何新澤 林書(shū)卿 楊濤 王成剛 李芹 于立志 孫金占 王培
[摘要]目的 探討大鼠腦損傷聯(lián)合他克莫司促進(jìn)坐骨神經(jīng)再生的效果。方法 選取180只SD大鼠,隨機(jī)分為4組,每組各45只,按照顱腦損傷模型(Feeney法)和坐骨神經(jīng)損傷模型(Sunderland V型)造模,A1組:顱腦損傷合并坐骨神經(jīng)損傷聯(lián)合應(yīng)用他克莫司;A2組:顱腦損傷合并坐骨神經(jīng)損傷聯(lián)合應(yīng)用生理鹽水;B1組:?jiǎn)渭冏巧窠?jīng)損傷聯(lián)合應(yīng)用他克莫司;B2組:?jiǎn)渭冏巧窠?jīng)損傷聯(lián)合應(yīng)用生理鹽水。造模后第4、8、12周,測(cè)定坐骨神經(jīng)指數(shù)(SFI)、腓腸肌恢復(fù)率,進(jìn)行神經(jīng)組織Masson染色;造模后第8、12周觀察脊髓神經(jīng)元辣根過(guò)氧化物(HRP)的逆行示蹤標(biāo)記。結(jié)果 造模后第4周,A1組與A2組、B1組與B2組的SFI比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05);造模后第4周,A1、A2組的SFI均優(yōu)于B1、B2組,差異有統(tǒng)計(jì)學(xué)意義(P<0.01);造模后第8、12周,A2組與B1組的SFI比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05);造模后第8、12周,A1組的SFI優(yōu)于A2、B1、B2組,A2、B1組的SFI均優(yōu)于B2組,差異有統(tǒng)計(jì)學(xué)意義(P<0.01);4周后,各組大鼠的SFI逐漸升高(P<0.01)。造模后第4周,A2、B1、B2組的腓腸肌恢復(fù)率比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05);A1組造模后第4周的腓腸肌恢復(fù)率高于A2、B1、B2組,差異有統(tǒng)計(jì)學(xué)意義(P<0.01);造模后第8、12周,A1、A2、B1組的腓腸肌恢復(fù)率均明顯高于B2組,差異有統(tǒng)計(jì)學(xué)意義(P<0.01);造模后第8、12周,A1組與A2組的腓腸肌恢復(fù)率比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05);A1、A2組造模后第8周的腓腸肌恢復(fù)率均高于B1組,差異有統(tǒng)計(jì)學(xué)意義(P<0.01);造模后第12周,A1組的腓腸肌恢復(fù)率高于B1組,差異有統(tǒng)計(jì)學(xué)意義(P<0.01);A2組與B1組造模后第12周的腓腸肌恢復(fù)率比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05);4周后,各組大鼠的腓腸肌恢復(fù)率逐漸升高(P<0.01)。Masson染色觀察造模后第12周A1組膠原纖維均勻分布,并呈波浪形隨神經(jīng)纖維排列,A2、B1組可見(jiàn)綠染與紅染分布均勻,B2組可見(jiàn)大量膠原纖維,少量再生的軸突。造模后第8周,A1組的HRP標(biāo)記陽(yáng)性率高于A2、B1、B2組,A2組的HRP標(biāo)記陽(yáng)性率高于B1、B2組,B1組的HRP標(biāo)記陽(yáng)性率高于B2組,差異有統(tǒng)計(jì)學(xué)意義(P<0.01);造模后第12周,A1組的HRP標(biāo)記陽(yáng)性率高于A2、B1、B2組,A2、B1組的HRP標(biāo)記陽(yáng)性率均高于B2組,差異有統(tǒng)計(jì)學(xué)意義(P<0.01);A2組造模后第12周的HRP標(biāo)記陽(yáng)性率與B1組比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。結(jié)論 腦損傷合并周圍神經(jīng)損傷聯(lián)合應(yīng)用他克莫司干預(yù)可促進(jìn)神經(jīng)損傷修復(fù),顱腦損傷與他克莫司作用的機(jī)制不完全相同,腦損傷促進(jìn)周圍神經(jīng)損傷修復(fù)的機(jī)制仍需進(jìn)一步深入研究。
[關(guān)鍵詞]顱腦損傷;周圍神經(jīng);神經(jīng)修復(fù)與再生;他克莫司
[中圖分類號(hào)] R318? ? ? ? ? [文獻(xiàn)標(biāo)識(shí)碼] A? ? ? ? ? [文章編號(hào)] 1674-4721(2019)9(a)-0007-06
Effect of rat brain injury combined with Tacrolimus on promoting sciatic nerve regeneration
HE Xin-ze1? ?LIN Shu-qing1? ?YANG Tao1? ?WANG Cheng-gang1? ?LI Qin1? ?YU Li-zhi2? ?SUN Jin-zhan2? ?WANG Pei3
1. Department of Emergency, Binzhou Central Hospital, Shandong Province, Binzhou? ?251700, China; 2. Department of Trauma Orthopedics, Binzhou Central Hospital, Shandong Province, Binzhou? ?251700, China; 3. Department of Hand and Foot Surgery, Affiliated Hospital of Chengde Medical University, Hebei Province, Chengde? ?067000, China
[Abstract] Objective To investigate the effect of rat brain injury combined with Tacrolimus on promoting sciatic nerve regeneration. Methods A total of 180 SD rats were randomly divided into 4 groups with 45 rats in each group and modeled according to the craniocerebral injury model (Feeney method) and the sciatic nerve injury model (Sunderland V type). Group A1: cerebral injury combined with sciatic nerve injury and Tacrolimus; group A2: saline in cerebral injury combined with sciatic nerve injury; group B1: sciatic nerve injury combined with Tacrolimus; group B2: simple sciatic nerve injury combined saline. At the fourth, eighth, and twelfth weeks after modeling, the sciatic nerve function index (SFI) and the gastrocnemius recovery rate were measured, and the tissue was subjected to Masson staining. Retrograde tracer markers of spinal cord neurons horseradish peroxide (HRP) were observed at the eighth and twelfth weeks after modeling. Results At the fourth week after modeling, there was no significant difference in SFI between group A1 and group A2, group B1 and group B2 (P>0.05). At the fourth week after modeling, the SFI of the group A1 and A2 was better than that of the group B1 and B2, and the difference was statistically significant (P<0.01). At the eighth and twelfth weeks after modeling, there was no significant difference in SFI between group A2 and group B1 (P>0.05). At the eighth and twelfth weeks after modeling, the SFI of group A1 was better than that of group A2, B1 and B2, the SFI of group A2 and group B1 was better than that of group B2, and the differences were statistically significant (P<0.01). After 4 weeks, the SFI of each group of rats gradually increased (P<0.01). At the fourth week after modeling, the recovery rate of gastrocnemius muscle in group A2, B1 and B2 was not statistically significant (P>0.05). The recovery rate of gastrocnemius muscle at the fourth week after modeling in group A1 was higher than that in group A2, B1 and B2, and the differences were statistically significant (P<0.01). At the eighth and twelfth weeks after modeling, the recovery rate of gastrocnemius muscle in group A1, A2 and B1 was significantly higher than that in group B2, and the differences were statistically significant (P<0.01). At the eighth and twelfth weeks after modeling, there was no significant difference in the recovery rate of gastrocnemius between group A1 and group A2 (P>0.05). The recovery rate of gastrocnemius muscle in the group A1 and A2 was higher than that in the group B1 at the eighth week after modeling, and the differences were statistically significant (P<0.01). At the twelfth week after modeling, the recovery rate of gastrocnemius muscle in group A1 was higher than that in group B1, and the difference was statistically significant (P<0.01). There was no significant difference in the recovery rate of gastrocnemius muscle between the group A2 and the group B1 at the twelfth week after modeling (P>0.05). After 4 weeks, the recovery rate of gastrocnemius muscle in each group gradually increased (P<0.01). Masson staining showed that the collagen fibers at the twelfth week after modeling in the group A1 were evenly distributed, and they were arranged in a wave shape with nerve fibers, the green staining and red staining distribution were uniform in the group A2 and the group B1, and a large number of collagen fibers were observed in the group B2. At the eighth week after modeling, the positive rate of HRP label in group A1 was higher than that in group A2, B1 and B2, the positive rate of HRP label in group A2 was higher than that in group B1 and group B2, and the positive rate of HRP label in group B1 was higher than that in group B2, with statistically significant differences (P<0.01). At the twelfth week after modeling, the positive rate of HRP label in group A1 was higher than that in group A2, group B1 and group B2, and the positive rate of HRP label in group A2 and group B1 was higher than that in group B2, with statistically significant differences (P<0.01). There was no significant difference in the positive rate of HRP label at the twelfth week after modeling between group A2 and group B1 (P>0.05). Conclusion Brain injury combined with peripheral nerve injury and Tacrolimus intervention can promote the repair of nerve damage. The mechanism of brain injury and Tacrolimus is not exactly the same. The mechanism of brain damage promoting peripheral nerve injury repair needs further study.
[Key words] Craniocerebral injury; Peripheral nerve; Nerve repair and regeneration; Tacrolimus
臨床工作中,顱腦損傷合并周圍神經(jīng)損傷的患者并不罕見(jiàn),神經(jīng)損傷后的恢復(fù)具有特殊性,功能恢復(fù)不全,致殘率較高[1-5]。Wang等[2-9]研究發(fā)現(xiàn),實(shí)驗(yàn)大鼠在顱腦損傷后合并周圍神經(jīng)損傷,損傷坐骨神經(jīng)的修復(fù)速度加快,但修復(fù)機(jī)制尚不清楚。研究發(fā)現(xiàn)他克莫司可促進(jìn)損傷神經(jīng)修復(fù)再生[10-15]。大量的實(shí)驗(yàn)發(fā)現(xiàn),他克莫司促進(jìn)周圍神經(jīng)損傷后的再生,主要通過(guò)免疫抑制、神經(jīng)營(yíng)養(yǎng)來(lái)實(shí)現(xiàn)[16-22]。本研究擬通過(guò)他克莫司促進(jìn)神經(jīng)損傷恢復(fù)機(jī)制,探索顱腦損傷促進(jìn)神經(jīng)損傷恢復(fù)的機(jī)制。
1材料與方法
1.1造模動(dòng)物與材料
本實(shí)驗(yàn)于2018年10月~2019年2月在濱州市中心醫(yī)院完成。
實(shí)驗(yàn)動(dòng)物:選用SPF級(jí)雄性SD大鼠[北京維通利華實(shí)驗(yàn)動(dòng)物技術(shù)有限公司,許可證號(hào):SCXK(京)2012-0001]180只,200~220 g。飼養(yǎng)在晝夜各12 h節(jié)律下,實(shí)驗(yàn)室溫度維持在(23±1)℃。將大鼠完全隨機(jī)分為4組,每組各45只。本研究經(jīng)過(guò)濱州市中心醫(yī)院動(dòng)物倫理委員會(huì)批準(zhǔn),按照國(guó)際動(dòng)物實(shí)驗(yàn)標(biāo)準(zhǔn)執(zhí)行。
主要設(shè)備及試劑:手術(shù)顯微鏡(LZL-6A型,鎮(zhèn)江中天公司);光學(xué)顯微鏡(BH-3型,Olympus公司);電子分析天平(ESJ200-4±0.0001 g);他克莫司(Tacrolimus)100 mg(Selleck);Masson三色染色試劑盒(標(biāo)準(zhǔn)型,江蘇KeyGEN生物);Peroxidase來(lái)源于辣根100 mg(Sigma)。
1.2造模方法
1.2.1造模? 禁食水4 h,術(shù)前30 min,肌肉注射頭孢唑啉鈉(魯抗制藥,20180120)10 mg/100 g預(yù)防感染,術(shù)區(qū)備皮剪毛。10%水合氯醛按照0.35 ml/100 g進(jìn)行腹腔全麻;A1組和A2組:消毒,沿頭部正中矢狀切開(kāi),在顱骨冠狀線后1.5 mm、中線偏左5 mm處開(kāi)直徑5 mm骨窗,撞擊造成中度腦損傷;右側(cè)臀部,顯微鏡下完全切斷坐骨神經(jīng),9-0無(wú)損傷線縫合坐骨神經(jīng)外膜4~6針[11]。B1組和B2組:大鼠僅于顯微鏡下完全切斷右側(cè)坐骨神經(jīng),縫合坐骨神經(jīng)外膜。
1.2.2造模后干預(yù)? 分籠飼養(yǎng)在同樣環(huán)境中。他克莫司用0.9%氯化鈉稀釋,1 ml 0.9%氯化鈉+1 mg他克莫司,現(xiàn)用現(xiàn)配制,4℃恒溫保存;造模手術(shù)12 h后,A1組大鼠給予他克莫司,按1 mg/200 mg腹腔注射;A2組給予生理鹽水,按 1 ml/200 mg腹腔注射;B1組大鼠給予他克莫司,按1 mg/200 mg腹腔注射;B2組大鼠給予生理鹽水,按1 ml/200 mg腹腔注射。1次/d,連續(xù)2周。觀察各組大鼠存活情況。
1.3觀察指標(biāo)
1.3.1坐骨神經(jīng)指數(shù)(sciatic nerve function index,SFI)的測(cè)量? 分別于造模后第4、8、12周,各組每次隨機(jī)取10只大鼠。根據(jù)Schiaveto de Souza A的方法[8],實(shí)驗(yàn)側(cè)足3個(gè)參數(shù)分別為:實(shí)驗(yàn)側(cè)足印長(zhǎng)度(SPL)、實(shí)驗(yàn)側(cè)足趾寬度(STS)、實(shí)驗(yàn)側(cè)中間足趾距離(SIT);正常側(cè)足3個(gè)參數(shù)分別為正常側(cè)足印長(zhǎng)度(ZPL)、正常側(cè)足趾寬度(ZTS)、正常側(cè)中間足趾距離(ZIT)。SFI=-38.3×(SPL-ZPL)/ZPL+109.5×(STS-ZTS)/ZTS+13.2×(SIT-ZIT)/ZIT-8.8。以SFI值0時(shí)為正常,-100時(shí)為神經(jīng)完全斷離。
1.3.2腓腸肌恢復(fù)率? 造模后第4、8、12周,各組隨機(jī)取5只大鼠,取下完整的雙側(cè)腓腸肌,吸取肌肉周圍的血液,雙側(cè)腓腸肌在分析天平上稱重。計(jì)算腓腸肌的恢復(fù)率,推測(cè)運(yùn)動(dòng)功能恢復(fù)的情況。
1.3.3神經(jīng)Masson染色? 造模后第4、8、12周,各組隨機(jī)取5只大鼠,切取吻合口遠(yuǎn)、近端0.5 cm坐骨神經(jīng),10%甲醛固定,梯度酒精脫水,石蠟包埋,切片厚度5 μm,染色、封片,光學(xué)顯微鏡下觀察神經(jīng)纖維、膠原纖維增生情況。
1.3.4辣根過(guò)氧化物酶(HRP)示蹤? 分別于造模后第8、12周,于坐骨神經(jīng)斷端以遠(yuǎn)0.5 cm處,注入30%HRP溶液5 μl。深麻醉下開(kāi)胸,灌流固定,取坐骨神經(jīng)相應(yīng)脊髓節(jié)段,橫斷面連續(xù)振蕩切片30 μm。光鏡下統(tǒng)計(jì)脊髓前角運(yùn)動(dòng)神經(jīng)元中被標(biāo)記為藍(lán)染顆粒的胞體數(shù)目。
1.4統(tǒng)計(jì)學(xué)方法
采用SPSS 19.0統(tǒng)計(jì)學(xué)軟件進(jìn)行數(shù)據(jù)分析,計(jì)量資料用均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,兩組間比較采用t檢驗(yàn),以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1造模后各組大鼠基本生活狀態(tài)的觀察
造模后所有動(dòng)物均存活,未發(fā)現(xiàn)切口感染情況。造模手術(shù)后5 d,B2組大鼠出現(xiàn)足部紅腫明顯,其他組紅腫較輕;3周后,A2、B1、B2組大鼠足跟出現(xiàn)程度不同的潰瘍面,A1組大鼠足部未見(jiàn)明顯潰瘍;12周時(shí),各組大鼠足部潰瘍基本痊愈,B2組大鼠出現(xiàn)足部的自食現(xiàn)象。
2.2各組大鼠造模后第4、8、12周SFI的比較
暗箱測(cè)試結(jié)果顯示,造模后第4周,A1組與A2組、B1組與B2組的SFI比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05);造模后第4周,A1、A2組的SFI均優(yōu)于B1、B2組,差異有統(tǒng)計(jì)學(xué)意義(P<0.01);造模后第8、12周,A2組與B1組的SFI比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05);造模后第8、12周,A1組的SFI優(yōu)于A2、B1、B2組,A2、B1組的SFI均優(yōu)于B2組,差異有統(tǒng)計(jì)學(xué)意義(P<0.01);4周后,各組大鼠的SFI逐漸升高(P<0.01)(表1)。
2.3各組大鼠造模后第4、8、12周腓腸肌恢復(fù)率的比較
4周后取材可見(jiàn)各組大鼠失神經(jīng)支配的腓腸肌顏色均較健側(cè)蒼白,肌肉明顯萎縮。
造模后第4周,A2、B1、B2組的腓腸肌恢復(fù)率比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05);A1組造模后第4周的腓腸肌恢復(fù)率高于A2、B1、B2組,差異有統(tǒng)計(jì)學(xué)意義(P<0.01);造模后第8、12周,A1、A2、B1組的腓腸肌恢復(fù)率均明顯高于B2組,差異有統(tǒng)計(jì)學(xué)意義(P<0.01);造模后第8、12周,A1組與A2組的腓腸肌恢復(fù)率比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05);A1、A2組造模后第8周的腓腸肌恢復(fù)率均高于B1組,差異有統(tǒng)計(jì)學(xué)意義(P<0.01);造模后第12周,A1組的腓腸肌恢復(fù)率高于B1組,差異有統(tǒng)計(jì)學(xué)意義(P<0.01);A2組與B1組造模后第12周的腓腸肌恢復(fù)率比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05);4周后,各組大鼠的腓腸肌恢復(fù)率逐漸升高(P<0.01)(表2)。
2.4各組大鼠造模后第4、8、12周神經(jīng)Masson三色法染色情況
造模后第4周,A1、B1組神經(jīng)纖維紅染較多,綠色纖維較少,A2組綠染與紅染均勻,B2組未見(jiàn)紅染的神經(jīng)纖維;造模后第8周,A1、A2、B1組可見(jiàn)綠染與紅染均勻分布,B2組可見(jiàn)再生的軸突;造模后第12周,A1組膠原纖維均勻分布,并呈波浪形隨神經(jīng)纖維排列,A2、B1組可見(jiàn)綠染與紅染分布均勻,B2組可見(jiàn)大量膠原纖維,少量再生的軸突(圖1)。
2.5各組大鼠造模后第8、12周神經(jīng)元HRP標(biāo)記情況
光鏡下,相應(yīng)脊髓節(jié)段的前角神經(jīng)元細(xì)胞胞漿中發(fā)現(xiàn)標(biāo)記成藍(lán)黑色的HRP陽(yáng)性顆粒細(xì)胞(圖2)。
每高倍視野下進(jìn)行計(jì)數(shù),統(tǒng)計(jì)分析結(jié)果顯示,造模后第8周,A1組的HRP標(biāo)記陽(yáng)性率高于A2、B1、B2組,A2組的HRP標(biāo)記陽(yáng)性率高于B1、B2組,B1組的HRP標(biāo)記陽(yáng)性率高于B2組,差異有統(tǒng)計(jì)學(xué)意義(P<0.01);造模后第12周,A1組的HRP標(biāo)記陽(yáng)性率高于A2、B1、B2組,A2、B1組的HRP標(biāo)記陽(yáng)性率均高于B2組,差異有統(tǒng)計(jì)學(xué)意義(P<0.01);A2組造模后第12周的HRP標(biāo)記陽(yáng)性率與B1組比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)(圖3)。
1:A1組;2:A2組;3:B1組;4:B2組。與A2組同期比較,#P<0.01;與B1組同期比較,*P<0.01;與B2組同期比較,¥P<0.01
3討論
何新澤等[1,22-33]動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn),大鼠腦損傷后對(duì)損傷的坐骨神經(jīng)修復(fù)重建有明顯促進(jìn)作用,但具體修復(fù)機(jī)制尚不清楚。本研究通過(guò)動(dòng)物實(shí)驗(yàn)比較顱腦損傷聯(lián)合應(yīng)用他克莫司的坐骨神經(jīng)損傷大鼠,損傷后的坐骨神經(jīng)損傷恢復(fù)的情況。在所有的實(shí)驗(yàn)觀測(cè)項(xiàng)目中,顱腦損傷聯(lián)合他克莫司(A1組)的坐骨神經(jīng)修復(fù)效果優(yōu)于其他組(P<0.05),提示顱腦損傷可以與他克莫司協(xié)同促進(jìn)坐骨神經(jīng)損傷后的修復(fù),其作用機(jī)制與他克莫司不完全相同。
在Sunderland V型的外圍神經(jīng)損傷后,神經(jīng)損傷切斷了神經(jīng)內(nèi)分泌的養(yǎng)分,不能將其輸送到靶子器官上,靶子器官將失去活性和營(yíng)養(yǎng)的支持。根據(jù)目前的他克莫司促進(jìn)神經(jīng)機(jī)制,促進(jìn)外圍神經(jīng)修復(fù)相對(duì)明確是兩個(gè)功能領(lǐng)域,發(fā)揮神經(jīng)營(yíng)養(yǎng)功能,形成一個(gè)FKBP12的綜合體,加入功能地區(qū)后表達(dá)GAP-43,一個(gè)超蛋白質(zhì)神經(jīng)生長(zhǎng),并促進(jìn)形成和擴(kuò)大神經(jīng)的生長(zhǎng)由神經(jīng)脈沖生成的生物電能、靶器官,再生軸突的內(nèi)徑上升,厚厚的神經(jīng)膜層,作用范圍增加[22-23]。這證實(shí)了他克莫司有助于恢復(fù)外圍神經(jīng)的營(yíng)養(yǎng)功能,萎縮身體的部分看起來(lái)更容易潰瘍,顱腦損傷聯(lián)合他克莫司組恢復(fù)較好,提示促進(jìn)外形神經(jīng)損傷的作用,結(jié)合功能或復(fù)雜的FKBP12地區(qū)來(lái)促進(jìn)表達(dá)GAP-43。
在外圍神經(jīng)損傷后,軸突的退化立即發(fā)生,軸突碎片是由巨噬細(xì)胞吞噬清除,新的軸突、未退化的神經(jīng)元延伸到由Schwann細(xì)胞組成的內(nèi)膜神經(jīng)的間隙,靶器官逐漸建立聯(lián)系和營(yíng)養(yǎng)[22-29]。Masson染色、HRP切片神經(jīng)均顯示,A1組在他克莫司的免疫抑制效果方面優(yōu)于其他組(P<0.05),他克莫司結(jié)合FKBP12,形成鈣復(fù)合物抑制堿(CAN),抑制T細(xì)胞的衰減,并抑制白介素-2(IL-2)、白介素-3(IL-3)的表達(dá),以生產(chǎn)免疫抑制物被神經(jīng)接收[6-11]。
周圍神經(jīng)的損傷伴隨著血液神經(jīng)屏障的破壞,刺激纖維增生和巨噬細(xì)胞的擴(kuò)散,形成影響神經(jīng)修復(fù)的瘢痕[24-25]。他克莫司可以抑制纖維素的擴(kuò)散、遷移和生物活性,抑制纖維素的擴(kuò)散,并通過(guò)免疫抑制作用促進(jìn)神經(jīng)損傷的重建和修復(fù)。Masson染色觀察結(jié)果提示,A1組的瘢痕比A2、B1、B2組減少。神經(jīng)內(nèi)分泌系統(tǒng)的調(diào)節(jié),創(chuàng)造微型環(huán)境的因素、Schwann細(xì)胞的信號(hào)有助于促進(jìn)軸突再生[28-29]。神經(jīng)交換的物質(zhì)是軸漿的運(yùn)輸器官和再生軸芽器官通過(guò)內(nèi)膜管再生作用于目標(biāo)器官[25-29]。軸突內(nèi)物質(zhì)更好地恢復(fù)運(yùn)輸功能和靶器官的反饋是相互促進(jìn)的[12-17]。HRP染色結(jié)果進(jìn)一步提示,免疫神經(jīng)內(nèi)分泌系統(tǒng)在腦損傷期間有密切的關(guān)系[30],自主神經(jīng)系統(tǒng)的中心結(jié)構(gòu)被摧毀,導(dǎo)致免疫調(diào)節(jié)紊亂、改變或喪失,功能腦細(xì)胞的變性,導(dǎo)致caspase瀑布反應(yīng)性的激活,導(dǎo)致神經(jīng)凋亡。
綜上所述,腦損傷伴隨周圍神經(jīng)損傷動(dòng)物早期應(yīng)用他克莫司后,周圍神經(jīng)修復(fù)再生方面較好,腦損傷、他克莫司均可促進(jìn)周圍神經(jīng)損傷的修復(fù),并且協(xié)同促進(jìn)神經(jīng)損傷的修復(fù)效果更好,為腦損傷合并周圍神經(jīng)損傷的患者提供了新的治療思路。但腦損傷促進(jìn)周圍神經(jīng)損傷的具體機(jī)制仍需進(jìn)一步深入研究。
[參考文獻(xiàn)]
[1]何新澤,王維,馬建軍,等.顱腦損傷促進(jìn)的坐骨神經(jīng)再生[J].中國(guó)組織工程研究,2016,20(27):4061-4067.
[2]Wang W,Gao J,Na L,et al.Craniocerebral injury promotes the repair of peripheral nerve injury[J].Neural Regen Res,2014,9(18):1703-1708.
[3]Reeves TM,Trimmer PA,Colley BS,et al.Targeting Kv1.3 channels to reduce white matter pathology after traumatic brain injury[J].Expe Neurol,2016,283(PtA):188-203.
[4]Mohammadi R,Vahabzadeh B,Amini K.Sciatic nerve regeneration induced by transplantation of in vitro bone marrow stromal cells into an inside-out artery graft in rat[J].J Craniomaxillofac Surg,2014,42(7):1389-1396.
[5]Glaus SW,Johnson PJ,Mackinnon SE.Clinical strategies to enhance nerve regeneration in composite tissue allotransplantation[J].Hand Clin,2011,27(4):495-509.
[6]Mekaj AY,Morina AA,Manxhuka-Kerliu S,et al.Electrophysiological and functional evaluation of peroneal nerve regeneration in rabbit following topical hyaluronic acid or tacrolimus application after nerve repair[J].Niger Postgrad Med J,2015,22(3):179-184.
[7]Badavanis G,Pasmatzi E,Monastirli A,et al.Topical imiquimod is an effective and safe drug for molluscum contagiosum in children[J].Acta Dermatovenerol Croat,2017,25(2):164-166.
[8]Phillips BZ,F(xiàn)ranco MJ,Yee A,et al.Direct radial to ulnar nerve transfer to restore intrinsic muscle function in combined proximal median and ulnar nerve injury:case report and surgical technique[J].J Hand Surg Am,2014,39(7):1358-1362.
[9]Zhao J,Zheng X,F(xiàn)u C,et al.FK506-loaded chitosan conduit promotes the regeneration of injured sciatic nerves in the rat through the upregulation of brain-derived neurotrophic factor and TrkB[J].J Neurol Sci,2014,344(1-2):20-26.
[10]Gaudier-Diaz MM,Haines AH,Zhang N,et al.Social influences on microglial reactivity and neuronal damage after cardiac arrest/cardiopulmonary resuscitation[J].Physiol Behav,2018,194:437-449.
[11]Cheng XL,Wang P,Sun B,et al.The longitudinal epineural incision and complete nerve transection method for sciatic nerve injury[J].Neural Regen Res,2015,10(10):1663-1668.
[12]Dai Y,Wang C,Chiu LY,et al.Application of bioconjugation chemistry on biosensor fabrication for detection of TAR-DNA binding protein 43[J].Biosens Bioelectron,2018,117:60-67.
[13]何新澤,王成剛,于立志,等.他克莫司促進(jìn)周圍神經(jīng)再生的研究進(jìn)展[J].轉(zhuǎn)化醫(yī)學(xué)電子雜志,2018,5(12):102-104.
[14]He L,Yadgarov A,Sharif S,et al.Aging profoundly delays functional recovery from gustatory nerve injury[J].Neuroscience,2012,209:208-218.
[15]Huang CC,Yang W,Guo C,et al.Anatomical and functional dichotomy of ocular itch and pain[J].Nat Med,2018,24(8):1268-1276.
[16]何新澤,于立志,王成剛,等.跟腓韌帶損傷的診療進(jìn)展[J].足踝外科電子雜志,2018,5(2):59-61.
[17]Saeman MR,DeSpain K,Liu MM,et al.Effects of exercise on soleus in severe burn and muscle disuse atrophy[J].J Surg Res,2015,198(1):19-26.
[18]Shu B,Xie JL,Xu YB,et al.Effects of skin-derived precursors on wound healing of denervated skin in a nude mouse model[J].Int J Clin Exp Pathol,2015,8(3):2660-2669.
[19]Dong HY,Jiang XM,Niu CB,et al.Cerebrolysin improves sciatic nerve dysfunction in a mouse model of diabetic peripheral neuropathy[J].Neural Regen Res,2016,11(1):156-162.
[20]Khosravi A,Sharifi I,Tavakkoli H,et al.Embryonic toxico-pathological effects of meglumine antimoniate using a chick embryo model[J].PLoS One,2018,13(5):e0196424.
[21]Lin Q,Wesson RN,Maeda H,et al.Pharmacological mobilization of endogenous stem cells significantly promotes skin regeneration after full-thickness excision:the synergistic activity of AMD3100 and tacrolimus[J].J Invest Dermatol,2014,134(9):2458-2468.
[22]Florio F,F(xiàn)erri C,Scapin C,et al.Sustained expression of negative regulators of myelination protects schwann cells from dysmyelination in a charcot-marie-tooth 1B mouse model[J].J Neurosci,2018,38(18):4275-4287.
[23]Croaker A,King GJ,Pyne JH,et al.Assessing the risk of epidemic dropsy from black salve use[J].J Appl Toxicol,2018, 38(10):1274-1281.
[24]Roque JS,Pomini KT,Buchaim RL,et al.Inside-out and standard vein grafts associated with platelet-rich plasma(PRP)in sciatic nerve repair.A histomorphometric study[J].Acta Cir Bras,2017,32(8):617-625.
[25]Ganguly S,Das P,Maity PP,et al.Green reduced graphene oxide toughened semi-IPN monolith hydrogel as dual responsive drug release system:rheological,physicomechanical,and electrical evaluations[J].J Phys Chem B,2018,122(29):7201-7218.
[26]Liu C,Yang H,Shi W,et al.MicroRNA-mediated regulation of Th17/Treg balance in autoimmune disease[J].Immunology,2018,155(4):427-434.
[27]Starr A,Sattler R.Synaptic dysfunction and altered excitability in C9ORF72 ALS/FTD[J].Brain Res,2018,1693(PtA):98-108.
[28]Quan Wang J,Di Yang M,Chen X,et al.Discovery of new chromen-4-one derivatives as telomerase inhibitors through regulating expression of dyskerin[J].J Enzyme Inhib Med Chem,2018,33(1):1199-1211.
[29]Liu S,Wu N,Miao J,et al.Protective effect of morin on myocardial ischemia reperfusion injury in rats[J].Int J Mol Med,2018,42(3):1379-1390.
[30]Kentner AC,Khan U,MacRae M,et al.The effect of antibiotics on social aversion following early life inflammation[J].Physiol Behav,2018,194:311-318.
[31]馬建軍,何新澤,王浩琪,等.不同位置腦損傷模型大鼠坐骨神經(jīng)的再生[J].中國(guó)組織工程研究,2017,21(36):5806-5811.
[32]He XZ,Ma JJ,Wang HQ,et al.Brain injury in combination with tacrolimus promotes the regeneration of injured peripheral nerves[J].Neural Regen Res,2017,12(6):987-994.
[33]何新澤,王維,呼鐵民,等.周圍神經(jīng)損傷的修復(fù):理論研究與技術(shù)應(yīng)用[J].中國(guó)組織工程研究,2016,20(7):1044-1050.
(收稿日期:2019-03-29? 本文編輯:任秀蘭)