狀態(tài)方程與歷史監(jiān)測極值應(yīng)力數(shù)據(jù)相結(jié)合得到線性監(jiān)測方程,進而可得橋梁極值應(yīng)力無先驗信息的傅里葉動態(tài)線性模型(FDLM);2)基于建立的無先驗信息FDLM和動態(tài)監(jiān)測極值應(yīng)力數(shù)據(jù),采用貝葉斯方法,實現(xiàn)橋梁極值應(yīng)力的動態(tài)概率預(yù)測,并通過實際橋梁的監(jiān)測極值應(yīng)力數(shù)據(jù)驗證所提方法的合理性和適用性.

2? ?橋梁監(jiān)測極值應(yīng)力無先驗信息的FDLM傅里葉動態(tài)線性模型(FDLM)由線性監(jiān)測方程、基于傅里葉函數(shù)和Taylor級數(shù)展開技術(shù)的線性狀態(tài)方程以及初始狀態(tài)信息三部分組成.狀態(tài)方程反映了監(jiān)測變量和系統(tǒng)隨時間變化的水平,監(jiān)測方程反映了監(jiān)測變量和狀態(tài)變量之間的關(guān)系.本文所建立的FDLM基于兩點假設(shè)[14-15]:

1)狀態(tài)變量{θt}的變化是一個馬爾科夫過程;

2)監(jiān)測變量{yt}相互獨立,且只與狀態(tài)變量相關(guān).

2.1? ?狀態(tài)方程的建立本文主要通過橋梁歷史監(jiān)測極值應(yīng)力數(shù)據(jù)建立動態(tài)線性模型,其中狀態(tài)方程的詳細建立步驟

如下:

1)利用五點三次平滑處理方法[10],對橋梁歷史監(jiān)測極值應(yīng)力數(shù)據(jù)進行重采樣,近似得到初始極值應(yīng)力狀態(tài)數(shù)據(jù);

2)采用傅里葉函數(shù)(反映數(shù)據(jù)的周期性)對初始應(yīng)力狀態(tài)數(shù)據(jù)進行回歸分析,得到極值應(yīng)力狀態(tài)的回歸函數(shù);

3)利用回歸函數(shù),結(jié)合Taylor級數(shù)展開技術(shù),建立傅里葉線性狀態(tài)方程.初始極值應(yīng)力狀態(tài)的回歸函數(shù)為

4? ?實橋應(yīng)力預(yù)測分析(天津富民橋)

本文選取了天津富民橋作為工程實例,詳見文獻[13].富民橋總長340.3 m,寬40 m,主跨157 m,為單塔空間索面自錨式懸索橋.其主跨主纜錨于主梁兩側(cè),邊跨主纜錨于重力式錨碇,形成了一個獨特而又穩(wěn)定的結(jié)構(gòu)體系.該結(jié)構(gòu)體系動力響應(yīng)較為復(fù)雜,同時結(jié)構(gòu)受溫度影響較大,故監(jiān)測應(yīng)力信息通常呈周期性.由文獻[13]可知:D斷面橫梁截面安裝了3個傳感器(如圖2所示),分別為FBG01012、FBG01015和FBG01005.

本文定義每一分鐘的監(jiān)測應(yīng)力極大值為監(jiān)測極值應(yīng)力,在2009年8月24日和25日對D斷面進行動態(tài)監(jiān)測,經(jīng)過數(shù)據(jù)分析比較可得,期間傳感器FBG01012采集到的監(jiān)測應(yīng)力值最大,所采集的每一分鐘的監(jiān)測極值應(yīng)力如圖3所示.因而本文結(jié)合D斷面?zhèn)鞲衅鱂BG01012的歷史動態(tài)監(jiān)測極值應(yīng)力數(shù)據(jù)(1 ~287 min的每分鐘的周期性極值應(yīng)力數(shù)據(jù)如圖3所示)建立FDNM,并對其進行線性化,轉(zhuǎn)化為FDLM,再利用貝葉斯方法,基于287 ~1 149 min的監(jiān)測極值應(yīng)力數(shù)據(jù),對第288 ~1 150 min的極值應(yīng)力進行動態(tài)預(yù)測.

式中:yt為t時刻的監(jiān)測應(yīng)力值;vt為監(jiān)測誤差;V為常值未知方差,可以通過St-1 = dt-1 /nt-1近似估計.mt-1 和Ct-1可以通過前287 min應(yīng)力數(shù)據(jù)經(jīng)過五點三次平滑處理的數(shù)據(jù)(平滑處理后的初始信息見圖4)近似估計得到.

采用式(8)~式(20)和式(22)~式(25),利用1~287 min的監(jiān)測應(yīng)力數(shù)據(jù)建立的FDLM,對第288~574 min(后287 min)的應(yīng)力進行動態(tài)預(yù)測,結(jié)果如圖5~圖7所示.

由圖5與圖6可知,預(yù)測應(yīng)力與監(jiān)測應(yīng)力的大小近似相等,且預(yù)測應(yīng)力區(qū)間均包含了監(jiān)測應(yīng)力和預(yù)測應(yīng)力的所有數(shù)據(jù),證明了本文所建模型是合理的.

由圖7可知,由式(17)計算得到的FDLM的預(yù)測精度隨著監(jiān)測應(yīng)力的不斷修正越來越好,進一步驗證了本文所建模型的合理性.

5? ?結(jié)? ?論

本文考慮到橋梁監(jiān)測信號的隨機性、動態(tài)性以及周期性等特點,首次建立了傅里葉動態(tài)線性模型,采用貝葉斯方法對其進行了動態(tài)概率遞推,并利用實際橋梁監(jiān)測數(shù)據(jù)對其進行了驗證分析,結(jié)論如下:

1)無先驗信息FDLM能夠?qū)蛄簶O值應(yīng)力進行合理的預(yù)測,預(yù)測值和監(jiān)測值的變化趨勢一致,大小近似相等,而且能夠有效反映實時監(jiān)測數(shù)據(jù)的變化范圍和趨勢,并且由于模型方差未知,更為符合工程實際.

2)無先驗信息FDLM隨著實時監(jiān)測數(shù)據(jù)的不斷修正,預(yù)測精度越來越高.說明預(yù)測的客觀性越來越好.這些成果將為橋梁健康監(jiān)測提供一定的理論基礎(chǔ).

參考文獻

[1]? ? 李順龍. 基于健康監(jiān)測技術(shù)的橋梁結(jié)構(gòu)狀態(tài)評估和預(yù)警方法研究[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué)土木工程學(xué)院,2009:18—39.

LI S L. Approached of condition assessment and damage alarming of bridges based on structural health monitoring[D]. Harbin:School of Civil Engineering,Harbin Institute of Technology,2009:18—39. (In Chinese)

[2]? ? 宗周紅,鐘儒勉,鄭沛娟,等. 基于健康監(jiān)測的橋梁結(jié)構(gòu)損傷預(yù)后和安全預(yù)后研究進展及挑戰(zhàn)[J]. 中國公路學(xué)報,2014,27(12):46—57.

ZONG Z H,ZHONG R M,ZHENG P J,et al. Damage and safety prognosis of bridge structures based on structural health monitoring:progress and challenges [J]. China Journal of Highway and Transport,2014,27(12):46—57. (In Chinese)

[3]? ? 魏錦輝,任偉新. 基于響應(yīng)面方法的橋梁靜動力有限元模型修正[J]. 公路交通科技,2015,32(2):68—73.

WEI J H,REN W X. Static and dynamic bridge finite element model updating based on response surface method [J]. Journal of Highway and Transportation Research and Development,2015,32(2):68—73. (In Chinese)

[4]? ? 焦美菊,孫利民,李清富. 基于監(jiān)測數(shù)據(jù)的橋梁結(jié)構(gòu)可靠度評估[J]. 同濟大學(xué)學(xué)報(自然科學(xué)版),2011,39(10):1452—1457.

JIAO M J,SUN L M,LI Q F. Bridge structural reliability assessment based on health monitoring data [J]. Journal of Tongji University (Natural Science), 2011, 39(10): 1452—1457.? (In Chinese)

[5]? FRANGOPOL D M,STRAUSS A,KIM S. Bridge reliability assessment based on monitoring [J]. Journal of Bridge Engineering,2008,13(3):258—270.

[6]? ? WALSH S B,BORELLO D J,GULDUR B,et al. Data processing of point clouds for object detection for structural engineering applications [J]. Computer-Aided Civil and Infrastructure Engineering,2013,28(7):495—508.

[7]? ? CATBAS F N,SUSOY M,F(xiàn)RANGOPOL D M. Structural health monitoring and reliability estimation:long span truss bridge application with environmental monitoring data [J]. Engineering Structures,2008,30(9):2347—2359.

[8]? ? FRANGOPOL D M,STRAUSS A,KIM S Y. Use of monitoring extreme data for the performance prediction of structures:general approach [J]. Engineering Structures,2008,30:3644—3653.

[9]? ? STRAUSS A,F(xiàn)RANGOPOL D M,Kim S Y. Use of monitoring extreme data for the performance prediction of structures:Bayesian updating [J]. Engineering Structures,2008,30:3654—3666.

[10]? 趙卓. 基于ARMA模型的伊通河橋監(jiān)測數(shù)據(jù)建模與可靠度分析[D]. 哈爾濱:哈爾濱工業(yè)大學(xué)土木工程學(xué)院,2012:35—93.

ZHAO Z. Health monitoring data modeling and reliability analysis for Yitong river bridge based on ARMA model [D]. Harbin:School of Civil Engineering,Harbin Institute of Technology,2012:35—93. (In Chinese)

[11]? L?譈 D G,F(xiàn)AN X P. Bayesian forecasting of structural bending capacity of aging bridges based on dynamic linear model [J]. Journal of Harbin Institute of Technology,2012,44(12):13—17.

[12]? 樊學(xué)平,呂大剛. 基于多個BDLM的橋梁結(jié)構(gòu)可靠度實時預(yù)測[J]. 華南理工大學(xué)學(xué)報(自然科學(xué)版),2013,41(3):70—75.

FAN X P,L?譈 D G. Real-time reliability forecast of bridge structures based on multiple BDLMs [J]. Journal of South China University of Technology,2013,41(3):70—75. (In Chinese)

[13]? 樊學(xué)平. 基于驗證荷載和監(jiān)測數(shù)據(jù)的橋梁可靠性修正與貝葉斯預(yù)測[D]. 哈爾濱:哈爾濱工業(yè)大學(xué)土木工程學(xué)院,2014:39—84 .

FAN X P. Bridge reliability updating and Bayesian prediction based on proof loads and monitored data [D]. Harbin:School of Civil Engineering,Harbin Institute of Technology,2014:39—84. (In Chinese)

[14]? WEST M,HARRISON J. Bayesian forecasting and dynamic models [M]. 2nd ed. New York:Springer Series,1997:32—37.

[15]? PETRIS G,PETRONE S,CAMPAGNOLI P. Dynamic linear models with R[M]. New York:Springer Series,2009:31—84.

收稿日期:2018-05-16

基金項目:國家自然科學(xué)基金資助項目(51608243),National Natural Science Foundation of China(51608243);甘肅省自然科學(xué)基金資助項目(1606RJYA246),Natural Science Foundation of Gansu Province(1606RJYA246)

作者簡介:樊學(xué)平(1983—),男,山西運城人,蘭州大學(xué)副教授,博士

通訊聯(lián)系人,E-mail:fxp_2004@163.com

猜你喜歡
貝葉斯監(jiān)測數(shù)據(jù)極值
研討水環(huán)境監(jiān)測的質(zhì)量控制與保證措施
通過函數(shù)構(gòu)造解決極值點偏移問題
例談解答極值點偏移問題的方法
極值點偏移問題的解法
租賃房地產(chǎn)的多主體貝葉斯博弈研究
租賃房地產(chǎn)的多主體貝葉斯博弈研究
貝葉斯網(wǎng)絡(luò)概述
貝葉斯公式的應(yīng)用和推廣
也談?wù)剺O值點偏移問題
淺談環(huán)境監(jiān)測垂直管理的優(yōu)勢
宜良县| 鄂州市| 江安县| 英德市| 丹阳市| 微博| 镇安县| 十堰市| 灵寿县| 保德县| 云霄县| 达日县| 濉溪县| 广东省| 宾阳县| 海口市| 阳东县| 岳池县| 江北区| 苗栗县| 武定县| 资兴市| 平度市| 江门市| 浏阳市| 永新县| 曲沃县| 平凉市| 南平市| 绥江县| 芜湖县| 金昌市| 汉沽区| 太康县| 陆良县| 顺义区| 齐河县| 富宁县| 黔江区| 汝南县| 绩溪县|