国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

高中數(shù)學(xué)極坐標(biāo)與參數(shù)方程教學(xué)實踐研究

2019-09-25 13:18胡艷
關(guān)鍵詞:參數(shù)方程極坐標(biāo)教學(xué)實踐

胡艷

【摘要】作為高中數(shù)學(xué)的重要選修內(nèi)容,極坐標(biāo)和參數(shù)方程受到廣大數(shù)學(xué)教師的重視和青睞,一方面,能夠提升學(xué)生的數(shù)學(xué)能力,另一方面,還能夠幫助他們串聯(lián)已經(jīng)學(xué)過的數(shù)學(xué)知識.但是,數(shù)學(xué)教師在內(nèi)心對極坐標(biāo)與參數(shù)方程重視程度不夠,這就導(dǎo)致部分學(xué)生不能夠深入理解相關(guān)知識,在做題中容易出現(xiàn)錯誤.

【關(guān)鍵詞】高中數(shù)學(xué);極坐標(biāo);參數(shù)方程;教學(xué)實踐

自數(shù)學(xué)家發(fā)現(xiàn)極坐標(biāo)以來,后人運用極坐標(biāo)將數(shù)與形進行連接,將二者進行有機轉(zhuǎn)化,提出了解決幾何難題的新思路.在高中數(shù)學(xué)教材中,極坐標(biāo)與參數(shù)方程是解決圓錐曲線問題的重要方法,同時還能向?qū)W生滲透數(shù)形結(jié)合的思想,有助于他們加深對教材知識點的理解.此外,高考試卷中也加大了對直角坐標(biāo)系和極坐標(biāo)系的考查,使他們內(nèi)心重視數(shù)學(xué)轉(zhuǎn)化與化歸思想,認識到數(shù)學(xué)的重要作用,從中體悟數(shù)學(xué)之美.下面,筆者就如何提升極坐標(biāo)與直角坐標(biāo)系教學(xué)展開探討,希望對大家有所幫助.

一、滲透數(shù)形結(jié)合思想

對解析幾何而言,數(shù)形結(jié)合是最重要的數(shù)學(xué)思想,這反映在“數(shù)”與“形”兩個方面,把抽象的數(shù)學(xué)語言與直觀的幾何圖形進行連接,有效降低了學(xué)生學(xué)習(xí)的難度,提升了課堂學(xué)習(xí)效率.借助于極坐標(biāo)和參數(shù)方程,學(xué)生能夠?qū)⒋鷶?shù)知識與幾何內(nèi)容進行結(jié)合,避免了學(xué)習(xí)過程中的死記硬背,牢固了課堂記憶.教師在教學(xué)過程中不妨多多要求學(xué)生主動進行畫圖訓(xùn)練,提升自身應(yīng)用能力,加深對知識的理解,靈活應(yīng)用相關(guān)知識.

在講解“極坐標(biāo)”相關(guān)知識時,筆者會要求學(xué)生觀察極坐標(biāo)表示點之間存在的關(guān)系,如,2,π6,2,π6+2π,2,π6+4π,2,π6-2π,根據(jù)定義,學(xué)生知道這幾個點均可以表示為一個點.隨后,筆者為學(xué)生展示了一幅圖,引導(dǎo)他們根據(jù)按照極坐標(biāo)和圖示點,在(ρ>0,0≤θ<2π)范圍內(nèi)表示剩下的幾個點.這種方法大大地提升了其課堂的參與度,依據(jù)某點坐標(biāo)得到了其他點的極坐標(biāo),從而在學(xué)習(xí)過程中體會到數(shù)形結(jié)合思想.通過對極坐標(biāo)知識的學(xué)習(xí),學(xué)生認識到點的極坐標(biāo)并不唯一,這也加深了對相關(guān)知識的認識.

二、加強應(yīng)用能力

學(xué)習(xí)是為了應(yīng)用,因此,教師要重視知識的應(yīng)用能力,在學(xué)生理解的基礎(chǔ)上提升他們的應(yīng)用能力.在教學(xué)中,筆者發(fā)現(xiàn)學(xué)生只能簡單理解極坐標(biāo)系,很難熟練應(yīng)用直角坐標(biāo)系和極坐標(biāo),自然也就失去了學(xué)習(xí)的興趣.在此情況下,極坐標(biāo)系成為他們學(xué)習(xí)的負擔(dān),在考試中丟失很多分數(shù),這與新課改的初衷相背.在此背景下,數(shù)學(xué)教師在教學(xué)過程中要加強這方面的訓(xùn)練,刻意引導(dǎo)學(xué)生在練習(xí)中運用極坐標(biāo)思想解決問題,使他們積極參與學(xué)習(xí)活動,加強知識的應(yīng)用.

如,在坐標(biāo)系中,圓ρ=-2sinθ的圓心極坐標(biāo)為.在這道題中,學(xué)生由ρ=-2sinθ得ρ2=-2ρsinθ,然后再將其轉(zhuǎn)化為普通方程x2+(y+1)2=1,得到圓心坐標(biāo)(0,-1),所以其極坐標(biāo)為1,-π2,通過極坐標(biāo)與普通方程的轉(zhuǎn)化得到最終的答案.隨后,筆者為學(xué)生準(zhǔn)備了一道高考試題,很多人還是運用極坐標(biāo)與直角坐標(biāo)轉(zhuǎn)化,運用余弦公式求取半徑來得到極坐標(biāo)的方程.這種極坐標(biāo)的應(yīng)用思路有效提升了學(xué)生應(yīng)用該部分知識的能力,使他們從另外角度看待問題,提升了數(shù)學(xué)應(yīng)用意識,發(fā)散了自身數(shù)學(xué)思維,有效提高了課堂學(xué)習(xí)效率.

三、做好相關(guān)知識遷移

在實際課堂訓(xùn)練過程中,筆者發(fā)現(xiàn)學(xué)生不能夠準(zhǔn)確理解和應(yīng)用極坐標(biāo)和參數(shù)方程的細節(jié),加上應(yīng)用不夠熟悉,丟分現(xiàn)象非常嚴(yán)重.對數(shù)學(xué)而言,教學(xué)的一大目的是為了提升學(xué)生應(yīng)用知識的能力,因此,教師要培養(yǎng)他們的知識遷移能力,在做好教學(xué)工作的同時提升高中生的數(shù)學(xué)水平.實際上,一題多解能夠發(fā)散學(xué)生的思維,引導(dǎo)他們養(yǎng)成知識遷移能力,從中體會到數(shù)學(xué)知識的魅力.

在課堂練習(xí)中,筆者為學(xué)生布置了一道這樣的試題,已知直線的參數(shù)方程為

x=-1-13t,y=-2+13t, 圓的參數(shù)方程為x=-1+4cosθ,y=-3+4sinθ, 求取直線被圓所截得的弦長.筆者要求每個人要獨立完成試題,在其中要能夠多思考,盡可能找出多種解題思路.學(xué)生紛紛進行思考,找到解題思路,總共找到了三種思路:一是運用直線和圓相交的代數(shù)方法進行求解,找到直線和圓的交點坐標(biāo)再求解弦長;二是將直線和圓進行聯(lián)立消元利用弦長公式進行求解;三是在圓內(nèi)做出直角三角形,計算圓心到直線的長度再來求解弦長.借助于一題多解,筆者引導(dǎo)學(xué)生學(xué)會遷移數(shù)學(xué)知識,有效提升課堂學(xué)習(xí)效率,增長了數(shù)學(xué)學(xué)習(xí)經(jīng)驗和能力.

總之,極坐標(biāo)與參數(shù)方程能夠起到簡化問題、降低試題難度的作用,可以有效提升學(xué)生的數(shù)學(xué)解題能力.在高中數(shù)學(xué)教學(xué)過程中,廣大數(shù)學(xué)教師依照新課改的要求采取多種方式引導(dǎo)學(xué)生利用極坐標(biāo)和參數(shù)方程解決幾何問題,提升課堂教學(xué)質(zhì)量,發(fā)散學(xué)生數(shù)學(xué)思維,為他們在未來高考中取得高分打下堅實的基礎(chǔ).

【參考文獻】

[1]李萬斌.《坐標(biāo)系與參數(shù)方程》教學(xué)的幾點建議[J].數(shù)碼設(shè)計,2017(11):74.

[2]王春萍.基于高考視野下“極坐標(biāo)與參數(shù)方程”的教學(xué)策略研究[J].教師,2017(9):47.

猜你喜歡
參數(shù)方程極坐標(biāo)教學(xué)實踐
巧用極坐標(biāo)解決圓錐曲線的一類定值問題
極坐標(biāo)視角下的圓錐曲線
淺談高等數(shù)學(xué)中兩類二階導(dǎo)數(shù)的計算
中職計算機應(yīng)用課程教學(xué)改革與反思
淺論高中化學(xué)生活化教學(xué)的實踐與思考
淺談初中物理實驗教學(xué)與學(xué)生創(chuàng)新能力的培養(yǎng)
測量平差課程教學(xué)改革探討與實踐
淺談參數(shù)方程的解題思維突破
乐都县| 宝清县| 宜宾县| 宁武县| 古浪县| 鄄城县| 长阳| 福贡县| 延寿县| 深圳市| 略阳县| 包头市| 兴国县| 资中县| 惠东县| 固原市| 长治市| 闸北区| 黎城县| 宝清县| 朝阳县| 喀喇| 洪雅县| 盖州市| 清镇市| 宁都县| 佛教| 北碚区| 新巴尔虎左旗| 固安县| 新化县| 宁河县| 通许县| 阿克陶县| 岑巩县| 固阳县| 婺源县| 崇左市| 唐河县| 襄樊市| 东台市|