童 冰,郭 萌
(漳州職業(yè)技術(shù)學(xué)院 計算機(jī)工程系,福建 漳州 363000)
新霉素發(fā)酵過程機(jī)理復(fù)雜,影響產(chǎn)量因素較多。 如何確定合適的發(fā)酵培養(yǎng)基和發(fā)酵工藝對生產(chǎn)成本控制非常關(guān)鍵。 因培養(yǎng)基配方將直接影響到發(fā)酵水平和原料成本的高低,故有必要對各組分濃度的高低進(jìn)行優(yōu)化[1]。 微生物培養(yǎng)基優(yōu)化的傳統(tǒng)方法是基于機(jī)理研究的單因素法和多因素同時研究的實驗設(shè)計法,利用實驗數(shù)據(jù)建立目標(biāo)因子與影響因子間的回歸方程,然后對該模型進(jìn)行單純形法尋優(yōu)或使用其他方法來求得各影響因子的最優(yōu)濃度配比[2]。 BP (back Propagation)人工神經(jīng)網(wǎng)絡(luò)是基于模仿大腦神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和功能而建立起來的一種信息處理系統(tǒng),它以其具有能動地適用環(huán)境的變化以及在數(shù)據(jù)中尋找相關(guān)規(guī)律的能力而著稱,該過程以實驗數(shù)據(jù)為基礎(chǔ),通過迭代計算而獲得相關(guān)數(shù)學(xué)模型,在處理非線性方面問題表現(xiàn)突出,特別適用于研究各因素與結(jié)果之間關(guān)系的復(fù)雜非線性系統(tǒng)[3]。 遺傳算法(GA)能實現(xiàn)隨機(jī)、自適應(yīng),并進(jìn)行全局搜索,該算法通過隨機(jī)選擇、交叉、和變異等過程來實現(xiàn)全局尋優(yōu),適合處理傳統(tǒng)搜索方法難于處理的復(fù)雜非線性問題尋優(yōu),在發(fā)酵培養(yǎng)基優(yōu)化方面有較好的尋優(yōu)能力[4-5]。
本研究以新霉素效價為考察指標(biāo),利用BP 人工神經(jīng)網(wǎng)絡(luò)構(gòu)建培養(yǎng)基組分與新霉素效價之間的數(shù)學(xué)模型,后續(xù)采用神經(jīng)網(wǎng)絡(luò)和遺傳算法耦合對發(fā)酵培養(yǎng)基配方進(jìn)行全局尋優(yōu),以期獲得最優(yōu)配比的新霉素發(fā)酵培養(yǎng)基,為后續(xù)研究奠定基礎(chǔ)。
弗氏鏈霉菌由本實驗室保存。
搖瓶發(fā)酵培養(yǎng)基:花生餅粉,玉米淀粉,玉米漿,酵母粉,硫酸鎂,葡萄糖,蛋白胨,Na2HPO4,(NH4)2SO4,輕質(zhì) CaCO3,淀粉酶(4 KAT/g),滅菌前 pH7.5,接種量 10%,500 mL 三角瓶中裝液量為 50 mL,在 35 ℃和240 r/min 搖床上發(fā)酵至110~120 h 結(jié)束。
新霉素素效價:產(chǎn)物濃度測定采用OPA 柱前衍生化方法[6]。
神經(jīng)網(wǎng)絡(luò)一般用正交實驗或均勻設(shè)計樣本。 本研究根據(jù)新霉素發(fā)酵培養(yǎng)基配方,在單因素試驗的基礎(chǔ)上選擇玉米粉、花生粉、(NH4)2SO4、玉米漿、磷酸鹽、硫酸鎂這6 種主要影響新霉素效價的培養(yǎng)基來安排均勻設(shè)計,根據(jù)均勻設(shè)計實驗結(jié)果作為BP 人工神經(jīng)網(wǎng)絡(luò)訓(xùn)練樣本。這6 個因素在考察范圍內(nèi)分成12 個水平,使用U12(126)擬水平的均勻表安排實驗,結(jié)果見表1。
表1 均勻設(shè)計方案與結(jié)果
建模中用均勻設(shè)計法得到的實驗數(shù)據(jù)作為神經(jīng)網(wǎng)絡(luò)的訓(xùn)練樣本。 以發(fā)酵培養(yǎng)基中的玉米粉、花生粉、(NH4)2SO4、玉米漿、磷酸鹽、硫酸鎂的初始濃度作為輸入變量,發(fā)酵終止時的新霉素效價作為輸出變量,采用BP 算法建模,神經(jīng)元活化函數(shù)為Sigmoid,所用網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu)優(yōu)化后為單隱含層[7]。
根據(jù)影響新霉素發(fā)酵效價的主要因素設(shè)計神經(jīng)網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu),通過選用合適的初始權(quán)值和學(xué)習(xí)速率,設(shè)定訓(xùn)練結(jié)束條件對網(wǎng)絡(luò)進(jìn)行訓(xùn)練。 主要訓(xùn)練操作如下:①隨機(jī)初始化權(quán)值;②確定輸入和輸出目標(biāo)值;③確定網(wǎng)絡(luò)實際輸出;④不斷修正權(quán)值,從輸出層開始,將目標(biāo)輸出與實際輸出間的誤差信號反向傳播回去,再進(jìn)行各連接權(quán)值的修正使誤差最??;⑤滿足誤差訓(xùn)練要求,輸出訓(xùn)練結(jié)果,終止訓(xùn)練,否則回到②繼續(xù)進(jìn)行訓(xùn)練[8]。 在神經(jīng)網(wǎng)絡(luò)模型構(gòu)建中,隱層神經(jīng)元數(shù)N,學(xué)習(xí)速率η,動量因子α 是影響模型收斂性和穩(wěn)定性的重要因素。 網(wǎng)絡(luò)的隱層神經(jīng)元數(shù)N,學(xué)習(xí)速率η,動量因子α 參數(shù)采用均勻設(shè)計安排,設(shè)計水平和結(jié)果如表2 所示。 研究中設(shè)定網(wǎng)絡(luò)訓(xùn)練最小誤差變化率ω 為1×10-6,最小輸出相對誤差ε 為1%,設(shè)定輸出誤差連續(xù)負(fù)增長次數(shù)最大為1 000 次[9]。
表2 神經(jīng)網(wǎng)絡(luò)訓(xùn)練設(shè)計安排及結(jié)果
從表2 可知,當(dāng)采第3 水平設(shè)計時,神經(jīng)網(wǎng)絡(luò)訓(xùn)練的平均誤差最小為2.97%,故后續(xù)訓(xùn)練采用該方案的參數(shù)。 訓(xùn)練中構(gòu)建的神經(jīng)網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)如圖1,結(jié)構(gòu)為6-5-1,后續(xù)建模采用6-5-1 的拓?fù)浣Y(jié)果來構(gòu)建網(wǎng)絡(luò)。
圖1 構(gòu)建神經(jīng)網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu)
因網(wǎng)絡(luò)的仿真度直接關(guān)系到后續(xù)實驗的準(zhǔn)確性,故需對訓(xùn)練的網(wǎng)絡(luò)進(jìn)行驗證。 為了檢測訓(xùn)練網(wǎng)絡(luò)的可靠性,實驗中重新隨機(jī)安排了10 組實驗作為新樣本進(jìn)行模擬預(yù)測,所得訓(xùn)練結(jié)果與實驗值吻合情況如圖2 所示。
圖2 實驗值與神經(jīng)網(wǎng)絡(luò)估算值的比較
由圖2 可知,擬合值與實驗值有較好的吻合度(相對誤差絕對值小于5%),仿真度高,能夠很好地擬合新霉素與各影響因素之間的內(nèi)在關(guān)系,表明網(wǎng)絡(luò)具有較好的預(yù)測功能。 因此可以用這個網(wǎng)絡(luò)來模擬新霉素效價與培養(yǎng)基之間的關(guān)系。
遺傳算法是模擬生物基因的操作,主要包括基因的選擇、交叉、變異。 通過選擇和交叉兩個遺傳操作能實現(xiàn)了大部分搜索功能,而變異操作進(jìn)一步增強(qiáng)了遺傳算法的最佳尋優(yōu)能力,最終使群體進(jìn)化到最優(yōu)區(qū)域里[10]。
在前期建立的神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)上,為了更好地降低實驗強(qiáng)度,操作中通過神經(jīng)網(wǎng)絡(luò)和遺傳算法偶合來尋優(yōu),即用人工神經(jīng)網(wǎng)絡(luò)模型相當(dāng)于模擬搖瓶過程,再將遺傳算法尋優(yōu)到的結(jié)果通過神經(jīng)網(wǎng)絡(luò)來表達(dá),一直反復(fù)循環(huán)直到結(jié)果理想為止。
操作中令遺傳算法中種群為15,每個子串長度均為10。 每個個體(染色體)長度為50,交叉概率為0.65,突變概率為0.001[10]。 最后隨著遺傳代數(shù)的增加,適應(yīng)度平均值與最大值都越來越高。 經(jīng)過大約1 000 代的搜索后染色體的平均適應(yīng)度趨于穩(wěn)定。 遺傳算法與人工神經(jīng)網(wǎng)絡(luò)偶聯(lián)結(jié)構(gòu)如圖3。
圖3 GA 與人工神經(jīng)網(wǎng)絡(luò)偶聯(lián)結(jié)構(gòu)圖
最后通過優(yōu)化得到的培養(yǎng)基配方為:玉米粉60.12 g/L、(NH4)2SO4為14.62g/L、玉米漿為5.24 mL/100 mL、磷酸鹽1.32 g/L、花生粉20.76 g/L、硫酸鎂2.05 g/L,根據(jù)該配方進(jìn)行搖瓶發(fā)酵驗證,新霉素?fù)u瓶發(fā)酵效價為19 210 u/mL,明顯高于優(yōu)化前的15 618 u/mL。
BP 神經(jīng)網(wǎng)絡(luò)適用于生物反應(yīng)的非線性過程建模,該方法通用性好,概括能力強(qiáng),仿真精度較高。GA算法計算簡單、功能強(qiáng),在解決優(yōu)化問題中具有巨大潛力。 本文針對新霉素發(fā)酵過程的特點,采用人工神經(jīng)網(wǎng)絡(luò)來描述生物反應(yīng)過程這么一個復(fù)雜而又高度非線性的體系,建立了用于發(fā)酵過程結(jié)果的估算和預(yù)測的模型。 最后通過神經(jīng)網(wǎng)絡(luò)和遺傳算法偶合對新霉素發(fā)酵培養(yǎng)基進(jìn)行優(yōu)化,得到新霉素?fù)u瓶發(fā)酵效價為19 210 u/mL,比優(yōu)化前提高了23%,可見BP 神經(jīng)網(wǎng)絡(luò)和遺傳算法對新霉素發(fā)酵培養(yǎng)基優(yōu)化效果明顯。