国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

胡麻籽粒離散元仿真參數(shù)標(biāo)定與排種試驗(yàn)驗(yàn)證

2019-12-19 01:25石林榕馬周泰趙武云楊小平孫步功張建平
關(guān)鍵詞:種器胡麻粒數(shù)

石林榕,馬周泰,趙武云,楊小平,孫步功,張建平

胡麻籽粒離散元仿真參數(shù)標(biāo)定與排種試驗(yàn)驗(yàn)證

石林榕1,馬周泰1,趙武云1※,楊小平1,孫步功1,張建平2

(1. 甘肅農(nóng)業(yè)大學(xué)機(jī)電工程學(xué)院,蘭州 730070;2. 甘肅省農(nóng)科院作物研究所,蘭州 730070)

為借助離散單元法優(yōu)化胡麻機(jī)械化生產(chǎn)裝備提供胡麻基本參數(shù),該文對(duì)甘肅省普遍種植的定亞22號(hào)、隴亞10號(hào)、隴亞13號(hào)3種胡麻籽粒通過試驗(yàn)法測(cè)定了胡麻籽粒的基本物理參數(shù)(3個(gè)方向尺寸、質(zhì)量密度、體積密度、泊松比、千粒重、含水率、彈性模量)和接觸力學(xué)參數(shù)(恢復(fù)系數(shù)、靜摩擦系數(shù));通過調(diào)整胡麻模型的滾動(dòng)摩擦系數(shù)條件下形成的胡麻堆積角逼近胡麻實(shí)際堆積角方法,預(yù)測(cè)胡麻滾動(dòng)摩擦系數(shù)。結(jié)果表明:定亞22號(hào)胡麻滾動(dòng)摩擦系數(shù)為0.041 5、隴亞10號(hào)為0.042 5、隴亞13號(hào)為0.042 0。探討了胡麻堆積角形成過程中滾動(dòng)摩擦系數(shù)對(duì)胡麻與底板接觸數(shù)量、胡麻動(dòng)能和重力勢(shì)能影響變化規(guī)律,結(jié)果表明:隨著滾動(dòng)摩擦系數(shù)的減少,胡麻與底板的接觸數(shù)量增加,胡麻種群的轉(zhuǎn)動(dòng)動(dòng)能呈先增加后減小的變化趨勢(shì);減小胡麻滾動(dòng)摩擦系數(shù),其轉(zhuǎn)動(dòng)動(dòng)能增加。通過設(shè)計(jì)的異型窩眼輪排種仿真和大田試驗(yàn)可知,胡麻平均穴粒數(shù)為9.5粒,標(biāo)準(zhǔn)差為1.5粒;大田試驗(yàn)的平均穴粒數(shù)為9粒,標(biāo)準(zhǔn)差為1粒。仿真和試驗(yàn)結(jié)果的穴粒數(shù)平均值的相對(duì)誤差為5.26%,基本滿足西北旱區(qū)胡麻播種機(jī)械設(shè)計(jì)參數(shù)優(yōu)化需求。

農(nóng)業(yè)機(jī)械;離散元;標(biāo)定;胡麻;驗(yàn)證

0 引 言

胡麻(又稱亞麻,flaxes)主要產(chǎn)于甘肅、山西、新疆、寧夏等地,是食用油的主要原料之一,對(duì)保障國家糧食安全方面具有很重要的戰(zhàn)略意義[1-2]。胡麻作為甘肅主要的經(jīng)濟(jì)作物之一,對(duì)甘肅經(jīng)濟(jì)具有提升作用[3]。提高胡麻生產(chǎn)效率,機(jī)械化精密播種尤為重要[4]。

發(fā)達(dá)國家精密播種研究已成熟,中國還處于技術(shù)完善階段[5]。播種機(jī)的核心部件為排種器,其優(yōu)劣直接影響播種器的性能[6]。排種器排種過程中種子受力復(fù)雜,通過試驗(yàn)法研究種子在排種過程的受力存在欠缺[7],可借助離散單元法研究分析排種過程中種子受力及運(yùn)動(dòng)狀態(tài)[8-9],如油菜[10]、小麥[11]、馬鈴薯[12]、玉米[13]等。通過離散單元法優(yōu)化排種器工作參數(shù)之前需優(yōu)先確定種子的輸入?yún)?shù)[14-15],參數(shù)又分為基本物理參數(shù)、接觸力學(xué)參數(shù)[16-17]。

本文通過試驗(yàn)法獲得胡麻密度、體積密度、三軸尺寸、泊松比、彈性模量及種子與接觸材料之間的靜摩擦系數(shù)、碰撞恢復(fù)系數(shù)等。由于胡麻籽粒尺寸比較小,形狀呈扁平狀,其滾動(dòng)摩擦系數(shù)(簡稱動(dòng)摩擦系數(shù))測(cè)定較難,通過改變胡麻之間的滾動(dòng)摩擦系數(shù)后形成的胡麻堆積角逼近實(shí)際胡麻堆積角來間接預(yù)測(cè)胡麻滾動(dòng)摩擦系數(shù)[18]。通過大田試驗(yàn)驗(yàn)證標(biāo)定的胡麻仿真參數(shù),以期為胡麻排種器結(jié)構(gòu)優(yōu)化提供參考。

1 胡麻仿真參數(shù)確定

胡麻籽粒屬于散體物料,可采用Hertz-Mindlin 模型模擬胡麻籽粒的流動(dòng)特性[19]。根據(jù)HMCM仿真要求,需輸入胡麻籽?;疚锢砗徒佑|力學(xué)參數(shù)等?;疚锢韰?shù)包括胡麻籽粒形狀尺寸及體積分布、質(zhì)量密度、彈性模量、泊松比、體積密度和含水率;接觸力學(xué)參數(shù)包括恢復(fù)系數(shù)、靜摩擦系數(shù)和滾動(dòng)摩擦系數(shù)。本文對(duì)收獲后存放7個(gè)月的定亞22號(hào)、隴亞10號(hào)、隴亞13號(hào)3個(gè)胡麻品種進(jìn)行參數(shù)測(cè)定、標(biāo)定[20]。測(cè)得定亞22號(hào)、隴亞10號(hào)、隴亞13號(hào)胡麻籽粒的質(zhì)量密度分別為1.09、1.05和1.06 g/mL,體積密度分別為0.67、0.66和0.65 g/mL,含水率平均值分別為5.35%、5.13%和5.32%。

1.1 三軸尺寸及體積分布

隨機(jī)取3種胡麻籽粒各500粒,采用數(shù)顯式游標(biāo)卡尺(精度0.02 mm)進(jìn)行三軸尺寸測(cè)定。胡麻籽粒的三軸尺寸是指胡麻籽粒的長度(),寬度(),厚度()(圖1)。統(tǒng)計(jì)測(cè)量結(jié)果表明:定亞22號(hào)平均值為4.83 mm,為2.39 mm,為0.85 mm;隴亞10號(hào)平均值為4.43 mm,為2.38 mm,為0.95 mm;隴亞13號(hào)平均值為5.13 mm,為2.47 mm,為1.02 mm。

圖1 胡麻籽粒的3軸方向

借助胡麻籽粒三維模型建立其離散元模型后,還需設(shè)置胡麻籽粒體積分布規(guī)律[13]。實(shí)際胡麻籽粒體積測(cè)量困難,可借助胡麻籽粒3軸尺寸計(jì)算分析出胡麻籽粒體積分布的標(biāo)準(zhǔn)差,計(jì)算依據(jù)三維體積=··。3種胡麻三維體積分布規(guī)律如圖2所示。由圖2可知,3種胡麻籽粒三維體積基本均呈正態(tài)分布。定亞22三維體積分布標(biāo)準(zhǔn)值和標(biāo)準(zhǔn)差為9.90±1.78,隴亞13三維體積分布標(biāo)準(zhǔn)值和標(biāo)準(zhǔn)差為9.77±1.37,隴亞10三維體積分布標(biāo)準(zhǔn)值和標(biāo)準(zhǔn)差為12.88±1.80。

圖2 胡麻種子體積分布

1.2 泊松比

胡麻籽粒較小,其泊松比測(cè)定難度較大。本文通過測(cè)量胡麻種子加載前后寬度與厚度方向的變形量計(jì)算泊松比[21]。利用電動(dòng)雙柱拉壓力測(cè)試臺(tái)(型號(hào):HDV-1K)對(duì)胡麻種子進(jìn)行壓力變形試驗(yàn),加載前測(cè)量胡麻厚度和寬度尺寸,試驗(yàn)時(shí)以0.5 mm/s速度對(duì)胡麻種子進(jìn)行厚度方向加載,加載2 s后停機(jī)。利用電子式游標(biāo)卡尺測(cè)量胡麻種子寬度方向變形量。每個(gè)品種20次重復(fù),取其平均值,通過式(1)計(jì)算泊松比。3個(gè)品種胡麻種子的泊松比測(cè)量結(jié)果如表1所示。

表1 胡麻泊松比

注:1為胡麻種子加載前的寬度;2為胡麻種子加載后的寬度;2為胡麻種子加載前的厚度;1為胡麻種子加載后的厚度,mm。

Note:1is the width of flaxes before loading.2is the width of flaxes after loading.2is the thickness before loading of flaxes.1is the thickness after loading of flaxes, mm.

1.3 靜摩擦系數(shù)

1.3.1 胡麻種子與其他材料之間的靜摩擦系數(shù)

影響摩擦系數(shù)的因素有很多,如材料的種類、接觸面的粗糙度等[22]。本文采用斜面法測(cè)量胡麻種子靜摩擦系數(shù)[23],試驗(yàn)材料為有機(jī)玻璃圓筒、鋁質(zhì)圓筒(內(nèi)壁直徑30 cm×高度50 cm)。試驗(yàn)時(shí)將胡麻種子放于管內(nèi)壁,底端固定,緩慢抬升圓筒另一端,待胡麻籽粒開始下落時(shí)停止抬升并對(duì)圓筒傾角進(jìn)行拍照,將圖片導(dǎo)入CAD軟件中,標(biāo)識(shí)管與水平面之間的夾角。每個(gè)品種10次重復(fù),根據(jù)=tan計(jì)算得到各胡麻種子的靜摩擦系數(shù)。胡麻種子與其他材料之間的摩擦角測(cè)定過程如圖3所示,靜摩擦系數(shù)計(jì)算結(jié)果如表2所示。

圖3 胡麻與其他材料之間的摩擦角測(cè)定過程

表2 胡麻與2種材料的靜摩擦系數(shù)

1.3.2 胡麻種子之間的靜摩擦系數(shù)

胡麻種子之間的靜摩擦系數(shù)也采用斜面法測(cè)量[23]。測(cè)定胡麻種子之間的靜摩擦系數(shù)之前,用鑷子將胡麻籽粒分品種整齊排列粘附在塑料板上,盡可能減小籽粒間的空隙,測(cè)量板如圖4所示。測(cè)量時(shí)用鑷子將胡麻籽粒按品種放置于粘好的測(cè)量板上的一個(gè)胡麻籽粒上,測(cè)量板底端固定,緩慢抬升塑料板另一端,待胡麻籽粒開始向下運(yùn)動(dòng)時(shí)停止抬升測(cè)量板,記錄測(cè)量板與水平面之間的夾角,按1.3.1節(jié)方法計(jì)算,每個(gè)品種10次重復(fù),每次胡麻放置選擇測(cè)量板上不同的胡麻籽粒上,經(jīng)過計(jì)算定亞22號(hào)胡麻籽粒間的靜摩擦系數(shù)為0.240±0.039,隴亞10號(hào)胡麻籽粒間的靜摩擦系數(shù)為0.201±0.028,隴亞13號(hào)胡麻籽粒間的靜摩擦系數(shù)為0.204±0.035。

圖4 胡麻籽粒之間的靜摩擦系數(shù)測(cè)量

1.4 碰撞恢復(fù)系數(shù)

1.鋼板尺2.接觸板3.攝像機(jī)4.尖嘴鉗5.胡麻籽粒

表3 胡麻籽粒碰撞恢復(fù)系數(shù)

1.5 彈性模量

胡麻彈性模量由胡麻籽粒的載荷-位移曲線計(jì)算得到[26],該曲線測(cè)定試驗(yàn)設(shè)備分別為艾德堡電子式拉力試驗(yàn)機(jī)(樂清市艾德堡有限責(zé)任公司)、數(shù)顯示推拉力計(jì)(Model:HF-500N)和壓力傳感器(DS2-500N60028)。根據(jù)胡克定律,在彈性范圍內(nèi),材料的伸長應(yīng)變與其正應(yīng)力成正比,如式(3)所示。試驗(yàn)時(shí)將胡麻籽粒水平放置在一個(gè)錐形凹槽內(nèi),使用直徑0.5 mm的圓形壓頭、保持加載速度30 mm/min對(duì)胡麻在厚度方向進(jìn)行壓縮,計(jì)算機(jī)自動(dòng)采集載荷-位移數(shù)據(jù)。由式(4)計(jì)算得到胡麻剪切模量,結(jié)果如表4所示。

式中為彈性模量,MPa;為胡麻籽粒受到的壓力,N;為接觸面積,mm2,圓形壓頭直徑為0.5 mm,與胡麻籽粒接觸面積為0.785 mm2;為胡麻籽粒加載前的厚度,mm;Δ為胡麻籽粒加載后的厚度,mm。

胡麻籽粒的剪切模量由式(4)計(jì)算得到。

式中為胡麻泊松比。

表4 胡麻彈性模量和剪切模量

1.6 滾動(dòng)摩擦系數(shù)標(biāo)定

胡麻籽粒較小,呈扁平狀,通過試驗(yàn)法測(cè)其滾動(dòng)摩擦系數(shù)存在困難。本文采用仿真逼近預(yù)測(cè)法標(biāo)定胡麻滾動(dòng)摩擦系數(shù)[13]。通過胡麻堆積試驗(yàn)得到胡麻實(shí)際堆積角;使用上文已得到的胡麻籽粒參數(shù)開展與試驗(yàn)同等條件下的胡麻仿真堆積角試驗(yàn);逐步調(diào)整仿真胡麻的滾動(dòng)摩擦系數(shù)使胡麻仿真與實(shí)際堆積角基本相等,對(duì)應(yīng)得到不同品種胡麻的滾動(dòng)摩擦系數(shù)。

1.6.1 實(shí)際堆積角測(cè)定

為了更加準(zhǔn)確地確定胡麻籽粒的滾動(dòng)摩擦系數(shù),分別采用有機(jī)玻璃圓筒和鋁質(zhì)圓筒進(jìn)行胡麻籽粒堆積試驗(yàn)。每個(gè)品種試驗(yàn)5次,結(jié)果取平均值。試驗(yàn)時(shí)將有機(jī)玻璃圓筒(內(nèi)壁直徑60 mm×高度200 mm)垂直置于水平桌面,管內(nèi)注入20 g胡麻籽粒,穩(wěn)定后使用DC12V直流推桿以30 mm/s的速度向上提升圓筒,此時(shí)胡麻種群在重力作用下自然下落堆積,形成的圓椎體底角即胡麻籽粒堆積角。如圖6所示,分別沿、方向?qū)槎逊e角進(jìn)行圖像采集,導(dǎo)入AatoCAD2010中,借助直線工具標(biāo)注圓錐體底角,如圖6所示,胡麻堆積角在軸、軸方向分別有2個(gè)值,其平均值為胡麻該方向的堆積角,共進(jìn)行5次。3種胡麻籽粒實(shí)際堆積角測(cè)量結(jié)果如表5所示。

注:θ1、θ2分別為x軸方向的胡麻籽粒堆積角;θ3、θ4分別為y軸方向的胡麻籽粒堆積角。(°)。

表5 胡麻籽粒實(shí)際堆積角

1.6.2 胡麻籽粒模型建立

根據(jù)3個(gè)品種胡麻籽粒的三軸統(tǒng)計(jì)尺寸和形狀,利用SolidWorks軟件對(duì)胡麻籽粒進(jìn)行三維實(shí)體建模,并將三維模型導(dǎo)入EDEM軟件,用不等直徑的球體對(duì)其進(jìn)行填充,直到胡麻籽粒三維模型被緊密填充、無可填充空間為止。定亞22號(hào)采用37顆半徑為0.28~0.43 mm球狀顆粒填充,長度方向?yàn)?2.42~2.42 mm、寬度方向?yàn)?1.29~1.29 mm,高度方向?yàn)?0.43~0.43 mm;隴亞10號(hào)采用29顆半徑為0.28~0.50mm球顆粒填充,長度方向?yàn)?2.22~2.42mm、寬度方向?yàn)?1.29~1.29 mm,高度方向?yàn)?0.47~0.47 mm;隴亞13號(hào)采用23顆半徑為0.25~0.48 mm球顆粒填充,長度方向?yàn)?2.57~2.57 mm、寬度方向?yàn)?1.24~1.24 mm,高度方向?yàn)?0.51~0.51 mm。胡麻籽粒的三維模型和離散元模型如圖7所示。設(shè)置直徑60 mm、高度200 mm圓筒用于形成胡麻堆積角,材料分別為有機(jī)玻璃和鋁,當(dāng)容器內(nèi)填充完20 g胡麻籽粒后,以30 mm/min提升,胡麻種群自然下落形成堆積。

注:1為胡麻籽粒三維模型;2為胡麻籽粒離散元模型。

1.6.3 仿真參數(shù)設(shè)置及結(jié)果分析

胡麻籽粒堆積仿真過程時(shí)間步長的選取至關(guān)重要,過大會(huì)導(dǎo)致顆粒發(fā)生爆炸式發(fā)散,過小會(huì)使計(jì)算量成倍增加[27-28]。時(shí)間步長計(jì)算如式(5)所示。胡麻籽粒堆積仿真過程時(shí)間步長計(jì)算結(jié)果如表6所示。

式中Δ為時(shí)間步長,s;為胡麻籽粒的球體直徑,mm;s為胡麻籽粒下落過程中的最大速度,mm/s;為胡麻籽粒的密度,kg/mm3;為胡麻籽粒的剪切模量,MPa。

表6 胡麻籽粒堆積仿真過程仿真設(shè)置參數(shù)

為降低仿真工作量,通過預(yù)仿真使仿真胡麻堆積角接近胡麻實(shí)際堆積角,并參考相關(guān)文獻(xiàn)[17, 29],縮小胡麻籽粒的滾動(dòng)摩擦系數(shù)取值范圍,區(qū)間為0.03~0.05。調(diào)整胡麻滾動(dòng)摩擦系數(shù)使堆積角進(jìn)一步逼近胡麻籽粒實(shí)際堆積角,縮小取值范圍為0.041~0.043。在2種容器、3種滾動(dòng)摩擦系數(shù)條件下進(jìn)行胡麻籽粒堆積仿真試驗(yàn),獲得對(duì)應(yīng)的仿真堆積角,并尋找較優(yōu)值,每個(gè)品種3次重復(fù),結(jié)果取平均值。仿真胡麻籽粒堆積角如表7所示。

表7 2種容器、3種滾動(dòng)摩擦系數(shù)條件下的胡麻仿真堆積角

圖8為隴亞13號(hào)在鋁質(zhì)圓筒條件下形成的堆積角仿真圖像。

注:x–0.043為當(dāng)滾動(dòng)摩擦系數(shù)為0.043時(shí)、x軸方向的胡麻籽粒堆積角,其他類同。

在有機(jī)玻璃圓筒條件下當(dāng)定亞22號(hào)胡麻籽粒的滾動(dòng)摩擦系數(shù)為0.041時(shí),形成的堆積角平均值為23.58°,接近其實(shí)際堆積角23.64°,兩者相對(duì)誤差為0.25%;在鋁質(zhì)圓筒條件下當(dāng)定亞22號(hào)胡麻籽粒的滾動(dòng)摩擦系數(shù)為0.042時(shí),形成的堆積角平均值為23.77°,接近胡麻實(shí)際堆積角23.33°,兩者相對(duì)誤差為1.85%,綜合考慮,確定定亞22號(hào)胡麻籽粒的滾動(dòng)摩擦系數(shù)為0.041 5。采用相同方法,確定隴亞10號(hào)胡麻籽粒的滾動(dòng)摩擦系數(shù)為0.042 5、隴亞13號(hào)胡麻籽粒的滾動(dòng)摩擦系數(shù)為0.042 0。在鋁制圓筒條件下對(duì)確定的3種胡麻籽粒的滾動(dòng)摩擦系數(shù)進(jìn)行驗(yàn)證,如圖9所示。

圖9 3種胡麻籽粒仿真驗(yàn)證試驗(yàn)

當(dāng)定亞22號(hào)胡麻籽粒的滾動(dòng)摩擦系數(shù)為0.041 5,形成仿真堆積角平均值為22.66°。當(dāng)隴亞10號(hào)胡麻籽粒的滾動(dòng)摩擦系數(shù)為0.042 5,形成仿真堆積角平均值為22.60°。當(dāng)隴亞13號(hào)胡麻籽粒的滾動(dòng)摩擦系數(shù)為0.042 0,形成仿真堆積角平均值為23.06°。

1.6.4 滾動(dòng)摩擦系數(shù)對(duì)堆積角形成過程影響

胡麻滾動(dòng)摩擦系數(shù)對(duì)仿真結(jié)果影響顯著,為探討滾動(dòng)摩擦系數(shù)對(duì)胡麻籽粒堆積角形成影響機(jī)理,分析研究不同滾動(dòng)摩擦系數(shù)對(duì)胡麻籽粒與底板接觸數(shù)量、能量轉(zhuǎn)化影響規(guī)律。

分析當(dāng)定亞22號(hào)胡麻籽粒在兩種容器(有機(jī)玻璃圓筒、鋁制圓筒)、3種滾動(dòng)摩擦系數(shù)(0.041,0.042,0.043)條件下,其堆積角形成過程中胡麻籽粒與底板接觸數(shù)量變化趨勢(shì),如圖10所示。

圖10 3種滾動(dòng)摩擦系數(shù)條件下胡麻籽粒與底板接觸數(shù)量的變化趨勢(shì)

當(dāng)滾動(dòng)摩擦系數(shù)分別為0.041、0.042和0.043時(shí),有機(jī)玻璃條件下胡麻堆積后籽粒與底板的接觸數(shù)量分別為1 390、1 364、1 362;鋁質(zhì)圓筒條件下其接觸數(shù)量分別為1 407、1 363、1 311,由此可知滾動(dòng)摩擦系數(shù)增加限制堆積角的減小。當(dāng)胡麻籽粒與底板的接觸數(shù)量越多,說明胡麻與底板的相互接觸面積越大,同體積下,錐體底面積增加,高度變小。

胡麻堆積角形成過程中胡麻重力勢(shì)能轉(zhuǎn)化為動(dòng)能,滾動(dòng)摩擦影響動(dòng)能轉(zhuǎn)化效率。如圖11所示,隨時(shí)間變化胡麻籽粒的轉(zhuǎn)動(dòng)動(dòng)能呈先增加后減小變化趨勢(shì),在0.65 s時(shí)其轉(zhuǎn)動(dòng)動(dòng)能最大;相同時(shí)刻,當(dāng)滾動(dòng)摩擦系數(shù)變小,其轉(zhuǎn)動(dòng)動(dòng)能增大,表明滾動(dòng)摩擦系數(shù)會(huì)限制轉(zhuǎn)動(dòng)動(dòng)能。胡麻籽粒堆積過程中下落速度一定,其轉(zhuǎn)動(dòng)速度增加,種群向外圍擴(kuò)散,相應(yīng)的形成的堆積角變小。

圖11 不同滾動(dòng)摩擦系數(shù)條件下轉(zhuǎn)動(dòng)動(dòng)能隨時(shí)間的變化趨勢(shì)

由圖12可知,胡麻堆積仿真過程中胡麻重力勢(shì)能在0.4 s前走勢(shì)基本水平,在0.25 s后勢(shì)能開始驟減。0.25 s前胡麻種群都在設(shè)備管內(nèi),勢(shì)能轉(zhuǎn)換動(dòng)能較少;0.25 s后胡麻脫離容器束縛重力勢(shì)能迅速轉(zhuǎn)換為動(dòng)能。0.8 s時(shí)在有機(jī)玻璃條件下,當(dāng)滾動(dòng)摩擦系數(shù)分別為0.041、0.042和0.043時(shí),胡麻的重力勢(shì)能分別為2.86×10-7、2.73×10-7和2.65×10-7J;相同時(shí)刻,在鋁制圓筒條件下胡麻的重力勢(shì)能分別為2.79×10-7、2.78×10-7和2.75×10-7J,說明滾動(dòng)摩擦系數(shù)限制重力勢(shì)能增加。

圖12 不同滾動(dòng)摩擦系數(shù)條件下重力勢(shì)能隨時(shí)間的變化

2 仿真排種及試驗(yàn)驗(yàn)證

為檢驗(yàn)標(biāo)定的胡麻籽粒仿真參數(shù)的可靠性,開展異型窩眼外槽輪排種仿真試驗(yàn),并通過對(duì)比仿真和試驗(yàn)結(jié)果穴粒數(shù)的相對(duì)誤差,驗(yàn)證上文標(biāo)定的胡麻參數(shù)。

2.1 排種仿真參數(shù)設(shè)置

排種器異型窩眼排種輪直徑為55 mm,長為50 mm。排種輪軸向有4排、徑向有4個(gè)異型窩眼,其主體型狀為三棱柱形,外部邊緣倒圓角半徑為1 mm,內(nèi)測(cè)邊緣倒圓角半徑為2 mm。西北旱區(qū)胡麻種植農(nóng)藝要求每穴胡麻數(shù)區(qū)間為8~12粒,以10粒作為設(shè)計(jì)參數(shù)[4]。排種仿真過程中與胡麻籽粒發(fā)生接觸的主要有3個(gè)部件,分別為異型窩眼輪、種刷和排種器,材料分別為防靜電POM塑料、牛皮筋和304不銹鋼[30-31]。排種器的排種輪由播種機(jī)的覆土滾筒帶動(dòng),為與田間播種機(jī)試驗(yàn)穴粒數(shù)對(duì)比,計(jì)算確定窩眼輪角速度為57 r/min。胡麻籽粒生成數(shù)量為3 300個(gè),仿真總時(shí)間為10 s。異型窩眼輪排種器及窩眼輪結(jié)構(gòu)如圖13所示。通過查閱文獻(xiàn)和試驗(yàn)方法得到排種過程中與胡麻籽粒接觸材料相關(guān)參數(shù),如表8所示。

1.排種器殼體2.排肥器殼體3.異型窩眼輪4.導(dǎo)向輪5.隔種板6.種刷

1.Seed metering device shell 2.Fertilizer metering device shell 3.Heterosexual socket eye wheel 4.Guiding wheel 5.Seed separator 6.Seed brush

圖13 異型窩眼排種器結(jié)構(gòu)示意圖

Fig.13 Structural schematic diagram of heterosexual socket-eye metering device

表8 排種器組成材料參數(shù)

2.2 排種過程及結(jié)果

胡麻異型窩眼輪排種器排種過程仿真如圖14所示。由圖可知,當(dāng)排種輪逆時(shí)針旋轉(zhuǎn)時(shí),胡麻籽粒在重力作用下填充暴露在胡麻種群的窩眼中(圖14a);當(dāng)窩眼到達(dá)種刷位置時(shí),種刷清理窩眼孔以外的胡麻籽粒(圖14b);當(dāng)排種輪窩眼轉(zhuǎn)離種群后,在胡麻籽粒在重力作用下掉落(圖14c);2個(gè)窩眼可有效降低穴粒數(shù)的變異系數(shù)(圖14d)。

對(duì)胡麻籽粒排種仿真的76個(gè)穴粒數(shù)統(tǒng)計(jì)發(fā)現(xiàn),仿真排種穴粒數(shù)范圍為8~11粒,平均穴粒數(shù)為9.5粒,標(biāo)準(zhǔn)差為0.5粒,處于胡麻播種農(nóng)藝要求的8~12粒區(qū)間內(nèi)。仿真和農(nóng)藝要求穴粒數(shù)平均值相對(duì)誤差為5%。

2.3 田間驗(yàn)證

課題組于2019年3月29日在甘肅省榆中縣胡麻試驗(yàn)基地對(duì)胡麻聯(lián)合播種機(jī)進(jìn)行了田間試驗(yàn)。采用的胡麻聯(lián)合播種機(jī)集平地、施肥、鋪膜、膜側(cè)壓土、膜上穴播、膜上定點(diǎn)覆土和鎮(zhèn)壓等作業(yè)環(huán)節(jié),6行播種,穴距145 mm,行距170 mm。試驗(yàn)地為壤土,試驗(yàn)前1周進(jìn)行旋耕、平整作業(yè),牽引拖拉機(jī)為東方紅-250,牽引速度為0.6 m/s,胡麻品種為隴亞10號(hào),采用自研的外槽輪式異型窩眼排種器,排種輪直徑為55 mm,長為50 mm,其軸向有4排、徑向有4個(gè)異型窩眼(圖13)。使用白色0.01 mm地膜,異型窩眼輪材料為POM塑料、種刷為牛皮筋。胡麻穴粒數(shù)采集區(qū)選擇1膜6行前后各排除10 m中間3行區(qū)域測(cè)定。

圖14 胡麻籽粒異型窩眼輪排種器排種仿真過程

播種完成后,對(duì)測(cè)試區(qū)81穴胡麻穴粒數(shù)進(jìn)行統(tǒng)計(jì),結(jié)果如表9所示。由表9可知第1、2、3行胡麻穴粒數(shù)在8~12之間,平均值為9,標(biāo)準(zhǔn)差為1。仿真和試驗(yàn)穴粒數(shù)平均值相對(duì)誤差為5.26%,兩者平均值相差不超過0.5,說明本文標(biāo)定的胡麻參數(shù)具有可靠性。胡麻籽粒較小,胡麻挖掘統(tǒng)計(jì)過程中有漏數(shù)的情況。播后5月13日對(duì)胡麻出苗率進(jìn)行了統(tǒng)計(jì),選擇1膜6行5 m長行區(qū)域進(jìn)行出苗統(tǒng)計(jì),出苗率達(dá)到87%。

表9 穴粒數(shù)試驗(yàn)結(jié)果

續(xù)表

3 結(jié) 論

1)通過試驗(yàn)法對(duì)3種胡麻品種進(jìn)行了基本物理力學(xué)參數(shù)測(cè)定。定亞22號(hào)、隴亞10號(hào)和隴亞13號(hào)胡麻籽粒三維體積基本均呈正態(tài)分布,泊松比分別為0.403、0.410、0.409,胡麻之間的靜摩擦系數(shù)分別為0.240、0.201、0.204,胡麻之間的碰撞恢復(fù)系數(shù)分別為0.433、0.389、0.430,彈性模量分別為370.16、558.28、370.18 MPa;采用仿真逼近預(yù)測(cè)法標(biāo)定的3種胡麻滾動(dòng)摩擦系數(shù)分別為0.041 5、0.042 5、0.042 0。分析研究了滾動(dòng)摩擦系數(shù)對(duì)胡麻籽粒堆積形成過程的影響。隨著滾動(dòng)摩擦系數(shù)的減少,胡麻與底板的接觸數(shù)量增加;堆積過程中胡麻種群的轉(zhuǎn)動(dòng)動(dòng)能呈先增加后減小的變化趨勢(shì);在相同時(shí)間點(diǎn),胡麻滾動(dòng)摩擦系數(shù)的減小,轉(zhuǎn)動(dòng)動(dòng)能增加。

2)基于標(biāo)定的胡麻籽粒仿真參數(shù),進(jìn)行了異型窩眼排種器胡麻籽粒排種仿真試驗(yàn)。仿真結(jié)果表明:穴粒數(shù)為8~11,平均穴粒數(shù)為9.5,標(biāo)準(zhǔn)差為0.5。田間驗(yàn)證試驗(yàn)結(jié)果表明:胡麻穴粒數(shù)在8~12之間,平均值為9,標(biāo)準(zhǔn)差為1,仿真和試驗(yàn)相對(duì)誤差為5.26%。播后出苗率達(dá)到87%。本文標(biāo)定的胡麻仿真參數(shù)對(duì)于優(yōu)化胡麻作業(yè)機(jī)具工作性能參數(shù)具有一定的指導(dǎo)意義。

[1] 鄧欣,陳信波,邱財(cái)生,等. 我國亞麻種質(zhì)資源研究與利用概述[J]. 中國麻業(yè)科學(xué),2015,37(6):322-329.

Deng Xin, Chen Xinbo, Qiu Caisheng, et al. Review on research and utilization of flaxes germplasm resources[J]. Plant Fiber Sciences in China, 2015, 37(6): 322-329. (in Chinese with English abstract)

[2] 金曉蕾,張輝,賈霄云,等. 我國胡麻品質(zhì)育種現(xiàn)狀及展望[J]. 內(nèi)蒙古農(nóng)業(yè)科技,2014,42(1):117-119.

Jin Xiaolei, Zhang Hui, Jia Xiaoyun, et al. Present situation and prospects of linseed quality breeding in our country[J]. Inner Mongolia Agricultural Science and Technology, 2014, 42(1): 117-119. (in Chinese with English abstract)

[3] 張運(yùn)暉,趙瑛,羅俊杰. 甘肅胡麻產(chǎn)業(yè)發(fā)展淺議[J]. 甘肅農(nóng)業(yè)科技,2013(7):54-55.

Zhang Yunhui, Zhao Ying, Luo Junjie. A brief discussion on the development of linseed industry in gansu province[J]. Gansu Agricultural Science and Technology, 2013(7): 54-55. (in Chinese with English abstract)

[4] 周剛,石林榕,趙武云,等. 旱地胡麻起壟覆膜播種聯(lián)合作業(yè)機(jī)工作參數(shù)優(yōu)化與性能試驗(yàn)[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,24(6):147-156

Zhou Gang, Shi Linrong, Zhao Wuyun, et al. Optimization of the working parameters and performance experiment of flaxes ridging and covering film combined seeder in dry-land[J]. Journal of China Agricultural University, 2019, 24(6): 147-156. (in Chinese with English abstract)

[5] 杜佳偉,楊學(xué)軍,劉立晶,等. 小粒種子精量播種機(jī)研究現(xiàn)狀及發(fā)展趨勢(shì)[J]. 農(nóng)業(yè)工程,2017,7(6):9-13.

Du Jiawei, Yang Xuejun, Liu Lijing, et al. Research status and development trend of precision seeder for small seeds[J]. Agricultural Engineering, 2017, 7(6): 9-13. (in Chinese with English abstract)

[6] 劉彩玲,王亞麗,都鑫,等. 摩擦復(fù)充種型孔帶式水稻精量排種器充種性能分析與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(4):29-36.

Liu Cailing, Wang Yali, Du Xin, et al. Filling performance analysis and verification of cell-belt rice precision seed-metering based on friction and repeated filling principle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(4): 29-36. (in Chinese with English abstract)

[7] 石林榕,吳建民,孫偉,等. 基于離散單元法的水平圓盤式精量排種器排種仿真試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(8):40-48.

Shi Linrong, Wu Jianmin, Sun Wei, et al. Simulation test for metering process of horizontal disc precision metering device based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 40-48. (in Chinese with English abstract)

[8] 王國強(qiáng),赫萬軍,王繼新. 離散單元法及其在EDEM上的實(shí)踐[M]. 西安:西北工業(yè)大學(xué)出版社,2010.

[9] 廖慶喜,張朋玲,廖宜濤,等. 基于EDEM 的離心式排種器排種性能數(shù)值模擬[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(2):109-114.

Liao Qingxi, Zhang Pengling, Liao Yitao, et al. Numerical simulation on seeding performance of centrifugal rape-seed metering device based on edem[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(2): 109-114. (in Chinese with English abstract)

[10] 向偉,吳明亮,呂江南,等. 基于EDEM的油菜移栽成穴裝置作業(yè)性能仿真與試驗(yàn)研究[J]. 中國農(nóng)業(yè)科技導(dǎo)報(bào),2019,21(7):70-81.

Xiang Wei, Wu Mingliang, Lyu Jiangnan, et al. Simulation and experiment on hole-forming performance of hole-forming mechanism for rape seedling transplanting based on edem[J]. Journal of Agricultural Science and Technology, 2019, 21(7): 70-81. (in Chinese with English abstract)

[11] 于佳楊,盧彩云,衛(wèi)如雪,等. 基于離散元法的小麥精量排種器性能模擬試驗(yàn)[J]. 江蘇農(nóng)業(yè)科學(xué),2018,46(8):225-228.

[12] 石林榕,孫偉,趙武云,等. 馬鈴薯種薯機(jī)械排種離散元仿真模型參數(shù)確定及驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(6):35-42.

Shi Linrong, Sun Wei, Zhao Wuyun, et al. Parameter determination and validation of discrete element model of seed potato mechanical seeding[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(6): 35-42. (in Chinese with English abstract)

[13] 張濤,劉飛,趙滿全,等. 基于離散元的排種器排種室內(nèi)玉米種群運(yùn)動(dòng)規(guī)律[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(22):27-35.

Zhang Tao, Liu Fei, Zhao Manquan, et al. Movement law of maize population in seed room of seed metering device based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(22): 27-35. (in Chinese with English abstract)

[14] 王云霞,梁志杰,張東興,等. 基于離散元的玉米種子顆粒模型種間接觸參數(shù)標(biāo)定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(22):36-42.

Wang Yunxia, Liang Zhijie, Zhang Dongxing, et al. Calibration method of contact characteristic parameters for corn seeds based on EDEM[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(22): 36-42. (in Chinese with English abstract)

[15] 崔濤,劉佳,楊麗,等. 基于高速攝像的玉米種子滾動(dòng)摩擦特性試驗(yàn)與仿真[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(15):34-41.

Cui Tao, Liu Jia, Yang Li, et al. Experiment and simulation of rolling friction characteristic of corn seed based on high-speed photography[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(15): 34-41. (in Chinese with English abstract)

[16] 劉萬鋒,徐武彬,李冰,等. 滾動(dòng)摩擦系數(shù)的測(cè)定及EDEM仿真分析[J]. 機(jī)械設(shè)計(jì)與制造,2018(9):132-135.

Liu Wanfeng, Xu Wubin, Li Bing, et al. Measurement and simulation of rolling friction coefficient[J]. Machinery Design & Manufacture, 2018(9): 132-135. (in Chinese with English abstract)

[17] 劉凡一,張艦,李博,等. 基于堆積試驗(yàn)的小麥離散元參數(shù)分析及標(biāo)定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(12):247-253.

Liu Fanyi, Zhang Jian, Li Bo, et al. Calibration of parameters of wheat required in discrete element method simulation based on repose angle of particle heap[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(12): 247-253. (in Chinese with English abstract)

[18] 胡國明. 顆粒系統(tǒng)的離散元素法分析仿真[M]. 武漢:武漢理工大學(xué)出版社,2010.

[19] 趙利,黨占海,張建平,等. 不同類型胡麻品種資源品質(zhì)特性及其相關(guān)性研究[J]. 干旱地區(qū)農(nóng)業(yè)研究,2008,26(5):6-9.

Zhao Li, Dang Zhanhai, Zhang Jianping, et al. Study on quality characters and correlation of different types of flaxes germplasm[J]. Agricultural Research in the Arid Areas, 2008, 26(5): 6-9. (in Chinese with English abstract)

[20] 胡夢(mèng)杰,周勇,湯智超,等. 脫絨包衣棉花種子的力學(xué)特性[J]. 安徽農(nóng)業(yè)大學(xué)學(xué)報(bào),2018,45(1):175-180.

Hu Mengjie, Zhou Yong, Tang Zhichao, et al. Mechanical properties of the delinted and coated cottonseed[J]. Journal of Anhui Agricultural University, 2018, 45 (1): 175-180. (in Chinese with English abstract)

[21] 王曉梅. 基于多球充填的玉米籽粒群體建模方法研究[D]. 長春:吉林大學(xué),2017.

Wang Xiaomei. A Multi-sphere Based Modelling Method for Maize Grain Assemblies[D]. Changchun: Jilin University, 2017. (in Chinese with English abstract)

[22] 劉文政,何進(jìn),李洪文,等. 基于離散元的微型馬鈴薯仿真參數(shù)標(biāo)定[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(5):125-135,142.

Liu Wenzheng, He Jin, Li Hongwen, et al. Calibration of simulation parameters for potato minituber based on edem[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 125-135, 142. (in Chinese with English abstract)

[23] 周文秀. 玉米籽粒的物理力學(xué)特性研究[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2015.

[24] 高連興,焦維鵬,楊德旭,等. 含水率對(duì)大豆靜壓機(jī)械特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(15):40-44.

Gao Lianxing, Jiao Weipeng, Yang Dexu, et al. Effect of moisture content on mechanical properties of soybean seed under static pressure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(15): 40-44. (in Chinese with English abstract)

[25] 劉曉. 小籽粒谷物散體力學(xué)性質(zhì)研究及應(yīng)用[D]. 晉中:山西農(nóng)業(yè)大學(xué),2015.

Liu Xiao. Study and Application of Mechanical Properties of Small Grain Bulk[D]. Jinzhong: Shanxi Agricultural University, 2015. (in Chinese with English abstract)

[26] 孟杰,孟文俊. 影響EDEM仿真結(jié)果的因素分析[J]. 機(jī)械工程與自動(dòng)化,2014(6):49-51.

Meng Jie, Meng Wenjun. Analysis of influencing factor on result of EDEM simulation[J]. Mechanical Engineering & Automation, 2014(6): 49-51. (in Chinese with English abstract)

[27] 王國強(qiáng). 離散單元法及其在EDEM 上的實(shí)踐[M]. 西安:西北工業(yè)大學(xué)出版社,2010.

[28] 王美美,王萬章,楊立權(quán),等. 基于響應(yīng)面法的玉米籽粒離散元參數(shù)標(biāo)定[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào),2018,39(3):111-117.

Wang Meimei, Wang Wanzhang, Yang Liquan, et al. Calibration of discrete element model parameters for maize kernel based on response surface methodology[J]. Journal of South China Agricultural University, 2018, 39(3): 111-117. (in Chinese with English abstract)

[29] 王沖,宋建農(nóng),李永磊,等. 基于三維打印的型孔排種輪制造技術(shù)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(3):108-111.

Wang Chong, Song Jiannong, Li Yonglei, et al. Manufacture of type holes wheel based on three dimensional printing technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(3): 108-111. (in Chinese with English abstract)

[30] 羅錫文,劉濤,蔣恩臣,等. 水稻精量穴直播排種輪的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(3):108-112.

Luo Xiwen, Liu Tao, Jiang Enchen, et al. Design and experiment of hill sowing wheel of precision rice direct-seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(3): 108-112. (in Chinese with English abstract)

[31] 常用材料的彈性模量及泊松比[Z/OL]. [2011-02-15]. https: //wenku.baidu.com/view/2e0a34104431b90d6c85c717.html. 2019-06-22.

Calibration of simulation parameters of flaxed seeds using discrete element method and verification of seed-metering test

Shi Linrong1, Ma Zhoutai1, Zhao Wuyun1※, Yang Xiaoping1, Sun Bugong1, Zhang Jianping2

(1. College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China; 2. Institute of Crop Science, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China)

In order to optimize the mechanized production equipment of flax seeds by means of discrete element method to provide the basic parameters of flax seeds, the basic physical parameters and partial contact mechanical parameters of flax seeds were determined by the experimental method for 3 kinds of flax seeds, Dingya 22, Longya 10 and Longya 13, which are widely planted in Gansu Province of China. The basic physical parameters include three directions of size, mass density, bulk density, Poisson's ratio, 1,000-kernel weight, seed moisture content, and elastic modulus of flax seeds. Three kinds of flax seeds were randomly selected from 500 flax seeds, and the triaxial size of the flax was measured by Vernier calipers. The statistical results showed that the long average of Dingya 22 was 4.83 mm, the width was 2.39 mm, and the thickness was 0.85 mm. The average length was 4.43 mm, the width was 2.38 mm, and the thickness was 0.95 mm. The average length of Longya 13 was 5.13 mm, the width was 2.47 mm, and the thickness was 1.02 mm. The volume of the flax seed was calculated by the 3-axis size. Distribution of 3-dimensional volume of 3 kinds of flax seeds were basically normal distribution. With the pressure deformation experiment of flax seeds was carried out by electric double column tension test bench, and the Poisson's ratio was calculated by measuring the deformation amount of width and thickness before and after loading flax seeds, and Poisson's ratio of flax seed was 0.403, 0.410 and 0.409, respectively. The coefficient of static friction of flax seed was measured by the bevel method, and the coefficient of static friction between flax seeds were 0.240, 0.201 and 0.204, respectively. The collision recovery coefficient between flax seeds was determined by free fall experiment, and the collision recovery coefficient was 0.433, 0.389, 0.430, respectively. The elastic modulus of the load-displacement curve of the flax seeds obtained by the flax pressure experiment was 370.16, 558.28, 370.18 MPa. By the simulation repose angle of flax models under the different coefficient of rolling friction of flax seeds that were put to the actual repose angle of flax seeds, the coefficient of rolling friction of flax seeds was predicted, and the result was that the coefficient of rolling friction of flax seeds was 0.0415, 0.0425 and 0.042 0 for Dingya 22, Longya 10, and Longya 13, respectively. The influence of the coefficient of rolling friction on the repose process of flax seeds was analyzed. With the decrease of the coefficient of rolling friction, the contact quantity of flax seeds and bottom plate increased. The rotational kinetic energy of flax seed population increased first, and then decreased during the accumulation process. At the same time point, the coefficient of rolling friction of flax seeds decreased and the rotational kinetic energy increased. Based on the calibration parameters of flax seeds, the arrangement of heterosexous hole seeding device with flax seeds was carried out. The simulation results showed that the number of granules was 8-11, the average number of granules was 9.5, and the standard deviation was 0.5. Through the field trial experiment of flax combined planter, the number of seeds in the hole of the 81 hole in the collection area was counted. The results showed that the number of seeds in the first, second and third rows of seedlings fluctuated between 8 and 12, with an average of 9, standard deviation of 1. The average value of the simulated and experimental granules was 0.5, and the relative error was 5.26%. The flax seeds were small, and the number of leaks in the process of flax mining statistics occurred, resulting in certain errors in the experiment and simulation results. The flax simulation parameters calibrated in this paper have certain significance in guiding optimizing the seeding working parameters of the flax seeder.

agricultural machinery; discrete element; calibration; flaxes; verification

10.11975/j.issn.1002-6819.2019.20.004

S223.23

A

1002-6819(2019)-20-0025-09

石林榕,馬周泰,趙武云,楊小平,孫步功,張建平. 胡麻籽粒離散元仿真參數(shù)標(biāo)定與排種試驗(yàn)驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(20):25-33.doi:10.11975/j.issn.1002-6819.2019.20.004 http://www.tcsae.org

Shi Linrong, Ma Zhoutai, Zhao Wuyun, Yang Xiaoping, Sun Bugong, Zhang Jianping. Calibration of simulation parameters of flaxed seeds using discrete element method and verification of seed-metering test[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(20): 25-33. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.20.004 http://www.tcsae.org

2019-06-22

2019-09-17

國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-14-1-28);甘肅農(nóng)業(yè)大學(xué)農(nóng)業(yè)工程學(xué)科建設(shè)開放基金(GAU-XKJS-2018-193)

石林榕,博士生,實(shí)驗(yàn)師,主要從事西北地區(qū)精密播種關(guān)鍵技術(shù)與裝備研究。Email:shilr@gsau.edu.cn

趙武云,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)工程技術(shù)與裝備研究。Email:zhaowy@gsau.edu.cn

中國農(nóng)業(yè)工程學(xué)會(huì)高級(jí)會(huì)員:石林榕(E041200842S)

猜你喜歡
種器胡麻粒數(shù)
20220503 雙?;ㄉ垦úヅ欧N器設(shè)計(jì)與試驗(yàn)
中國胡麻進(jìn)出口貿(mào)易影響因素研究
——基于CMS 模型的實(shí)證分析
抽吸參數(shù)對(duì)電加熱卷煙氣溶膠粒數(shù)和粒徑的影響
基于EDEM的雙腔式棉花精量排種器排種性能仿真研究
利用Ln位點(diǎn)進(jìn)行分子設(shè)計(jì)提高大豆單莢粒數(shù)
玉米播種機(jī)排種器對(duì)精量播種質(zhì)量的影響
白銀市胡麻高產(chǎn)高效生產(chǎn)模式調(diào)查研究報(bào)告
小麥穗頂部和基部小穗結(jié)實(shí)粒數(shù)的全基因組關(guān)聯(lián)分析
平?jīng)鍪泻楫a(chǎn)業(yè)發(fā)展現(xiàn)狀與可持續(xù)發(fā)展對(duì)策研究
雜交晚粳稻通優(yōu)粳1號(hào)產(chǎn)量及構(gòu)成因子分析
临城县| 花垣县| 丹凤县| 堆龙德庆县| 丽江市| 章丘市| 图们市| 松滋市| 津南区| 临桂县| 深泽县| 河池市| 永定县| 海南省| 磴口县| 潮州市| 师宗县| 彩票| 永和县| 和顺县| 板桥市| 桓仁| 彭山县| 登封市| 辽源市| 陆良县| 全南县| 武强县| 四川省| 阿拉善右旗| 清水县| 尤溪县| 望谟县| 葫芦岛市| 昌吉市| 黔江区| 延长县| 浙江省| 威海市| 玉山县| 祁门县|