李曉丹 叢金鵬 于潔 于文成
[摘要]目的通過檢測博來霉素誘導(dǎo)的肺纖維化大鼠血清轉(zhuǎn)化生長因子`-β1(TGF`-β1)、基質(zhì)金屬蛋白酶2(MMP`-2)及窖蛋白1(Cav`-1)的表達(dá),探討益氣化痰通絡(luò)法的抗纖維化作用及其機(jī)制。方法將大鼠隨機(jī)分為正常組(n=15)和造模組(n=90),造模組造模成功后隨機(jī)分為NaCl組、中藥煎劑組、潑尼松組、乙酰半胱氨酸組、羅紅霉素組、吡啡尼酮組,各15例。各組分別于造模成功后第15、30、45天處死大鼠,蘇木精`-伊紅(HE)染色觀察肺組織纖維化程度,ELISA法檢測肺組織中的羥脯氨酸、血清TGF`-β1和MMP`-2含量,RT`-PCR方法檢測肺組織Cav`-1 mRNA表達(dá),Western Blot方法檢測肺組織Cav`-1蛋白表達(dá)。結(jié)果同一時(shí)間點(diǎn)各造模組與正常組相比,大鼠肺纖維化程度加重,肺組織羥脯氨酸含量、血清TGF`-β1和MMP`-2含量均升高(F=978.25~224 007.50,P<0.05);并且隨著時(shí)間進(jìn)展逐漸升高,差異有統(tǒng)計(jì)學(xué)意義(F=21.55~9 624.52,P<0.05);中藥煎劑組與乙酰半胱氨酸組、羅紅霉素組比較,肺纖維化程度明顯減輕,肺組織中的羥脯氨酸及血清TGF`-β1和MMP`-2含量均減少(F=324.55~5 576.36,P<0.05);中藥煎劑組與潑尼松組、吡啡尼酮組各時(shí)間點(diǎn)肺組織的羥脯氨酸及血清TGF`-β1和MMP`-2含量比較,差異無顯著性(P>0.05)。與正常組相比,各造模組大鼠Cav`-1 mRNA及蛋白含量均顯著降低(F=13.50~270.11,P<0.05);并且隨著時(shí)間進(jìn)展逐漸降低,差異有統(tǒng)計(jì)學(xué)意義(F=11.25~23.43,P<0.05);中藥煎劑組與乙酰半胱氨酸組、羅紅霉素組比較,Cav`-1 mRNA及蛋白含量升高(F=5.26~154.13,P<0.05);中藥煎劑組與潑尼松組、吡啡尼酮組相比Cav`-1 mRNA及蛋白含量差異無顯著性(P>0.05)。結(jié)論益氣化痰通絡(luò)法可能通過下調(diào)TGF`-β1和MMP`-2、上調(diào)肺組織Cav`-1的表達(dá)抑制博萊霉素誘導(dǎo)的肺纖維化。
[關(guān)鍵詞]益氣化痰通絡(luò)法;肺纖維化;轉(zhuǎn)化生長因子β1;基質(zhì)金屬蛋白酶2
[ABSTRACT]ObjectiveTo investigate the anti`-fibrotic effect of Qi`-tonifying, phlegm`-eliminating, and collateral`-dredging prescription and its mechanism by determining the serum expression of transforming growth factor beta`-1 (TGF`-β1), matrix me`-talloproteinase 2 (MMP`-2), and caveolin`-1 (Cav`-1) in a rat model of bleomycin`-induced pulmonary fibrosis. MethodsThe rats were randomly divided into normal group (n=15) and model group (n=90). After successful modeling, the model group was randomly subdivided into NaCl group, traditional Chinese medicine (TCM) decoction group, prednisone group, acetylcysteine group, roxithromycin group, and pirfenidone group, with 15 rats in each group. Rats in each group were sacrificed on days 15, 30, and 45, and were observed for degree of pulmonary fibrosis of the lung tissue after hematoxylin`-eosin staining. ELISA was used to determine the content of hydroxyproline in the lung tissue and serum content of TGF`-β1 and MMP`-2; RT`-PCR and Western blot were used to determine the expression of Cav`-1 mRNA and Cav`-1 protein in the lung tissue, respectively. ResultsCompared with the normal group at the same time point, each model group had significantly increased degree of pulmonary fibrosis and elevated content of hydroxyproline in the lung tissue and serum content of TGF`-β1 and MMP`-2 (F=978.25-224 007.50, all P<0.05), which gradually increased over time with significant differences observed (F=21.55-9 624.52, all P<0.05), while each model group had significantly reduced content of Cav`-1 mRNA and protein (F=13.50-270.11, all P<0.05), which gradually decreased over time with significant differences observed (F=11.25-23.43, all P<0.05). Compared with the acetylcysteine group and the roxithromycin group, the TCM decoction group had significantly lowered degree of pulmonary fibrosis and decreased content of hydroxyproline in the lung tissue and serum content of TGF`-β1 and MMP`-2 (F=324.55-5 576.36, all P<0.05), but had significantly increased content of Cav`-1 mRNA and protein (F=5.26-154.13, all P<0.05). Compared with the prednisone group and the pirfenidone group at each time point, the TCM decoction showed no significant differences in content of hydroxyproline, serum TGF`-β1 and MMP`-2, or Cav`-1 mRNA and protein (all P>0.05). ConclusionQi`-tonifying, phlegm`-eliminating, and collateral`-dredgingprescription may inhibit bleomycin`-induced pulmonary fibrosis bydown`-regulating TGF`-β1 and MMP`-2 and up`-regulating the expression of Cav`-1 in the lung tissue.
[KEY WORDS]invigorating Qi, resolving phlegm and activating collaterals; pulmonary fibrosis; transforming growth factor beta1; matrix metalloproteinase 2
肺纖維化是一種慢性、致命的肺間質(zhì)疾病。它可以由多種原因引起,包括慢性炎癥過程、感染、系統(tǒng)性自身免疫性疾病、環(huán)境因素、電離輻射暴露或某些藥物等。病因不明的肺纖維化被稱為特發(fā)性肺纖維化(IPF),與肺功能逐漸喪失有關(guān)[1`-2]。IPF的危險(xiǎn)因素包括年齡、男性、接觸金屬和木屑以及吸煙史等[3`-4]。目前沒有有效的IPF治療藥物,病人2.5~3.5年內(nèi)死于呼吸衰竭。肺移植是提高IPF病人生存率的唯一有效措施[5`-6]。然而,IPF病人肺移植術(shù)后5年生存率僅為44%[4]。因此,尋找有效的藥物治療IPF迫在眉睫。肺纖維化在中醫(yī)被稱為“肺痿”、“短氣”等,沒有與之確切相對應(yīng)的名詞[7]。益氣化痰通絡(luò)法的中藥制劑主要由黃芪、白術(shù)、半夏、川芎、丹參組成。有研究證實(shí),益氣化痰通絡(luò)法的中藥制劑有抗纖維化的作用,然而關(guān)于其抗纖維化機(jī)制尚不明確。本實(shí)驗(yàn)通過構(gòu)建博來霉素誘導(dǎo)的肺纖維化模型,探討益氣化痰通絡(luò)法對肺纖維化的作用及其機(jī)制,尋找肺纖維化的有效治療藥物。
1材料和方法
1.1實(shí)驗(yàn)材料
Wistar大鼠105只(雄性),體質(zhì)量為(200±25)g,由青島白鼠養(yǎng)殖合作社提供。博萊霉素(日本化藥株式會(huì)社);益氣化痰通絡(luò)法中藥制劑:黃芪15 g,白術(shù)10 g,川芎10 g,丹參20 g,半夏10 g,制成水煎劑150 mL(北京同仁堂青島藥店);潑尼松粉末、乙酰半胱氨酸、羅紅霉素(上海源葉生物科技有限公司);吡非尼酮(北京康蒂尼藥業(yè));大鼠轉(zhuǎn)化生長因子`-β1(TGF`-β1)、基質(zhì)金屬蛋白酶2(MMP`-2)ELISA檢測試劑盒(美國RD System公司);窖蛋白1(Cav`-1)一抗(bioworld公司)。離心機(jī)(Eppendorf,型號Centrifuge 5415D);酶標(biāo)儀(biotek 808);顯微鏡(OLYMPUS,型號CX 31);熒光定量PCR儀(Applied Biosystems,型號ABI 7500);多功能真彩色細(xì)胞圖像分析管理系統(tǒng)(美國Media Cyberne`-tics公司,Image`-Pro Plus)。
1.2肺纖維化模型制備
應(yīng)用100 g/L水合氯醛溶液腹腔注射麻醉大鼠(3.5 mL/kg),麻醉成功后,仰臥位固定,常規(guī)消毒頸部皮膚,沿頸部正中線切開頸部皮膚,分離頸部肌肉組織并暴露氣管,將博來霉素溶液(5 mg/kg,溶于0.2 mL的生理鹽水中)慢慢注入氣管內(nèi),大鼠迅速直立并旋轉(zhuǎn),使兩肺均勻分布博來霉素溶液,縫合切口。正常組注入等量的生理鹽水。
1.3實(shí)驗(yàn)分組及處理
將大鼠隨機(jī)分為正常組(A組,n=15)和造模組(n=90),造模組造模成功后隨機(jī)分為NaCl組(B組)、中藥煎劑組(C組)、潑尼松組(D組)、乙酰半胱氨酸組(E組)、羅紅霉素組(F組)、吡啡尼酮組(G組),各15只。造模成功第2天,NaCl組給予9 g/L氯化鈉溶液灌胃,每日2次,每次2 mL;中藥煎劑組給予益氣化痰通絡(luò)法中藥制劑灌胃,每日1次,每次5 mL;潑尼松組給予潑尼松灌胃,每日1次,每次5 mL;乙酰半胱氨酸組給予乙酰半胱氨酸灌胃,每日3次,每次2 mL;羅紅霉素組給予羅紅霉素灌胃,每日1次,每次5 mL;吡啡尼酮組給予吡啡尼酮灌胃,每日1次,每次5 mL。正常組給予正常鼠糧。
1.4檢測指標(biāo)及方法
1.4.1標(biāo)本采集各組分別于造模成功第15、30及45天灌胃后處死大鼠,每次5只。剪取肺組織;腹主動(dòng)脈采血并離心,置于-20 ℃冰箱保存。
1.4.2肺組織蘇木精`-伊紅(HE)染色和纖維化程度評分將新鮮肺組織用40 g/L多聚甲醛固定,乙醇脫水,透明,浸蠟、包埋,連續(xù)切片,脫蠟,HE染色,顯微鏡下觀察。根據(jù)Ashcroft評分量表[8],對大鼠肺組織纖維化程度進(jìn)行評分。
1.4.3肺組織中羥脯氨酸及血清中TGF`-β1、MMP`-2含量檢測采用ELISA方法。
1.4.4Cav`-1 mRNA和蛋白表達(dá)檢測采用RT`-PCR方法檢測Cav`-1 mRNA的表達(dá),Westren Blot方法檢測Cav`-1蛋白表達(dá)。
1.5統(tǒng)計(jì)學(xué)處理
應(yīng)用SPSS Statisics 21.0軟件進(jìn)行統(tǒng)計(jì)學(xué)處理,計(jì)量資料結(jié)果以±s形式表示,數(shù)據(jù)比較采用方差分析。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1各組肺組織纖維化程度及評分比較
高倍鏡下(100倍)觀察,正常組肺組織肺泡結(jié)構(gòu)完整,肺泡間隔未見水腫、增寬;造模組肺泡腔炎癥細(xì)胞浸潤明顯,肺泡結(jié)構(gòu)嚴(yán)重破壞,肺泡間隔明顯增寬,大量成纖維細(xì)胞聚集在肺泡間隔,隨著時(shí)間進(jìn)展逐漸加重,第45天時(shí)最嚴(yán)重;與NaCl組相比,中藥煎劑組、潑尼松組、吡啡尼酮組、乙酰半胱氨酸組、羅紅霉素組肺纖維化程度均顯著減輕;中藥煎劑組肺纖維化程度與吡啡尼酮組、潑尼松組比較未見明顯差異,與乙酰半胱氨酸組、羅紅霉素組比較肺纖維化程度明顯減輕。
各組肺纖維化程度評分時(shí)間和組別有交互作用(F組別×?xí)r間=477.98,P<0.01)。同一時(shí)間段各組之間比較,造模組大鼠的肺纖維化程度評分均較相應(yīng)時(shí)間段正常組顯著升高,差異具有統(tǒng)計(jì)學(xué)意義(F=28 836~34 469.73,P<0.05);并且隨著時(shí)間進(jìn)展,各組大鼠肺纖維化程度逐漸升高,差異有統(tǒng)計(jì)學(xué)意義(F=572.72~4 095.47,P<0.05);潑尼松組、吡啡尼酮組與中藥煎劑組纖維化評分比較,差異無顯著性(P>0.05);中藥煎劑組與乙酰半胱氨酸組、羅紅霉素組比較,肺纖維化程度評分明顯減輕,差異有統(tǒng)計(jì)學(xué)意義(F=1 043.12~2 105.34,P<0.05)。見表1。
2.2各組大鼠肺組織羥脯氨酸含量比較
各組大鼠肺組織羥脯氨酸含量時(shí)間和組別有交互作用(F組別×?xí)r間=53.36,P<0.05)。與正常組相比,各造模組大鼠各時(shí)間點(diǎn)肺組織羥脯氨酸含量顯著升高(F=978.25~1 154.27,P<0.05);并且隨著時(shí)間進(jìn)展含量逐漸升高,差異有統(tǒng)計(jì)學(xué)意義(F=21.55~123.03,P<0.05)。中藥煎劑組與乙酰半胱氨酸組、羅紅霉素組比較,各時(shí)間點(diǎn)肺組織中的羥脯氨酸減少(F=324.55~548.71,P<0.05)。見表2。
2.3各組大鼠血清TGF`-β1、MMP`-2含量比較
各組大鼠血清TGF`-β1、MMP`-2含量時(shí)間和組別均有交互作用(F組別×?xí)r間=4 867.88、33.23,P<0.05)。與正常組相比較,各造模組大鼠各時(shí)間點(diǎn)TGF`-β1含量顯著升高(F=168 042.20~224 007.50,P<0.05);并且隨著時(shí)間進(jìn)展逐漸升高,差異有統(tǒng)計(jì)學(xué)意義(F=3 683.90~9 624.52,P<0.05);中藥煎劑組與乙酰半胱氨酸組、羅紅霉素組比較,TGF`-β1含量減少(F=4 312.51~5 576.36,P<0.05);中藥煎劑組與潑尼松組、吡啡尼酮組比較,各時(shí)間點(diǎn)TGF`-β1含量差異無顯著性(P>0.05)。與正常組相比較,各造模組大鼠MMP`-2含量顯著升高(F=2 342.69~4 195.06,P<0.05);并且隨著時(shí)間進(jìn)展逐漸升高,差異有統(tǒng)計(jì)學(xué)意義(F=61.93~946.56,P<0.05);各時(shí)間點(diǎn)中藥煎劑組與乙酰半胱氨酸組、羅紅霉素組相比較,MMP`-2的含量均減少(F=248.62~348.55,P<0.05);中藥煎劑組與潑尼松組、吡啡尼酮組比較MMP`-2含量差異無顯著意義(P>0.05)。見表3、4。
2.4各組大鼠肺組織Cav`-1 mRNA及蛋白表達(dá)比較
各組大鼠肺組織Cav`-1 mRNA及蛋白表達(dá)時(shí)
2期李曉丹,等. 益氣化痰通絡(luò)法對大鼠肺纖維化的作用及其機(jī)制233
間和組別有交互作用(F組別×?xí)r間=2.58、4.67,P<0.05)。同一時(shí)間與正常組相比較,各造模組大鼠Cav`-1 mRNA及蛋白含量顯著降低(F=13.50~270.11,P<0.05);并且隨著時(shí)間進(jìn)展逐漸降低,差異有統(tǒng)計(jì)學(xué)意義(F=11.25~23.43,P<0.05);中藥煎劑組與乙酰半胱氨酸組、羅紅霉素組比較,Cav`-1 mRNA及蛋白含量升高(F=5.26~154.13,P<0.05);中藥煎劑組與潑尼松組、吡啡尼酮組相比Cav`-1 mRNA及蛋白含量均未見明顯的變化(P>0.05)。見圖1和表5、6。
3討論
IPF是一種慢性、進(jìn)行性、不明原因的間質(zhì)性肺疾病。IPF的預(yù)后非常差,病人的平均生存期只有3~5年[9]。遺傳易感性、慢性損傷和衰老、氧化應(yīng)激和再生反應(yīng)受損等因素可能是疾病發(fā)展和持續(xù)的原因[10`-11]。IPF的主要特征是肺成纖維細(xì)胞向肌成纖維細(xì)胞轉(zhuǎn)化,細(xì)胞外基質(zhì)(ECM)蛋白如Ⅰ、Ⅲ、Ⅳ和Ⅵ型膠原蛋白過度沉積,導(dǎo)致氣體交換減少和肺功能受損[12`-13]。肌成纖維細(xì)胞可能來源于以下幾個(gè)方面:TGF`-β1刺激成纖維細(xì)胞活化,從而導(dǎo)致修復(fù)性纖維化反應(yīng),引起成纖維細(xì)胞局限增殖;骨髓來源的CD34+祖細(xì)胞遷移到纖維組織中,分化為肌成纖維細(xì)胞;上皮`-間充質(zhì)轉(zhuǎn)化(EMT)[14`-15]。中醫(yī)認(rèn)為,IPF是由氣陰虧虛、痰熱郁滯所致[18]。多項(xiàng)研究證實(shí),中藥可以治療多種肺部疾病,黃芪主要有效成分是皂苷、甲苷和黃酮類化合物,白術(shù)為白術(shù)根莖,黃芪、白術(shù)配伍主治營衛(wèi)不固,用以驅(qū)邪后鞏固體內(nèi)正氣;丹參、當(dāng)歸益氣補(bǔ)血,祛瘀止痛,涼血消癰;半夏具有燥濕化痰,降逆止嘔,消痞散結(jié)的功效。因此,本研究探討了益氣化痰通絡(luò)法對肺纖維化大鼠模型的作用及其機(jī)制。
本文實(shí)驗(yàn)采用氣管內(nèi)滴注博來霉素的方法構(gòu)建肺纖維化大鼠模型[19]。選用羅紅霉素、潑尼松、吡啡尼酮作為中藥煎劑的對照,是因?yàn)檫练饶嵬芤种品闻萆掀ぜ?xì)胞損傷引起的巨噬細(xì)胞的活化,抑制中性粒細(xì)胞、單核細(xì)胞等聚集、活化,減少促纖維化因子如TGF`-β、TNF`-α、NF`-κB等的釋放,抑制成纖維細(xì)胞增殖、轉(zhuǎn)化,進(jìn)而抑制肺纖維化[20`-22]。IPF發(fā)生的機(jī)制之一是氧化/抗氧化失衡,羅紅霉素與糖皮質(zhì)激素具有相似的抗炎機(jī)制,具有抑制中性粒細(xì)胞的遷移、聚集和黏附作用,進(jìn)而抑制炎癥反應(yīng)。羅紅霉素和糖皮質(zhì)激素還能抑制細(xì)胞因子分泌,減少氣道上皮細(xì)胞內(nèi)皮素的表達(dá)[23]。因此,羅紅霉素通過與糖皮質(zhì)激素相似的類激素樣免疫調(diào)節(jié)作用,抑制肺纖維化進(jìn)展。
本文研究結(jié)果顯示,與正常組比較,造模組大鼠肺組織炎癥細(xì)胞浸潤明顯,肺泡間隔增寬,肺泡結(jié)構(gòu)破壞,大量成纖維細(xì)胞聚集在肺泡間隔,第45天纖維化程度最重。膠原蛋白是結(jié)締組織中膠原纖維的主要組成部分,在人體蛋白質(zhì)中含量最高,羥脯氨酸是膠原沉積的有效指標(biāo),羥脯氨酸含量可以反映組織的膠原代謝、纖維化程度。本文研究結(jié)果顯示,NaCl組各時(shí)間點(diǎn)羥脯氨酸含量均明顯增加,HE染色出現(xiàn)明顯肺纖維化,說明博來霉素誘導(dǎo)的肺纖維化大鼠模型建立成功;中藥煎劑組、潑尼松組、吡啡尼酮組、羅紅霉素組纖維化程度減輕,肺纖維化評分、羥脯氨酸含量均較相同時(shí)間的NaCl組顯著減輕,說明中藥煎劑、潑尼松、吡啡尼酮、羅紅霉素能夠降低羥脯氨酸含量,減輕肺纖維化程度。吡啡尼酮組、潑尼松組、中藥煎劑組比較,肺纖維化程度、肺纖維化評分、羥脯氨酸含量未見明顯差異,說明吡啡尼酮、潑尼松、中藥煎劑均能改善肺纖維化,中藥煎劑改善肺纖維化程度較吡啡尼酮、潑尼松無明顯差異;中藥煎劑組肺纖維化評分、羥脯氨酸含量較乙酰半胱氨酸組、羅紅霉素組明顯減輕,說明中藥煎劑改善肺纖維化程度明顯優(yōu)于乙酰半胱氨酸、羅紅霉素。
TGF`-β1是參與肺纖維化發(fā)病機(jī)制的主要細(xì)胞因子,TGF`-β1信號通路通過誘導(dǎo)細(xì)胞分化、遷移、浸潤或增生性改變參與肺纖維化發(fā)展[24`-25]。TGF`-β1由多種細(xì)胞分泌,包括肺泡上皮細(xì)胞、內(nèi)皮細(xì)胞、成纖維細(xì)胞[26],TGF`-β1與受體結(jié)合后,啟動(dòng)下游Smad信號通路介導(dǎo)的信號轉(zhuǎn)導(dǎo),促進(jìn)成纖維細(xì)胞向肌成纖維細(xì)胞轉(zhuǎn)化,誘導(dǎo)EMT,增強(qiáng)膠原蛋白的沉積并抑制其降解,促進(jìn)疾病的進(jìn)展[27`-28]。同時(shí),TGF`-β1活化后進(jìn)一步促進(jìn)炎癥因子和促纖維化因子的表達(dá),進(jìn)一步促進(jìn)肺纖維化進(jìn)展?;|(zhì)金屬蛋白酶(MMPs)在肺纖維化的發(fā)病過程中起著極為重要的作用,其主要作用為降解基膜和膠原蛋白[29`-30]。MMP`-2通過降解基膜的蛋白質(zhì),破壞上皮基膜后導(dǎo)致間質(zhì)細(xì)胞滲出肺泡腔,從而引起肺纖維化的發(fā)生發(fā)展。
胞膜窖是細(xì)胞質(zhì)膜上的一種內(nèi)陷結(jié)構(gòu),而Cav`-1是組成胞膜窖的重要結(jié)構(gòu)蛋白。有研究發(fā)現(xiàn),在系統(tǒng)性硬化癥(SSc)病人肺成纖維細(xì)胞中發(fā)現(xiàn)較低水平的Cav`-1,并且與JNK、ERK和Akt信號通路的活化相關(guān),導(dǎo)致促纖維化標(biāo)志物如膠原蛋白和α`-SMA過表達(dá)。對皮膚成纖維細(xì)胞研究顯示,SSc皮膚中Cav`-1蛋白表達(dá)下調(diào),可能通過激活經(jīng)典轉(zhuǎn)化生長因子(TGF`-β)途徑促進(jìn)膠原沉積的增加,表明Cav`-1是人真皮成纖維細(xì)胞中TGF`-β表達(dá)和信號傳導(dǎo)的正調(diào)節(jié)因子[30]。本文結(jié)果顯示,活性纖維化區(qū)域Cav`-1的表達(dá)顯著降低,并且TGF`-β1對Cav`-1有負(fù)調(diào)節(jié)作用。
本研究結(jié)果顯示,中藥煎劑組、潑尼松組、吡啡尼酮組、羅紅霉素組TGF`-β1、MMP`-2均較相同時(shí)間的NaCl組顯著降低,Cav`-1 mRNA和蛋白表達(dá)明顯增加,說明中藥煎劑、潑尼松、吡啡尼酮、抗生素通過降低TGF`-β1、MMP`-2含量,促進(jìn)Cav`-1的表達(dá)以減輕肺纖維化。本文結(jié)果還顯示,吡啡尼酮組、潑尼松組與中藥煎劑組比較,TGF`-β1、MMP`-2含量及Cav`-1 mRNA和蛋白表達(dá)未見明顯差異,說明三者減少TGF`-β1、MMP`-2含量,促進(jìn)Cav`-1 mRNA和蛋白表達(dá)的作用無明顯差異;中藥煎劑組TGF`-β1、MMP`-2含量較乙酰半胱氨酸組、羅紅霉素組明顯降低,而Cav`-1 mRNA和蛋白含量明顯升高,說明中藥煎劑對TGF`-β1、MMP`-2表達(dá)的抑制作用及對Cav`-1 mRNA和蛋白表達(dá)促進(jìn)作用明顯優(yōu)于乙酰半胱氨酸、羅紅霉素。
綜上所述,益氣化痰通絡(luò)法中藥制劑能夠抑制博來霉素誘導(dǎo)的大鼠肺纖維化,其作用可能是通過抑制TGF`-β1、MMP`-2表達(dá),促進(jìn)Cav`-1表達(dá)實(shí)現(xiàn)的。益氣化痰通絡(luò)法中藥制劑對博來霉素誘導(dǎo)的大鼠肺纖維化的干預(yù)效果顯著優(yōu)于羅紅霉素和乙酰半胱氨酸,與糖皮質(zhì)激素、吡啡尼酮比較無明顯差異,但是中藥具有副作用和禁忌證較少的優(yōu)點(diǎn),為肺纖維化的治療提供了新的方法。
[參考文獻(xiàn)]
[1]JAVAD`-MOUSAVI S A, HEMMATI A A, MEHRZADI S A, et al. Protective effect of Berberis vulgaris fruit extract against Paraquat`-induced pulmonary fibrosis in rats[J].?Biomedicine & Pharmacotherapy, 2016,81:329`-336.
[2]MAGNINI D, MONTEMURRO G, IOVENE B, et al. Idiopathic pulmonary fibrosis:molecular endotypes of fibrosis stratifying existing and emerging therapies[J].?Respiration; International Review of Thoracic Diseases, 2017,93(6):379`-395.
[3]QIU M, CHEN Y, YE Q. Risk factors for acute exacerbation of idiopathic pulmonary fibrosis: a systematic review and meta`-analysis[J].?The Clinical Respiratory Journal, 2017,12(3):1084`-1092.
[4]DALLEYWATER W, POWELL H A, HUBBARD R B, et al. Risk factors for cardiovascular disease in people with idiopathic pulmonary fibrosis: a population`-based study[J].?Chest, 2015,147(1):150`-156.
[5]KUMAR A, KAPNADAK S G, GIRGIS R E, et al. Lung transplantation in idiopathic pulmonary fibrosis[J].?Expert Review of Respiratory Medicine, 2018,12(5):375`-385.
[6]FURUKAWA T, TANIGUCHI H, ANDO M, et al. The St. George’s respiratory questionnaire as a prognostic factor in IPF[J].?Respiratory Research, 2017,18(1):18`-24.
[7]OLDHAM J M, COLLARD H R. Comorbid conditions in idiopathic pulmonary fibrosis: recognition and management[J]. Frontiers in Medicine, 2017,4(2):123`-132.
[8]WILLIAM D, POWELL H A, HUBBARD R B, et al. Risk factors for cardiovascular disease in people with idiopathic pulmonary fibrosis: a population`-based study[J]. Chest, 2015,147(1):150`-156.
[9]GILHODES J C, JULE Y, KREUZ S A, et al. Quantification of pulmonary fibrosis in a bleomycin mouse model using automated histological image analysis[J].?PLoS One, 2017,12(1):561`-565.
[10]AGABITI N, PORRETTA M A, BAULEO L, et al. Idio`-pathic pulmonary fibrosis (IPF) incidence and prevalence in Italy[J].?Sarcoidosis, Vasculitis and Diffuse Lung Diseases, 2014,31(3):191`-197.
[11]CONTI S, HARARI S, CAMINATI A, et al. The association between air pollution and the incidence of idiopathic pulmonary fibrosis in Northern Italy[J].?European Respiratory Journal, 2018,51(1):397`-407.
[12]ATSUMI K, SAITO Y, KUSE N, et al. Prognostic factors in the acute exacerbation of idiopathic pulmonary fibrosis: a retrospective single`-center study[J].?Internal Medicine, 2018,57(5):655`-661.
[13]CHRISTOPHER S K, STEVEN D N. Idiopathic pulmonary fibrosis: effects and optimal management of comorbidities[J]. Lancet Respir Med, 2017,5(1):72`-84.
[14]MEYER K C. Pulmonary fibrosis, part Ⅰ: epidemiology, pa`-thogenesis, and diagnosis[J].?Expert Review of Respiratory Medicine, 2017,11(5):343`-359.
[15]SGALLA G, IOVENE B, CALVELLO M, et al. Idiopathic pulmonary fibrosis:pathogenesis and management[J]. Respi`-ratory Research, 2018,19(32):730`-748.
[16]JOLLY M K, WARD C, EAPEN M S, et al. Epithelial mesenchymal transition(EMT),a spectrum of states:role in lung development,homeostasis and disease[J].?Developmental Dynamics, 2017,247(3):346`-358.
[17]SGALLA G, BIFFI A, RICHELDI L. Idiopathic pulmonary fibrosis: diagnosis, epidemiology and natural history[J].?Respirology (Carlton, Vic.), 2016,21(3):427`-437.
[18]TANG Y J, HE R, AN J, et al. The effect of H19`-miR`-29b interaction on bleomycin`-induced mouse model of idiopathic pulmonary fibrosis[J].?Biochemical and Biophysical Research Communications, 2016,479(3):417`-423.
[19]SATHIYAMOORTHY G, SEHGAL S, ASHTON R W. Pirfenidone and nintedanib for treatment of idiopathic pulmonary fibrosis[J].?Southern Medical Journal, 2017,110(6):393`-398.
[20]DI S A, BENDIA E, MACARRI G, et al. The anti`-fibrotic effect of pirfenidone in rat liver fibrosis is mediated by downregulation of procollagenalpha1(Ⅰ),TIMP`-1 and MMP`-2[J].?Digestive & Liver Disease, 2004,36(11):744`-751.
[21]INOMATA M, KAMIO K, AZUMA A, et al. Pirfenidone inhibits fibrocyte accumulation in the lungs in bleomycin`-induced murine pulmonary fibrosis[J].?Respiratory Research, 2014,15(1):16`-20.
[22]LIU Jifeng, ZHONG Xiaoning, HE Zhiyi, et al. Effect of low`-dose, long`-term roxithromycin on airway inflammation and remodeling of stable noncystic fibrosis bronchiectasis[J].?Mediators of Inflammation, 2014(11):708608.
[23]HIDEHIRO W, TOMONORI U, GEN T, et al. Remission of ALK`-negative primary pulmonary inflammatorymyofibroblastic tumor on treatment with clarithromycin: a case report and review of the literature[J].?Oncology Letters, 2016,11(3):1757`-1761.
[24]WEI Y, KIM T J, PENG D H, et al. Fibroblast`-specific inhibition of TGF`-beta 1 signaling attenuates lung and tumor fibrosis[J].?Journal of Clinical Investigation, 2017,127(10):3675`-3688.
[25]TAMARI A L, HAMZA M, DABRAL S, et al. FoxO3 an important player in fibrogenesis and therapeutic target for idiopathic pulmonary fibrosis[J].?EMBO Molecular Medicine, 2017,10(2):276`-293.
[26]MAHER T M, STOWASSER S, NISHIOKA Y. Investigating the effects of nintedanib on biomarkers of extracellular matrix turnover in patients with IPF:design of the randomised placebo`-controlled INMARK trial[J].?BMJ Open Respiratory Research, 2018,5(1):325`-331.
[27]KHALIULLIN T O, KISIN E R, MURRAY A R, et al. Mediation of the single`-walled Carbon nanotubes induced pulmonary fibrogenic response by osteopontin and TGF`-β1[J].?Experimental Lung Research, 2017,43(8):311`-326.
[28]ZUO Wanli, ZHAO Jiemin, HUANG Jixiong, et al. Effect of bosentan is correlated with MMP`-9/TIMP`-1 ratio in bleomycin`-induced pulmonary fibrosis[J].?Biomedical Reports, 2017,6(2):201`-205.
[29]CHENG Zhengyuan, LIU Lei, WANG Zhi, et al. Hypoxia activates Src and promotes endocytosis which decreases MMP`-2 activity and aggravates renal interstitial fibrosis[J].?International Journal of Molecular Sciences, 2018,19(2):581`-595.
[30]SANDERS Y Y, LIU H, SCRUGGS A M, et al. Epigenetic regulation of caveolin`-1 gene expression in lung fibroblasts[J].?American Journal of Respiratory Cell and Molecular Biology, 2017,56(1):50`-61.