尹?燕,杜迎夢(mèng),焦?魁,杜?青,張國(guó)賓
固體氧化物電解池結(jié)構(gòu)對(duì)其性能的影響研究
尹?燕,杜迎夢(mèng),焦?魁,杜?青,張國(guó)賓
(天津大學(xué)機(jī)械工程學(xué)院,天津 300072)
固體氧化物電解池(SOEC)能利用可再生能源發(fā)電電能高效地將水和二氧化碳轉(zhuǎn)化為氫氣和一氧化碳等燃料,同時(shí)具有高效、低成本、規(guī)模易控等優(yōu)點(diǎn),被認(rèn)為是最有前景的儲(chǔ)能方式.固體氧化物電解池結(jié)構(gòu)變化會(huì)對(duì)電解池導(dǎo)電性能產(chǎn)生影響,同時(shí),顯著影響電解池內(nèi)部的氣體傳輸和傳熱過(guò)程,對(duì)電解池性能優(yōu)化十分重要.為探究結(jié)構(gòu)組成對(duì)固體氧化物電解池性能的影響,本文建立了一個(gè)固體氧化物電解池共電解水和二氧化碳的三維模型,分析加入陽(yáng)極氣體擴(kuò)散層(AGDL)和金屬泡沫流場(chǎng)對(duì)電解池極化曲線、過(guò)電勢(shì)和氣體分布等的影響.分析結(jié)果表明:相比于沒(méi)有AGDL的電解池,加入AGDL可以改善脊下氣體在催化層和流道之間的傳輸,同時(shí)增大電子傳輸橫截面積,從而減小可逆電壓和歐姆過(guò)電勢(shì).隨著AGDL厚度增加,電解池性能改善幅度逐漸變?。畬⑵胀鲌?chǎng)替換成金屬泡沫流場(chǎng)可通過(guò)改善流場(chǎng)和多孔電極的氣體傳輸,降低電解電壓和提高電解效率.增加陽(yáng)極泡沫厚度可以在一定程度上改善SOEC性能.而兩極均采用金屬泡沫流場(chǎng),由于陽(yáng)極金屬泡沫避免了脊下多孔介質(zhì)中的氧氣積聚,可以進(jìn)一步提高電解池性能,但性能提升相對(duì)較?。?/p>
固體氧化物電解池;金屬泡沫;氣體擴(kuò)散層;共電解;氣體分布
由于全球能源需求不斷增長(zhǎng)和環(huán)境問(wèn)題(溫室效應(yīng)等)日益嚴(yán)峻,對(duì)可再生能源的需求日益旺盛.但是由于可再生能源(尤其是風(fēng)能、太陽(yáng)能)的波動(dòng)性、間歇性、消費(fèi)者需求變化及可再生能源的供需不匹配等問(wèn)題,使得能源儲(chǔ)存技術(shù)成為當(dāng)前研究熱點(diǎn).
目前大規(guī)模應(yīng)用的能源儲(chǔ)存方式主要有抽水蓄能和壓縮空氣儲(chǔ)能[1-2],但是這兩種方式嚴(yán)重受到地域結(jié)構(gòu)的限制,且成本較高、往返性較差.其他的儲(chǔ)能方式,如超級(jí)電容、化學(xué)儲(chǔ)能等,發(fā)展不均衡.固體氧化物電解池(SOEC)由于具有高溫高效、成本低、環(huán)境友好、規(guī)模易控等優(yōu)點(diǎn),被認(rèn)為是比較有前景的儲(chǔ)能方式[3-5].其產(chǎn)物合成氣可經(jīng)過(guò)費(fèi)托反應(yīng)或其他化學(xué)工藝制成甲烷、二甲醚等碳?xì)淙剂蟍6-8],這些燃料更易儲(chǔ)存而且可運(yùn)用于現(xiàn)有設(shè)施(天然氣網(wǎng)或加油站)中[9].此外,合成氣還可以作為燃料直接應(yīng)用于固體氧化物電池中.
SOEC主要由3部分組成:陰極、陽(yáng)極和電解質(zhì)層.其中電解質(zhì)層電導(dǎo)率較低,對(duì)整個(gè)電解池的歐姆損耗起到?jīng)Q定性作用.許多研究者通過(guò)降低電解質(zhì)層厚度來(lái)最小化歐姆損耗[10-11],或者通過(guò)雙層電解質(zhì)層改善質(zhì)子傳導(dǎo)性和化學(xué)穩(wěn)定性[12-13],但后者容易存在界面空隙.對(duì)于陰極而言,陰極支撐方式能保證電解池結(jié)構(gòu)強(qiáng)度,同時(shí)其歐姆損失較小,故SOEC結(jié)構(gòu)中需要加入陰極支撐層(擴(kuò)散層).陰極催化層結(jié)構(gòu)顯著影響物質(zhì)傳輸過(guò)程,研究者通過(guò)優(yōu)化陽(yáng)極催化層厚度和孔隙結(jié)構(gòu)來(lái)優(yōu)化其傳質(zhì)性能[14-17].相對(duì)于陰極和電解質(zhì),針對(duì)陽(yáng)極結(jié)構(gòu)對(duì)SOEC性能影響的研究較少.部分實(shí)驗(yàn)研究中SOEC單電池中陽(yáng)極催化層直接與雙極板接觸[18-19],而其他研究中會(huì)在陽(yáng)極催化層和雙極板間加入一層多孔介質(zhì)[20]以促進(jìn)氣體傳輸,目前針對(duì)二者的對(duì)比研究鮮有報(bào)道.
除了電極和電解質(zhì)層,陰極和陽(yáng)極流場(chǎng)結(jié)構(gòu)對(duì)于氣體傳輸和電子傳輸?shù)挠绊懖蝗莺鲆暎饘倥菽Y(jié)構(gòu)由于具有高孔隙率(高達(dá)95%)以及對(duì)流傳質(zhì)等優(yōu)點(diǎn),可有效緩解質(zhì)量傳遞限制現(xiàn)象.而且,用多孔金屬基材代替脆性且昂貴的陶瓷或金屬陶瓷載體可降低成本并提高電池耐久性.
目前有研究表明采用鎳泡沫作固體氧化物燃料電池(SOFC)集電板,可極大改善電池和電堆的性?能[21],采用合金泡沫作為集電板則可以促進(jìn)氣體傳輸和減小電池質(zhì)量[22].通過(guò)制造漸變陽(yáng)極(孔隙率和組分)的方法可以將金屬泡沫結(jié)構(gòu)與陶瓷層相匹配獲得平滑的電極[23].SOEC作為SOFC的逆反應(yīng)設(shè)備,其結(jié)構(gòu)組成完全相同.然而國(guó)內(nèi)外幾乎沒(méi)有關(guān)于金屬泡沫在SOEC上應(yīng)用的研究.故本文嘗試?yán)脭?shù)值模擬手段針對(duì)電解池結(jié)構(gòu)變化(加入陽(yáng)極擴(kuò)散層和金屬泡沫流場(chǎng))對(duì)SOEC的性能影響進(jìn)行研究.
本文建立的SOEC三維模型的計(jì)算域?yàn)殡姸阎械膯瘟鞯?,為提高?jì)算效率,以單流道的中分面為對(duì)稱(chēng)面,設(shè)置對(duì)稱(chēng)邊界.計(jì)算域主要包括8個(gè)部分:陽(yáng)極雙極板(ABP)、陽(yáng)極流場(chǎng)、陽(yáng)極催化層(ACL)、陰極雙極板(CBP)、陰極流場(chǎng)、陰極氣體擴(kuò)散層(CGDL)、陰極催化層(CCL)以及電解質(zhì)層(ELE),具體計(jì)算域如圖1所示.
圖1?數(shù)值模型的計(jì)算域
該模型計(jì)算所需的幾何參數(shù)和基本操作條件列于表1.
為了模擬電解池中傳熱傳質(zhì)、化學(xué)反應(yīng)及電化學(xué)反應(yīng)過(guò)程,模型涉及質(zhì)量守恒方程、動(dòng)量守恒方程、物質(zhì)質(zhì)量分?jǐn)?shù)守恒方程、能量守恒方程.
動(dòng)量守恒方程和質(zhì)量守恒方程(求解域?yàn)槎嗫纂姌O和流場(chǎng))分別為
表1?模型幾何參數(shù)和基本操作條件
Tab.1 Model geometric parameters and basic operating conditions
物質(zhì)質(zhì)量分?jǐn)?shù)守恒方程(求解域?yàn)槎嗫纂姌O和流場(chǎng))為
能量守恒方程(求解域?yàn)檎麄€(gè)計(jì)算域)為
陰極和陽(yáng)極的電化學(xué)反應(yīng)速率由Butler-Volmer方程分別表示為
流場(chǎng)中通入的氣體中包含多種組分,H2O和CO2不僅會(huì)在催化層中參與電解反應(yīng),還會(huì)在支撐層(Ni的催化作用)中發(fā)生化學(xué)催化反應(yīng).催化反應(yīng)主要有可逆的水汽變換反應(yīng)(WGSR)和可逆的蒸汽重整反應(yīng)(SR,又稱(chēng)直接內(nèi)部重組反應(yīng),DIR).由于化學(xué)反應(yīng)速率很快,可認(rèn)為反應(yīng)能快速達(dá)到平衡,WGSR速率(wgsr)和DIR速率(dir)相關(guān)計(jì)算方程分別為
固體氧化物電解池是將電能轉(zhuǎn)化為化學(xué)能的裝置.SOEC輸出的有效能量用產(chǎn)物的低熱能表示為
式中:n, out、n, in分別為組分在出口和入口處的摩爾流量;LHV為組分的低熱值.電解池電解H2O和CO2的能量需求通過(guò)電解電壓和電解電流的乘積?得到,即
電解效率用輸出氣體的總熱值與輸入電能的比值表示,即
陰極和陽(yáng)極出口設(shè)置為壓力出口,本模型以大氣壓作為壓力出口.陰極和陽(yáng)極進(jìn)氣入口為進(jìn)氣的質(zhì)量流量(kg/s)入口,其計(jì)算式分別為
陰極極板電勢(shì)邊界設(shè)定為0,陽(yáng)極邊界為工作電壓(恒電壓)或工作電流密度(恒電流).當(dāng)電堆穩(wěn)定運(yùn)行時(shí),電堆內(nèi)部單電池之間幾乎沒(méi)有熱量交換.為了模擬電堆中部的單電池性能,溫度邊界設(shè)置為絕熱邊界.本文基于ANSYS/Fluent 15.0搭建固體氧化物共電解池模型,電化學(xué)反應(yīng)和化學(xué)反應(yīng)模型利用用戶(hù)自定義方程(UDF)編程實(shí)現(xiàn).筆者在之前工作中對(duì)模型可靠性進(jìn)行了驗(yàn)證[24],模型仿真結(jié)果與實(shí)驗(yàn)結(jié)果[11,15]的對(duì)比驗(yàn)證結(jié)果如圖2所示.可見(jiàn),模型結(jié)果與實(shí)驗(yàn)結(jié)果擬合良好.
圖2?模型仿真結(jié)果與實(shí)驗(yàn)結(jié)果對(duì)比
圖3所示為陽(yáng)極擴(kuò)散層厚度對(duì)電解池極化曲線和電解效率的影響.在同一電流密度下,相比于不加AGDL層,加入AGDL層會(huì)使電解池電解電壓降低、電解效率增加,同時(shí)隨著電流密度增加,兩者性能差距也逐漸變大.將AGDL厚度從0.03mm增加到0.18mm,電解池性能在一定程度得到了改善.陽(yáng)極氣體擴(kuò)散層厚度對(duì)SOEC的影響可以從過(guò)電勢(shì)等方面得到解釋?zhuān)?/p>
(a)極化曲線
(b)電解效率
圖3 陽(yáng)極擴(kuò)散層厚度對(duì)SOEC極化曲線和電解效率的影響
Fig.3 Effect of AGDL thickness on the polarization curve and electrolysis efficiency of SOEC
圖4顯示了電流密度為1.5A/cm2時(shí),陽(yáng)極催化層與擴(kuò)散層(無(wú)擴(kuò)散層情況下為陽(yáng)極催化層與流場(chǎng)、雙極板交界面)處的氧氣濃度的分布.在無(wú)AGDL情況下,氧氣從脊下催化層傳輸?shù)搅鞯纼?nèi)的傳輸阻力較大,使得脊下催化層中氧氣濃度顯著高于流道中的氧氣濃度.而加入AGDL后,脊下催化層中的氣體傳輸過(guò)程明顯改善,氣體分布更均勻且氧氣濃度更低.將AGDL厚度從0.03mm增加到0.18mm,氧氣濃度隨之降低.
模型中計(jì)算可逆電壓采用的是催化層和擴(kuò)散層交界面的反應(yīng)物濃度,即考慮了的濃度損失對(duì)電壓的影響.除此之外,SOEC的過(guò)電勢(shì)還包括陰極活化過(guò)電勢(shì)、陽(yáng)極活化過(guò)電勢(shì)和歐姆過(guò)電勢(shì).AGDL厚度對(duì)各部分過(guò)電勢(shì)和可逆電壓的影響如圖5所示.由圖可知,AGDL厚度改變對(duì)陰極活化過(guò)電勢(shì)影響較小,幾乎可以忽略,而對(duì)可逆電壓、陽(yáng)極活化過(guò)電勢(shì)和歐姆過(guò)電勢(shì)的影響較明顯.
從整體看,加入AGDL層使得可逆電壓降低,這是由于無(wú)AGDL情況下O2在脊下催化層積聚更嚴(yán)重.隨著AGDL厚度增加,可逆電壓逐漸降低.在催化層和雙極板加入AGDL層,電子從催化層向雙極板中的傳輸阻力減小,即降低了歐姆損失,但同時(shí)也使得歐姆熱減少,電解池溫度降低,從而使陽(yáng)極過(guò)電勢(shì)增加.
圖4?陽(yáng)極擴(kuò)散層厚度對(duì)SOEC中O2濃度的影響
(a)可逆電壓??????????????????????(b)陽(yáng)極活化過(guò)電勢(shì)
(c)陰極活化過(guò)電勢(shì)?????????????????????(d)歐姆過(guò)電勢(shì)
圖5?陽(yáng)極擴(kuò)散層厚度對(duì)SOEC可逆電壓和各部分過(guò)電勢(shì)的影響
Fig.5?Effect of AGDL thickness on the reversible voltage and overpotentials of SOEC
從第2.1節(jié)得出使用AGDL有利于改善SOEC性能,本節(jié)以AGDL厚度為0.08mm的電解池作為研究基準(zhǔn),對(duì)比研究傳統(tǒng)流場(chǎng)、陰極采用泡沫流場(chǎng)和兩極均采用泡沫流場(chǎng)對(duì)電解池性能的影響.由于在陽(yáng)極采用金屬泡沫流場(chǎng)的情況下不存在脊對(duì)氣體傳輸?shù)淖璧K,在兩側(cè)均使用金屬泡沫的電解池中不加入AGDL層.
流場(chǎng)結(jié)構(gòu)對(duì)SOEC極化曲線和電解效率的影響如圖6所示.相比于傳統(tǒng)流場(chǎng),陰極采用泡沫流場(chǎng)顯著降低了SOEC電解電壓,同時(shí)提高了電解效率.這些性能提升在大電流密度下更為明顯,其得益于陰極金屬泡沫能通過(guò)強(qiáng)制對(duì)流增加氣體傳輸質(zhì)量.相較于只在陰極使用泡沫流場(chǎng),兩極均采用金屬泡沫流場(chǎng)對(duì)電解池性能的提升相對(duì)較?。唧w原因可由其流場(chǎng)結(jié)構(gòu)變化對(duì)電解池內(nèi)氣體分布和電導(dǎo)率的影響進(jìn)行分析.
圖7顯示了電流密度為1.5A/cm2時(shí),不同流場(chǎng)結(jié)構(gòu)下SOEC內(nèi)部的水蒸氣濃度分布.陰極流場(chǎng)區(qū)域包括陰極流場(chǎng)、陰極擴(kuò)散層和陰極催化層.由于傳統(tǒng)流場(chǎng)結(jié)構(gòu)的脊阻礙了氣體的橫向傳輸,采用陰極泡沫流場(chǎng)顯著提高了傳統(tǒng)流場(chǎng)中脊正下方多孔介質(zhì)中的水蒸氣濃度,使得催化層中水蒸氣濃度更高、更均勻,如圖7(a)所示.陰極流場(chǎng)區(qū)域二氧化碳濃度分布與水蒸氣相似,因此未展示.圖7(b)展示了陰極采用金屬泡沫流場(chǎng)和兩極均采用金屬泡沫流場(chǎng)2種情況下陽(yáng)極催化層中的氧氣濃度分布.由圖7可知陽(yáng)極采用傳統(tǒng)流場(chǎng)結(jié)構(gòu)會(huì)使得脊下催化層中的氧氣嚴(yán)重積聚,而陽(yáng)極采用金屬泡沫流場(chǎng)結(jié)構(gòu)能有效避免氧氣積聚,使得流場(chǎng)內(nèi)氣體分布更加均勻,氧氣濃度更低.
(a)極化曲線
(b)電解效率和電流密度的關(guān)系
圖6 流場(chǎng)結(jié)構(gòu)對(duì)SOEC極化曲線和電解效率的影響
Fig.6 Effect of flow field structure on polarization curve and electrolysis efficiency of SOEC
(a)陰極流場(chǎng)區(qū)域水蒸氣濃度分布
(b)陽(yáng)極催化層氧氣濃度分布
圖7?金屬泡沫流場(chǎng)對(duì)SOEC內(nèi)部氣體分布的影響
Fig.7 Effect of the metal foam flow field on the gas dis-tribution of SOEC
金屬泡沫流場(chǎng)對(duì)可逆電壓、各部分過(guò)電勢(shì)的影響如圖8所示.相比于傳統(tǒng)流場(chǎng),陰極或兩極使用金屬泡沫流場(chǎng)能顯著降低可逆電壓,如圖8(a)所示,這主要是由于使用金屬泡沫流場(chǎng)能提高陰極催化層反應(yīng)物濃度和降低陽(yáng)極催化層產(chǎn)物濃度.圖8(b)顯示了金屬泡沫流場(chǎng)對(duì)歐姆過(guò)電勢(shì)的影響,由于金屬泡沫流場(chǎng)良好的導(dǎo)電性,兩級(jí)均采用泡沫流場(chǎng)的電解池歐姆過(guò)電勢(shì)最小,而傳統(tǒng)流場(chǎng)的歐姆過(guò)電勢(shì)最大.歐姆過(guò)電勢(shì)顯著影響電解池的溫度,而陽(yáng)極活化過(guò)電勢(shì)主要受溫度的影響.因此歐姆過(guò)電勢(shì)高的電解池結(jié)構(gòu)對(duì)應(yīng)的陽(yáng)極活化過(guò)電勢(shì)越低,如圖8(c)所示.而陰極活化過(guò)電勢(shì)除了受溫度影響,還受電化學(xué)反應(yīng)物濃度的影響.由于陰極金屬泡沫流場(chǎng)的強(qiáng)制對(duì)流作用使得更多電化學(xué)反應(yīng)物進(jìn)入催化層,相比于傳統(tǒng)流場(chǎng),采用陰極金屬泡沫流場(chǎng)的電解池陰極活化損失更低(見(jiàn)圖8(d)).
(a)可逆電壓
(b)歐姆過(guò)電勢(shì)
(c)陽(yáng)極活化過(guò)電勢(shì)
(d)陰極活化過(guò)電勢(shì)
圖8 金屬泡沫流場(chǎng)對(duì)SOEC可逆電壓和各部分過(guò)電勢(shì)的影響
Fig.8 Effect of metal foam flow field on the reversible voltage and overpotentials of SOEC
圖9展示了金屬泡沫流場(chǎng)對(duì)SOEC計(jì)算域中對(duì)稱(chēng)面溫度分布的影響,電流密度為2.0A/cm2.SOEC溫度主要受歐姆熱、不可逆熱和可逆熱的影響.由圖8分析可知,相比傳統(tǒng)流場(chǎng),陰極金屬泡沫流場(chǎng)歐姆損失和陰極活化過(guò)電勢(shì)更低,即歐姆熱和不可逆熱更低,使得電解池溫度更低.而兩極均使用金屬泡沫流場(chǎng)的電解池歐姆電阻最低,相應(yīng)的其溫度最低.
圖9?金屬泡沫流場(chǎng)對(duì)SOEC溫度分布的影響
圖10為陰極金屬泡沫厚度對(duì)SOEC極化曲線和電解效率的影響.降低陰極金屬泡沫厚度可降低電解電壓,并提高電解效率.其主要是由于相同進(jìn)氣流量下,金屬泡沫越薄,流動(dòng)速度越大,從而增強(qiáng)氣體傳輸,降低了開(kāi)路電壓和陰極活化損失.但總體而言,陰極金屬泡沫厚度對(duì)電解池影響較小,同時(shí)考慮到金屬泡沫的加工制造難度,金屬泡沫流場(chǎng)不宜太薄.
??????????????(a)極化曲線????????????????????(b)電解效率和電流密度的關(guān)系
(1) 本文建立了一個(gè)固體氧化物電解池(SOEC)共電解水和二氧化碳的三維數(shù)值模型,模型充分考慮了SOEC中復(fù)雜的電化學(xué)反應(yīng)、化學(xué)反應(yīng)和多組分傳熱傳質(zhì)過(guò)程.在此模型的基礎(chǔ)上,研究了陽(yáng)極擴(kuò)散層(AGDL)厚度對(duì)電解池性能的影響,研究發(fā)現(xiàn)相對(duì)不加AGDL,加入AGDL可改善脊下電極中氣體傳輸和電子傳輸,從而降低電解池可逆電壓和歐姆過(guò)電勢(shì),同時(shí)使得電解池整體溫度更低,活化損失增加. 綜合考慮各項(xiàng)影響,加入AGDL能提高電解池性能,而隨著AGDL厚度增加,電解池性能提升幅度變?。?/p>
(2) 加入AGDL層后,進(jìn)一步對(duì)比研究了金屬泡沫流場(chǎng)與傳統(tǒng)流場(chǎng)對(duì)SOEC性能的影響.相比傳統(tǒng)流場(chǎng),陰極金屬泡沫流場(chǎng)避免了脊對(duì)氣體傳輸?shù)淖璧K,同時(shí)起到了增強(qiáng)對(duì)流傳質(zhì)的作用,使得多孔介質(zhì)內(nèi)氣體濃度更高、更均勻,電解池整體性能得到提高.降低陽(yáng)極泡沫厚度,可以在一定程度上改善SOEC性能,但考慮到加工難度和結(jié)構(gòu)強(qiáng)度,金屬泡沫不宜太?。趦蓸O均使用金屬泡沫流場(chǎng),由于陽(yáng)極采用泡沫流場(chǎng)避免了氧氣在脊下多孔介質(zhì)中的積聚,使得電解池性能有所提升,但提升相對(duì)較?。?/p>
[1] Yao E,Wang H,Wang L,et al. Multi-objective optimization and exergoeconomic analysis of a combined cooling,heating and power based compressed air energy storage system[J]. Energy Conversion & Manage-ment,2017,138:199-209.
[2] Yao E,Wang H,Wang L,et al. Thermo-economic optimization of a combined cooling,heating and power system based on small-scale compressed air energy storage[J]. Energy Conversion & Management,2016,118:377-386.
[3] Wang Y,Liu T,Lei L,et al. High temperature solid oxide H2O/CO2co-electrolysis for syngas production[J]. Fuel Processing Technology,2017,161:248-258.
[4] Ebbesen S D,Knibbe R,Mogensen M. Co-electrolysis of steam and carbon dioxide in solid oxide cells[J]. Journal of the Electrochemical Society,2012,159(8):F482-F489.
[5] Wendel C H,Braun R J. Design and techno-economic analysis of high efficiency reversible solid oxide cell systems for distributed energy storage[J]. Applied Energy,2016,172:118-131.
[6] Becker W L,Braun R J,Penev M,et al. Production of Fischer-Tropsch liquid fuels from high temperature solid oxide co-electrolysis units[J]. Energy,2012,47(1):99-115.
[7] Graves C,Ebbesen S D,Mogensen M,et al. Sustain-able hydrocarbon fuels by recycling CO and HO with renewable or nuclear energy[J]. Renewable & Sustainable Energy Reviews,2011,15(1):1-23.
[8] Stempien J P,Ni M,Sun Q,et al. Thermodynamic analysis of combined solid oxide electrolyzer and Fischer-Tropsch processes[J]. Energy,2015,81:682-690.
[9] Bernadet L,Laurencin J,Roux G,et al. Effects of pressure on high temperature steam and carbon dioxide co-electrolysis[J]. Electrochimica Acta,2017,253:114-127.
[10] Molin S,Chrzan A,Karczewski J,et al. The role of thin functional layers in solid oxide fuel cells[J]. Electrochimica Acta,2016,204:136-145.
[11] Ren C,Gan Y,Lee M,et al. Fabrication and characterization of high performance intermediate temperature micro-tubular solid oxide fuel cells[J]. Journal of the Electrochemical Society,2016,163(9):F1115-F1123.
[12] Pan Z,Zhang C,Zhou J,et al. Experimental and thermodynamic study on the performance of water electrolysis by solid oxide electrolyzer cells with Nb-doped Co-based perovskite anode[J]. Applied Energy,2017,191:559-567.
[13] Heidari D,Javadpour S,Chan S H. An evaluation of electrochemical performance of a solid oxide electrolyzer cell as a function of co-sintered YSZ-SDC bilayer electrolyte thickness[J]. Energy Conversion & Management,2017,150:567-573.
[14] Dong D,Xu S,Shao X,et al. Hierarchically ordered porous Ni-based cathode-supported solid oxide electrolysis cells for stable CO2electrolysis without safe gas[J]. Journal of Materials Chemistry A,2017,5(46):24098-24102.
[15] Lin J,Chen L,Liu T,et al. The beneficial effects of straight open large pores in the support on steam electrolysis performance of electrode-supported solid oxide electrolysis cell[J]. Journal of Power Sources,2018,374:175-180.
[16] Chen K,Chen X,Zhe L,et al. Performance of an anode-supported SOFC with anode functional layers[J]. Electrochimica Acta,2008,53(27):7825-7830.
[17] Wang Z,Zhang N,Qiao J,et al. Improved SOFC performance with continuously graded anode functional layer[J]. Electrochemistry Communications,2009,11(6):1120-1123.
[18] Sun X,Chen M,Liu Y L,et al. Durability of solid oxide electrolysis cells for syngas production[J]. Journal of the Electrochemical Society,2013,160(9):F1074-F1080.
[19] Ebbesen S D,Graves C,Mogensen M. Production of synthetic fuels by co-electrolysis of steam and carbon dioxide[J]. International Journal of Green Energy,2009,6(6):646-660.
[20] Jensen S H,Sun X,Ebbesen S D,et al. Pressurized operation of a planar solid oxide cell stack[J]. Fuel Cells,2016,16(2):205-218.
[21] Guan W B,Zhai H J,Jin L,et al. Effect of contact between electrode and interconnect on performance of SOFC stacks[J]. Fuel Cells,2011,11(3):445-450.
[22] Baek S W,Jeong J,Choi W S,et al. Structural and electrochemical properties of interconnect integrated solid oxide fuel cell[J]. Materials Research Bulletin,2016,82:126-129.
[23] Gondolini A,Mercadelli E,Sangiorgi A,et al. Integration of Ni-GDC layer on a NiCrAl metal foam for SOFC application[J]. Journal of the European Ceramic Society,2017,37(3):1023-1030.
[24] Du Y M,Qin Y Z,Zhang G B,et al. Modelling of effect of pressure on co-electrolysis of water and carbon dioxide in solid oxide electrolysis cell[J]. International Journal of Hydrogen Energy,2019,44(7):3456-3469.
Influence of the Structure of Solid Oxide Electrolysis Cell on Its Performance
Yin Yan,Du Yingmeng,Jiao Kui,Du Qing,Zhang Guobin
(School of Mechanical Engineering,Tianjin University,Tianjin 300072,China)
The solid oxide electrolysis cell (SOEC) can efficiently convert water and carbon dioxide into fuels such as hydrogen and carbon monoxide using electricity generated by renewable energy. It ishighly efficient, low-cost, and easy to control, and is considered to be the most promising way to store energy. Structural changes in the SOEC will affect its conductivity; simultaneously, it will significantly affect the gastransmission and heat transfer processes inside the cell, both of which are very important for the optimization ofSOEC performance. To investigate the influence of structural composition on the performance of the SOEC, a three-dimensional model of SOEC for the co-electrolysis of water and carbon dioxide was developed. Effects of an anode gas diffusion layer (AGDL) and metal foam flow field on the polarization curves, overpotentials, and gas distribution of the SOEC were analyzed. Results showed that compared to an electrolysis cell without AGDL, the cell with the addition of AGDL can improve the gas transmission under the rib between the catalyst layer and channel, while increasing the cross-sectional area of electron transport, thereby reducing the reversible voltage and ohmic overpotential. As the AGDL thickness increased, the performance of the cell improved and thengradually stabilized. Replacing the traditional flow field with the metal foam flow field on the cathode side decreased the electrolysis voltage and improved electrolysis efficiency by improving gas transmission between flow field and porous electrode.Increasing the thickness of the anode foam improved the SOEC performance to some extent. Because the anode metal foam avoids the accumulation of oxygen in the porous medium under the rib, the performance of the SOECusing metal foam for both sides was further improved; however, the improvement was relatively small.
solid oxide electrolysis cell(SOEC);metal foam;gas diffusion layer;co-electrolysis;gas distribution
TK448.21
A
0493-2137(2019)11-1171-08
10.11784/tdxbz201811049
2018-11-19;
2019-04-08.
尹?燕(1974—??),女,博士,副教授,yanyin@tju.edu.cn.
杜?青,duqing@tju.edu.cn.
國(guó)家重點(diǎn)研究計(jì)劃資助項(xiàng)目(2017YFB0601904).
Supported by the National Key Research and Development Program of China(No.2017YFB0601904).
(責(zé)任編輯:田?軍)