彭鷗,劉玉玲,鐵柏清,葉長(zhǎng)城,張淼,李園星露,周俊馳,許蒙,張燕,龍涌
調(diào)理劑及農(nóng)藝措施對(duì)污染稻田中水稻吸收鎘的影響
彭鷗1,劉玉玲1,鐵柏清1,葉長(zhǎng)城1,張淼1,李園星露1,周俊馳1,許蒙1,張燕1,龍涌2
(1湖南農(nóng)業(yè)大學(xué)資源環(huán)境學(xué)院/湖南省灌溉水源水質(zhì)污染凈化工程技術(shù)研究中心,長(zhǎng)沙 410128;2株洲市淥口區(qū)南洲鎮(zhèn)農(nóng)技站,湖南株洲 412107)
【目的】探究水分管理、調(diào)理劑措施和組合措施對(duì)污染稻田稻米降Cd效果,旨在探索出不顯著降低水稻產(chǎn)量前提下,能更高效降低土壤Cd生物有效性和稻米中Cd含量的方法。【方法】在湖南省株洲市選擇中度Cd污染稻田開(kāi)展田間小區(qū)水稻試驗(yàn)。試驗(yàn)中水稻種植兩季,早稻品種為中嘉早17,晚稻為泰優(yōu)390。試驗(yàn)分為6組,分別為水分管理(T2)處理、施用硅肥(T3)處理、施用竹炭處理(T4)、施用硅肥結(jié)合水分管理(T5)處理、施用竹炭結(jié)合水分管理(T6)處理和1個(gè)試驗(yàn)對(duì)照(T1),重復(fù)3次。【結(jié)果】試驗(yàn)各處理對(duì)稻田土壤有效態(tài)Cd含量均有降低,竹炭結(jié)合水分管理(T6)處理對(duì)兩季水稻土壤均有顯著降低,硅肥結(jié)合水分管理(T5)處理對(duì)晚稻土壤有效態(tài)Cd降低幅度最大。試驗(yàn)各處理對(duì)水稻各部位Cd含量均有降低效果,在糙米Cd含量方面,5個(gè)試驗(yàn)處理中對(duì)糙米Cd含量降低幅度以組合措施修復(fù)技術(shù)效果最好,即硅肥結(jié)合水分管理(T5)和竹炭結(jié)合水分管理(T6)處理。在水分管理修復(fù)技術(shù)(T2)中降Cd效果最高為29.23%;在施用調(diào)理劑修復(fù)技術(shù)中,硅肥處理(T3)和竹炭處理(T4)對(duì)稻殼和糙米中Cd含量均有顯著降低(<0.05)作用,其中硅肥處理(T3)糙米最高降Cd幅度為49.23%,竹炭處理(T4)糙米最高降Cd幅度為47.69%;在組合措施中均能顯著降低水稻糙米Cd含量,其中硅肥結(jié)合水分管理(T5)處理糙米降Cd幅度為60.34%—78.46%,竹炭結(jié)合水分管理(T6)糙米降Cd幅度為56.90%—67.69%。同時(shí),本文對(duì)土壤有效態(tài)Cd含量與水稻各部位Cd含量相關(guān)性進(jìn)行分析,發(fā)現(xiàn)水稻籽粒(稻殼與糙米)中Cd含量與土壤有效態(tài)Cd含量存在極顯著正相關(guān)(<0.01),且兩個(gè)水稻品種規(guī)律一致。各處理對(duì)水稻各部位富集系數(shù)亦有降低效果,以硅肥結(jié)合水分管理(T5)處理和竹炭結(jié)合水分管理(T6)效果最好。對(duì)于水稻各部位向籽粒轉(zhuǎn)運(yùn)系數(shù)降低效果各部位規(guī)律不一致,但莖鞘和葉片兩個(gè)部位向籽粒(稻殼和糙米)轉(zhuǎn)運(yùn)系數(shù)均顯著降低,水分管理(T2)處理除外。在水稻產(chǎn)量方面,僅水分管理(T2)處理對(duì)中嘉早17有顯著降低,其他處理降低幅度不顯著,各處理對(duì)泰優(yōu)390處理沒(méi)有顯著影響。【結(jié)論】組合措施優(yōu)于單一水分管理或單一調(diào)理劑處理,且在水稻產(chǎn)量沒(méi)有顯著降低情況下對(duì)稻米Cd污染稻田稻米降Cd幅度最高達(dá)到78.46%,可以進(jìn)一步確保Cd污染農(nóng)田安全利用。
水稻;水分管理;鎘;硅肥;竹炭
【研究意義】水稻是我國(guó)的主要糧食作物之一,近年來(lái),Cd污染問(wèn)題已成為南方地區(qū)突出的糧食安全問(wèn)題,使糧食產(chǎn)業(yè)面臨著巨大的挑戰(zhàn)。農(nóng)田土壤重金屬Cd主要來(lái)源與污水灌溉和重金屬超標(biāo)農(nóng)藥、化肥的施用[1-2]。土壤中Cd主要以Cd2+的形態(tài)通過(guò)水稻根系進(jìn)入水稻體內(nèi),通過(guò)水稻各部位轉(zhuǎn)運(yùn)作用,最終造成水稻籽粒Cd含量超標(biāo)[3-4]。如何降低稻米Cd污染,生產(chǎn)安全稻米,是Cd污染地區(qū)亟待解決的問(wèn)題?!厩叭搜芯窟M(jìn)展】針對(duì)這一現(xiàn)狀目前在湖南Cd污染稻田主要采用“低Cd品種(variety)+全生育期淹水灌溉(irrigation)+施加生石灰調(diào)節(jié)土壤酸堿度(pH)+輔助措施(N)”控Cd技術(shù)體系[5-8]。同時(shí),前人[9-11]在水分管理進(jìn)行眾多研究,如在水稻孕穗期、抽穗期等關(guān)鍵時(shí)期水分管理,全生育期水分管理等,但研究結(jié)果均表明全生育期淹水對(duì)稻米Cd含量降低效果要好于階段性水分管理。同時(shí)在調(diào)理劑方面也有較多報(bào)道,其控Cd機(jī)理主要分為三大類(lèi),一是調(diào)節(jié)土壤pH,相關(guān)研究表明稻米Cd含量與土壤pH呈極顯著負(fù)相關(guān)關(guān)系[12];二是鈍化土壤中活性Cd,降低土壤有效態(tài)Cd含量,減少Cd2+進(jìn)入水稻體內(nèi)[13-14];三是吸附或者與Cd2+競(jìng)爭(zhēng),占據(jù)水稻根系細(xì)胞Cd2+吸附位點(diǎn)[15]。調(diào)理劑的施用能一定程度降低土壤有效態(tài)Cd含量和稻米Cd含量,但未能達(dá)到理想效果,且目前報(bào)道主要以盆栽試驗(yàn)或室內(nèi)機(jī)理性研究為多,少有進(jìn)行田間驗(yàn)證性試驗(yàn)。【本研究切入點(diǎn)】本文主要在前人研究基礎(chǔ)上,分析比較單一水分管理、單一施用調(diào)理劑和組合措施對(duì)稻米Cd降低效果,在田間進(jìn)行驗(yàn)證性試驗(yàn)?!緮M解決的關(guān)鍵問(wèn)題】探索出在不降低水稻的產(chǎn)量前提下,能更高效降低土壤Cd生物有效性和稻米中Cd含量的方法。
試驗(yàn)點(diǎn)位于湖南省株洲市淥口區(qū)南洲鎮(zhèn)五家橋村(113°19.505′E,27°58.713′N(xiāo)),選取Cd污染田塊1丘,約為667 m2。試驗(yàn)實(shí)施前按梅花采樣法采集試驗(yàn)田塊土壤樣品,經(jīng)自然風(fēng)干后,研磨過(guò)100目篩(0.150 mm),測(cè)得土壤總Cd濃度為(1.48±0.13)mg·kg-1,有效態(tài)Cd含量為(0.82±0.09)mg·kg-1,pH為5.29±0.54,根據(jù)GB GB15618-2018和《全國(guó)土壤污染狀況調(diào)查公報(bào)》判定為中度鎘污染土壤。
試驗(yàn)早稻品種為中嘉早17(常規(guī)早稻),晚稻為泰優(yōu)390(雜交晚稻),均為湖南省農(nóng)業(yè)農(nóng)村廳推薦鎘低積累水稻品種。試驗(yàn)中采用主要調(diào)理劑有硅肥(生產(chǎn)于奧斯科工業(yè)集團(tuán)封閉式股份公司(俄羅斯)公司,主要成分為SiO2,Cd含量為0.23 mg·kg-1)、葉面硅肥(生產(chǎn)于鄭州正大生物科技有限公司,主要成分為可溶硅、微量元素,未檢出Cd含量)、竹炭(生產(chǎn)于浙江省農(nóng)業(yè)科學(xué)院,主要成分為C,Cd含量為0.20 mg·kg-1)。
試驗(yàn)采用小區(qū)隨機(jī)排列方法,每個(gè)小區(qū)間壘田埂,田埂用塑料薄膜覆蓋,防止竄水,每個(gè)小區(qū)間均為單排單灌,小區(qū)面積為30 m2,試驗(yàn)設(shè)置5種修復(fù)技術(shù)處理,1個(gè)對(duì)照處理。對(duì)照處理(T1)為按照當(dāng)?shù)剞r(nóng)民的常規(guī)栽培管理,即不施用任何土壤改良劑,水分管理為常規(guī)管理,即待落干后灌溉,再落干再灌溉直至成熟,水稻育苗參考當(dāng)?shù)卦耘喙芾砑夹g(shù);水分管理處理(T2)為水稻生長(zhǎng)期間,土表始終保持3 cm以上的水層,保持長(zhǎng)期的淹水狀態(tài),至收獲前自然落干;硅肥處理(T3)為水稻移栽前7 d,在試驗(yàn)小區(qū)內(nèi)均勻撒施硅肥,按225 kg·hm-2施用,同時(shí)在水稻分蘗末期葉面噴施硅肥,按1.8 kg·hm-2施用;竹炭處理(T4)為水稻移栽前7 d,在試驗(yàn)小區(qū)內(nèi)均勻撒施竹炭,按3 000 kg·hm-2施用;硅肥處理結(jié)合水分管理處理(T5)為T(mén)2處理和T3處理相結(jié)合;竹炭結(jié)合水分管理處理(T6)為T(mén)2處理和T4處理相結(jié)合。試驗(yàn)處理中除施用調(diào)理劑措施與水分管理措施外,其余均同對(duì)照處理(T1)操作,3次重復(fù)。
(1)待水稻成熟后,進(jìn)行試驗(yàn)樣品采集、處理,先用自來(lái)水小心洗凈根系雜物,然后用去超純水清洗整個(gè)植株,將植株根系、莖鞘、葉、穗分離,稻谷風(fēng)干后按農(nóng)業(yè)農(nóng)村部頒標(biāo)準(zhǔn)《米質(zhì)測(cè)定方法》(NY147—88)出糙,分離出糙米和谷殼,其他樣品在105℃殺青20 min,70℃烘至恒重,樣品粉碎過(guò)100目篩,全部裝入自封袋內(nèi)密封保存?zhèn)溆谩K緲悠方?jīng)混合酸(HNO3﹕HClO4=4﹕1)濕法消解、定容后采用ICP-OES直接測(cè)定Cd的含量。
(2)研磨風(fēng)干后的土壤,過(guò)0.15 mm的尼龍篩,標(biāo)記好裝入塑料密封袋內(nèi)保存待用。土壤樣品經(jīng)混合酸HCl-HNO3-HClO4濕法消解、定容后采用ICP-OES直接測(cè)定Cd的含量。
(3)土壤有效態(tài)Cd,采用DTPA法,用ICP-OES測(cè)定含量。
(4)產(chǎn)量測(cè)定。分別收獲試驗(yàn)田各小區(qū)水稻,將水稻用脫粒后,自然風(fēng)干,計(jì)重。
運(yùn)用IMB SPSS(Statistical Product and Service Solutions, 22.0)對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析處理,運(yùn)用Microsoft Excel 2010軟件對(duì)數(shù)據(jù)進(jìn)行圖表處理。
富集系數(shù)(AFA-土)=A器官中重金屬含量/土壤中重金屬含量;
轉(zhuǎn)運(yùn)系數(shù)(TFA-B)= B器官中重金屬含量/A器官中該重金屬含量。
在早晚稻試驗(yàn)中,同一試驗(yàn)處理在同一小區(qū)上進(jìn)行。由表1可知,土壤Cd平均含量約1.48 mg·kg-1。水分管理處理(T2)早晚稻兩季土壤有效態(tài)Cd含量相對(duì)于對(duì)照處理均沒(méi)有顯著下降(<0.05)。硅肥處理(T3)能降低土壤有效態(tài)Cd含量,但效果不顯著。竹炭處理(T4)早稻土壤有效態(tài)Cd含量顯著降低,晚稻降低效果不顯著。竹炭結(jié)合水分管理(T6)處理對(duì)早晚稻土壤有效態(tài)Cd含量均有降低效果,早稻降低了22.22%,晚稻降低了22.61%。但硅肥結(jié)合水分管理(T5)處理僅在晚稻有顯著降低,降低了30.43%,晚稻降低了17.95%。
表1 Cd污染稻田早、晚稻土壤有效態(tài)Cd含量
數(shù)據(jù)后不同小寫(xiě)字母表示處理間差異顯著(<0.05) Different lowercase letters after the data indicate significant differences between treatments (<0.05)
2.2.1 對(duì)水稻根系、莖鞘、葉片Cd含量的影響 由圖1可知,水分管理(T2)處理中水稻根系、莖鞘、葉片Cd含量均低于對(duì)照處理(T1),且中嘉早17和泰優(yōu)390效果一致。兩個(gè)調(diào)理劑處理(T3和T4)均能降低水稻根系、莖鞘和葉片鎘含量,兩處理間沒(méi)有顯著差異。T5和T6兩個(gè)處理,均能降低中嘉早17和泰優(yōu)390根系、莖鞘、葉片中Cd含量,且降低量均在20%以上。綜合所述,5個(gè)試驗(yàn)處理均能降低水稻根系、莖鞘、葉片Cd含量,但T5和T6處理對(duì)各部位Cd含量降低效果顯著優(yōu)于其他處理。
圖中小寫(xiě)字母表示處理間差異顯著(P<0.05)。下同
2.2.2 對(duì)稻米Cd含量的影響 由圖2可知,水分管理(T2)處理使得中嘉早17稻殼和糙米Cd含量分別降低了27.85%和20.69%,其中稻殼Cd含量相對(duì)于對(duì)照而言降低效果顯著(<0.05)。水分管理(T2)使得泰優(yōu)390稻殼和糙米Cd含量分別降低了28.38%和29.23%,且降低效果相對(duì)于對(duì)照均顯著(<0.05)。硅肥處理(T3)和竹炭處理(T4)降低效果最好,對(duì)稻殼和糙米均有顯著降低(<0.05),且中嘉早17和泰優(yōu)390結(jié)果一致。在硅肥處理(T3)中,中嘉早17稻殼和糙米Cd含量分別降低了46.84%和39.66%,泰優(yōu)390稻殼和糙米Cd含量分別降低了48.65%和49.23%。在竹炭處理(T4)中,中嘉早17稻殼和糙米Cd含量分別降低了43.04%和37.93%,泰優(yōu)390稻殼和糙米Cd含量分別降低了39.19%和47.69%。2個(gè)組合處理中,均能顯著降低2個(gè)水稻品種稻殼和糙米Cd含量(<0.05),且降低率均在50%以上,其中竹炭+水分管理(T6)使中嘉早17糙米Cd含量達(dá)到0.25 mg·kg-1,降低率為56.90%,使泰優(yōu)390糙米Cd含量達(dá)到0.21 mg·kg-1,降低率為52.70%。硅肥結(jié)合水分管理(T5)能使中嘉早硅肥結(jié)合水分管理(T5)能使中嘉早硅肥結(jié)合水分管理(T5)能使中嘉早硅肥結(jié)合水分管理(T5)能使中嘉早硅肥結(jié)合水分管理(T5)能使中嘉早硅肥結(jié)合水分管理(T5)能使中嘉早17糙米Cd含量最低值達(dá)到0.19 mg·kg-1,使泰優(yōu)390糙米Cd含量平均值達(dá)0.14 mg·kg-1。綜合所述,水分管理和調(diào)理劑處理均能一定程度降低稻殼和糙米Cd含量,但兩個(gè)組合處理(T5和T6)降低量最大,效果最好。
由表2可知,對(duì)于中嘉早17而言,水稻稻殼和糙米Cd含量與土壤有效態(tài)Cd含量呈正線性相關(guān),且相關(guān)性極顯著(<0.01),根系和葉片Cd含量與土壤有效態(tài)Cd含量呈正線性相關(guān),且相關(guān)性顯著(<0.05),莖鞘與土壤有效態(tài)Cd含量相關(guān)性不顯著。對(duì)于泰優(yōu)390而言,水稻稻殼和糙米Cd含量與土壤有效態(tài)Cd含量與中嘉早17一致,呈正線性相關(guān),且相關(guān)性極顯著(<0.01),根系和莖鞘Cd含量與土壤有效態(tài)Cd含量呈正線性相關(guān),且相關(guān)性顯著(<0.05),葉片與土壤有效態(tài)Cd含量相關(guān)性不顯著。
圖2 調(diào)理劑及水分管理對(duì)Cd污染稻田水稻籽粒Cd含量的影響
2.4.1 對(duì)Cd富集系數(shù)的影響 由表3可知,5個(gè)試驗(yàn)處理對(duì)水稻各部位Cd富集系數(shù)有不同的效果。水分管理(T2)處理對(duì)中嘉早17和泰優(yōu)390號(hào)2個(gè)品種根系Cd富集系數(shù)沒(méi)有顯著影響,但莖鞘、稻殼的Cd富集系數(shù)與對(duì)照(T1)相比均差異顯著。在兩個(gè)調(diào)理劑處理中,施用硅肥(T3)處理對(duì)水稻根系、莖鞘、葉片、稻殼和糙米的Cd含量均有顯著降低效果,中嘉早17和泰優(yōu)390效果一致,施用竹炭(T4)處理對(duì)兩個(gè)水稻品種中嘉早17和泰優(yōu)390僅稻殼和糙米效果同時(shí)顯著,對(duì)根系、莖鞘和葉片富集系數(shù)一定程度降低。2個(gè)組合處理(T5和T6)對(duì)兩個(gè)水稻品種均只有葉片富集系數(shù)相對(duì)于對(duì)照效果不顯著,其余各部位均有顯著效果。綜合所述,2個(gè)組合處理降低水稻各部位富集系數(shù)效果優(yōu)于調(diào)理劑處理和水分管理處理。
表2 稻田土壤有效態(tài)Cd含量與水稻各部位Cd含量相關(guān)性
樣品n=18,**表示在0.01水平(雙側(cè))上顯著相關(guān),*表示在0.05水平(雙側(cè))上顯著相關(guān)
Sample n=18, ** Indicates significant correlation at 0.01 level (both sides), * Indicates significant correlation at 0.05 level (two sides)
表3 調(diào)理劑及水分管理對(duì)Cd污染稻田Cd富集系數(shù)的影響
2.4.2 對(duì)Cd轉(zhuǎn)運(yùn)系數(shù)的影響 由表4可知,5個(gè)試驗(yàn)處理對(duì)水稻各部位Cd轉(zhuǎn)運(yùn)系數(shù)有一定差異。水分管理(T2)處理效果好于對(duì)照處理(T1),中嘉早17和泰優(yōu)390規(guī)律一致。2個(gè)調(diào)理劑處理中,施用硅肥處理(T3)對(duì)中嘉早17水稻各部位轉(zhuǎn)運(yùn)系數(shù)均有顯著效果,根系向莖鞘轉(zhuǎn)運(yùn)系數(shù)除外,泰優(yōu)390效果與中嘉早17一致。施用竹炭(T4)處理對(duì)中嘉早17效果與施用硅肥處理(T3)效果一致,對(duì)于泰優(yōu)390僅莖鞘向葉片轉(zhuǎn)運(yùn)系數(shù)不顯著,其他轉(zhuǎn)運(yùn)系數(shù)均有顯著變化。2個(gè)組合處理(T5和T6)中對(duì)根系向莖鞘和莖鞘向葉片轉(zhuǎn)運(yùn)沒(méi)有顯著影響,對(duì)莖鞘向籽粒和葉片向籽粒均有較好效果,兩個(gè)水稻品種效果一致。綜上所述,在阻控各部位Cd向籽粒轉(zhuǎn)運(yùn)中,組合處理效果最好。
表4 調(diào)理劑及水分管理對(duì)Cd污染稻田Cd轉(zhuǎn)運(yùn)系數(shù)的影響
由圖3可知,試驗(yàn)中5個(gè)處理的中嘉早17產(chǎn)量相對(duì)于對(duì)照處理(T1)有一定變化,水分管理(T2)處理產(chǎn)量下降7.00%,施用硅肥(T3)處理產(chǎn)量增加2.97%,其余3個(gè)處理產(chǎn)量均一定程度下降,但效果不顯著。對(duì)于泰優(yōu)390而言,5個(gè)試驗(yàn)處理相對(duì)于對(duì)照均沒(méi)有顯著變化,產(chǎn)量在8 200 kg·hm-2上下波動(dòng)。綜合而言,水分管理處理會(huì)使得水稻產(chǎn)量下降,但在結(jié)合硅肥或者竹炭后產(chǎn)量有所上升,但上升效果不顯著。
降低水稻籽粒中Cd含量主要是兩種途徑,一是降低土壤中Cd生物有效性,將活性Cd鈍化為絡(luò)合物或螯合物[16];二是阻控水稻各部位向籽粒轉(zhuǎn)運(yùn),有研究指出水稻根系吸收到籽粒Cd積累要經(jīng)過(guò)3個(gè)過(guò)程:根系的活化和吸收、木質(zhì)部的裝載和運(yùn)輸以及韌皮部向籽粒中的進(jìn)一步轉(zhuǎn)移[17-18]。根系向地上部轉(zhuǎn)運(yùn)是水稻籽粒積累Cd主要來(lái)源[19],阻控水稻對(duì)Cd的吸收或被吸收后阻止Cd向地上部轉(zhuǎn)運(yùn),可以一定程度降低籽粒Cd含量。
水分管理能降低Cd污染土壤生物有效性以及持續(xù)性淹水則能調(diào)控水稻Cd共質(zhì)體轉(zhuǎn)運(yùn)[20]。研究認(rèn)為持續(xù)性淹水效果優(yōu)于水稻生育階段性淹水,淹水主要是通過(guò)下調(diào)水稻根系和的基因相對(duì)表達(dá)量,降低了水稻對(duì)Cd的吸收[21]。水稻水分管理中全生育期淹水水稻根表鐵膜量要高于間歇性淹水,而水稻根表鐵膜能有效阻控Cd2+進(jìn)入水稻體內(nèi)[22]。水稻田在長(zhǎng)期淹水條件下,土壤體系處于還原環(huán)境,使得Fe2+、Mn2+等金屬離子與Cd2+的競(jìng)爭(zhēng)吸附作用以及與S2-和Cd2+共沉淀作用加強(qiáng)[23]。紀(jì)雄輝等[11]證實(shí)持續(xù)性淹水處理能降低水稻籽粒中Cd含量。本試驗(yàn)水分管理糙米Cd含量降低了29.23%,但仍遠(yuǎn)遠(yuǎn)未達(dá)到國(guó)家安全食用標(biāo)準(zhǔn)(GB2762—2012),因此本研究將水分管理與調(diào)理劑進(jìn)行組合,研究組合處理降低糙米Cd含量效果。同時(shí),楊定清等[24]研究表明持續(xù)性淹水水稻產(chǎn)量顯著下降,其原因主要是稻田長(zhǎng)期處于淹水狀態(tài),會(huì)導(dǎo)致無(wú)效分蘗增加,從而導(dǎo)致水稻產(chǎn)量降低。其次,長(zhǎng)期淹水條件下,葉片蒸騰速率高,光合速率潛力不能得到充分發(fā)揮,水稻產(chǎn)量也會(huì)降低。本研究相比于對(duì)照處理(T1)水分管理處理(T2)使中嘉早17產(chǎn)量顯著降低,但對(duì)泰優(yōu)390沒(méi)有顯著影響,這說(shuō)明水分管理下產(chǎn)量變化與水稻品種有一定關(guān)聯(lián)。
圖3 調(diào)理劑及水分管理對(duì)Cd污染稻田水稻產(chǎn)量的影響
本試驗(yàn)中選用2種土壤調(diào)理劑,主要分為含硅元素和生物炭。生物炭和硅肥的施用對(duì)水稻Cd的轉(zhuǎn)運(yùn)系數(shù)降低效果不顯著,但使得富集系數(shù)降低效果顯著,主要是由于將土壤中活性鎘鈍化[25-26]。硅元素通過(guò)影響水稻根系分泌以及土壤微生物來(lái)提升土壤pH,而提升pH能使得土壤Cd和有效態(tài)Cd含量降低[27-28]。另外,土壤中的有效硅能與土壤中有效態(tài)Cd形成聚硅酸凝膠的Cd-Si復(fù)合物,從而降低土壤Cd的有效性[29]。本研究中基施礦物硅肥結(jié)合葉面硅肥處理,對(duì)稻米Cd阻控有較好的效果,單一施用硅肥(T3)糙米Cd含量最高下降了49.23%,而本研究中硅肥結(jié)合淹水處理(T5)使得糙米Cd含量最高降低了78.46%,達(dá)到或接近國(guó)家安全食用標(biāo)準(zhǔn)。硅降低稻米Cd含量主要有兩種方式,一是鈍化土壤中活性Cd,形成Si-Cd聚合物,阻止Cd2+進(jìn)入水稻根系;二是抑制水稻體內(nèi)Cd向地上部轉(zhuǎn)運(yùn),降低籽粒Cd含量[7]。因此,本試驗(yàn)在分蘗末期噴施適量的葉面硅肥,能有效控制Cd向稻穗轉(zhuǎn)移,在基施硅肥的基礎(chǔ)上降低稻米Cd超標(biāo)的風(fēng)險(xiǎn)。生物炭可以增加土壤中有機(jī)碳含量,形成土壤團(tuán)聚體[30],土壤中Cd2+與有機(jī)質(zhì)發(fā)生反應(yīng),降低其生物有效性[31],同時(shí)有研究表明Cd2+與生物炭的離子交換作用、絡(luò)合反應(yīng)以及陽(yáng)離子-π鍵等作用能有效降低土壤有效態(tài)Cd含量[32-33],生物炭能迅速提升土壤pH也是降低其生物有效性原因之一[34]。本研究選擇施用竹炭同時(shí)結(jié)合全生育期水分管理(T6),在施用硅肥的條件下結(jié)合全生育期淹水再在分蘗期輔以噴施葉面肥(T5)處理能更有效降低土壤中Cd的生物有效性,且效果優(yōu)于單一調(diào)理劑處理和水分管理,使得糙米中Cd含量達(dá)到或接近國(guó)家安全食用標(biāo)準(zhǔn)。對(duì)于水稻產(chǎn)量方面,兩個(gè)試驗(yàn)處理均對(duì)水稻產(chǎn)量沒(méi)有顯著降低,相比于單一水分管理處理水稻產(chǎn)量略有提升,但其機(jī)理有待進(jìn)一步研究。
李超等[35]研究認(rèn)為水稻各器官Cd含量與土壤Cd有效性呈極顯著正相關(guān)關(guān)系,本試驗(yàn)中當(dāng)土壤有效態(tài)Cd降低時(shí),稻米中各器官Cd含量亦隨之降低,且水稻稻殼與糙米Cd含量與土壤有效態(tài)Cd含量呈極顯著正線性相關(guān)(<0.01)。水稻對(duì)Cd的富集系數(shù)與轉(zhuǎn)運(yùn)系數(shù)的大小與水稻籽粒Cd含量密切相關(guān)[36],本研究中各試驗(yàn)處理富集系數(shù)均有降低,組合處理降低效果均顯著,但轉(zhuǎn)運(yùn)系數(shù)效果不顯著,說(shuō)明試驗(yàn)中各處理主要是鈍化了土壤活性鎘,降低水稻吸收鎘離子,從而降低水稻籽粒Cd含量。
值得指出的是,組合措施中兩個(gè)處理(T5和T6)在保證水稻產(chǎn)量的前提下能大幅度降低稻米中Cd含量,T5處理最低值為0.09 mg·kg-1,T6處理最低值為0.13 mg·kg-1,但仍存在超標(biāo)風(fēng)險(xiǎn),建議在下階段研究中根據(jù)不同土壤類(lèi)型及土壤污染程度對(duì)調(diào)理劑施用量與水分管理進(jìn)行優(yōu)化組合,使得中輕度Cd污染耕地可以更安全利用。
5個(gè)試驗(yàn)處理對(duì)稻田土壤有效態(tài)Cd含量、水稻各部位Cd含量、水稻各部位富集系數(shù)、水稻轉(zhuǎn)運(yùn)系數(shù)均有降低效果。硅肥結(jié)合水分管理(T5)和竹炭結(jié)合水分管理(T6)對(duì)Cd污染稻田稻米降Cd效果最好,其中T5處理效果優(yōu)于T6處理。在水稻產(chǎn)量方面,水分管理(T2)處理對(duì)中嘉早17有顯著降低,其他處理降低幅度不顯著,各處理對(duì)泰優(yōu)390產(chǎn)量沒(méi)有顯著影響。同時(shí),研究認(rèn)為水稻籽粒Cd含量與土壤有效態(tài)Cd含量呈極顯著正線性相關(guān)(<0.01)。
[1] YI K X, WANG F , CHRN J Y, JIANG S H, HUANG S J, PENG L ZENG QING R, LUO S. Annual input and output fluxes of heavy metals to paddy fields in four types of contaminated areas in Hunan Province, China., 2018, 634: 67-76.
[2] 龐榮麗, 王瑞萍, 謝漢忠, 郭琳琳, 李君. 農(nóng)業(yè)土壤中鎘污染現(xiàn)狀及污染途徑分析. 天津農(nóng)業(yè)科學(xué), 2016, 22(12): 87-91.
PANG R L, WANG R P, XIE H Z, GUO L L, LI J. Analysis of cadmium pollution in agricultural soils and analysis of its aay of pollution., 2016, 22(12): 87-91. (in Chinese)
[3] LI H , LUO N , LI Y W,CAI Q Y, LI H Y, MO C H, WONG M H. Cadmium in rice: transport mechanisms, influencing factors, and minimizing measures., 2017, 224: 622-630.
[4] 喻華, 上官宇先, 涂仕華, 秦魚(yú)生, 陳琨, 陳道全, 劉前聰. 水稻籽粒中鎘的來(lái)源. 中國(guó)農(nóng)業(yè)科學(xué), 2018, 51(10): 1940-1947.
YU H, SHANGGUAN Y X, TU S H, QIN Y S, CHEN K, CHEN D Q, LIU Q C. Sources of cadmium accumulated in rice grain.2018, 51(10): 1940-1947. (in Chinese)
[5] MENG J , ZHONG L B , WANG L , LIU X M, TANG C X, CHEN H J, XU J M. Contrasting effects of alkaline amendments on the bioavailability and uptake of Cd in rice plants in a Cd-contaminated acid paddy soil., 2018, 25(9): 8827-8835.
[6] 史磊, 郭朝暉, 梁芳, 彭馳, 肖細(xì)元, 封文利. 水分管理和施用石灰對(duì)水稻鎘吸收與運(yùn)移的影響. 農(nóng)業(yè)工程學(xué)報(bào), 2017, 33(24): 111-117.
SHI L, GUO Z H, LIANG F, PENG C, XIAO X Y, FENG W L. Effects of lime and water management on uptake and translocation of cadmium in rice., 2017, 33(24): 111-117. (in Chinese)
[7] 謝曉梅, 方至萍, 廖敏, 黃宇, 黃小輝. 低積累水稻品種聯(lián)合腐殖酸、海泡石保障重鎘污染稻田安全生產(chǎn)的潛力. 環(huán)境科學(xué), 2018(9): 4348-4358.
XIE X M, FANG Z P, LIAO M, HUANG Y, HUANG X H. Potential to ensure safe production from rice fields polluted with heavy cadmium by combining a rice variety with low cadmium accumulation, humic acid, and sepiolite., 2018(9): 4348-4358. (in Chinese)
[8] 楊小粉, 劉欽云, 袁向紅, 吳勇俊, 鄭海飄, 聶凌俐, 李翊君, 張文, 敖和軍. 綜合降鎘技術(shù)在不同污染程度稻田土壤下的應(yīng)用效果研究. 中國(guó)稻米, 2018, 24(2): 37-41.
YANG X F, LIU Q Y, YUAN X H, WU Y J, ZHENG H P, NIE L L, LI Y J, ZHANG W, AO H J. Effects of VIP technology on reducing cadmium under different cadmium pollution degree paddy soil.2018, 24(2): 37-41. (in Chinese)
[9] WAN Y N, CAMATA A Y, YU Y, GUO T L, ZHU L N, LI H F. Cadmium dynamics in soil pore water and uptake by rice: Influences of soil-applied selenite with different water managements., 2018, 240: 523-533.
[10] 李園星露, 葉長(zhǎng)城, 劉玉玲, 李丹陽(yáng), 劉壽濤, 羅海艷, 劉孝利, 鐵柏清, 孫健. 硅肥耦合水分管理對(duì)復(fù)合污染稻田土壤As-Cd生物有效性及稻米累積阻控. 環(huán)境科學(xué), 2018(2): 944-952.
LI Y X L, YE C C, LIU Y L, LI D Y, LIU S T, LUO H Y, LIU X L, TIE B Q, SUN J. Bioavailability of silicon fertilizer coupled water management on soil bioavailability and cumulative control of rice in compound contaminated paddy soils., 2018(2): 944-952.(in Chinese)
[11] 紀(jì)雄輝, 梁永超, 魯艷紅, 廖育林, 聶軍, 鄭圣先, 李兆軍. 污染稻田水分管理對(duì)水稻吸收積累鎘的影響及其作用機(jī)理. 生態(tài)學(xué)報(bào), 2006, 27(9): 3930-3939.
JI X H, LIANG Y C, LU Y H, LIAO Y L, NIE J, ZHENG S X, LI Z J. The effect of water management on the mechanism and rate of uptake and accumulation of cadmium by rice growing in polluted paddy soil., 2006, 27(9): 3930-3939. (in Chinese)
[12] 王夢(mèng)夢(mèng), 何夢(mèng)媛, 蘇德純. 稻田土壤性質(zhì)與稻米鎘含量的定量關(guān)系. 環(huán)境科學(xué), 2018, 39(4): 1918-1925.
WANG M M, HE M Y, SU D C. Quantitative relationship between paddy soil properties and cadmium content in rice grains., 2018, 39(4): 1918-1925.(in Chinese)
[13] YANG Y J, CHEN J M, HUANG Q N, TANG S Q, WANG J L, HU P S, SHAO G S. Can liming reduce cadmium (Cd) accumulation in rice () in slightly acidic soils? A contradictory dynamic equilibrium between Cd uptake capacity of roots and Cd immobilisation in soils., 2018, 193: 547-556.
[14] SANCHEZ-FLORES N, SOLACHE M, OLGUIN M T, FRIPIAT J J, PACHECO-MALAGIN G, SANIGER J M, BULBULIAN S. Selectivity of the Cd2+/Ca2+exchange on modified rice hull silica., 2009, 30(3): 269-275.
[15] 徐勝光, 周建民, 劉艷麗, 陳能場(chǎng), 謝志宜. 硅鈣調(diào)控對(duì)酸礦水污染農(nóng)田水稻鎘含量的作用機(jī)制. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2007, 26(5): 1854-1859.
XU S G, ZHOU J M, LIU Y L, CHEN N C, XIE Z Y. Regulative mechanism of silicon and calcium on the cadmium content of rice in the farmland polluted by acidic mine water, 2007, 26(5): 1854-1859. (in Chinese)
[16] HOU D D, WANG R Z , GAO X Y, WANG K, LIN Z, GE J, LIU T, WEI S, CHEN W K, XIE R H, YANG X E, LU L L,TIAN S K. Cultivar-specific response of bacterial community to cadmium contamination in the rhizosphere of rice (L.)., 2018, 241: 63-73.
[17] YONEYAMA T, GOSHO T, KATO M, GOTO S, HAYASHI H. Xylem and phloem transport of Cd, Zn and Fe into the grains of rice plants (L.) grown in continuously flooded Cd contaminated soil. S, 2010, 56(3): 445-453.
[18] URAGUCHI S, FUJIWARA T. Rice breaks ground for cadmium-free cereals., 2013, 16(3): 328-334.
[19] HAO X H, ZENG M, WANG J, ZENG Z W, DAI J L, XIE Z J, YANG Y Z, TIAN L F, CHEN L B, LI D P. A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice., 2018, 9: 476-489.
[20] 陳江民, 楊永杰, 黃奇娜, 胡培松, 唐紹清, 吳立群, 王建龍, 邵國(guó)勝. 持續(xù)淹水對(duì)水稻鎘吸收的影響及其調(diào)控機(jī)理. 中國(guó)農(nóng)業(yè)科學(xué), 2017, 50(17): 3300-3310.
CHEN J M, YANG Y J, HUANG Q N, HU P S, TANG S Q, WU L Q, WANG J L, SHAO G S. Effects of continuous flooding on cadmium absorption and its regulation mechanisms in rice., 2017, 50(17): 3300-3310. (in Chinese)
[21] RODDA M S, REID R J. Examination of the role of iron deficiency response in the accumulation of Cd by rice grown in paddy soil with variable irrigation regimes., 2013, 371(1/2): 219-236.
[22] NAKANISHI H, OGAWA I, ISHIMARU Y, MORI S, NISHIZAWA N K. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+transporters OsIRT1 and OSIRT2 in rice., 2006, 52(4): 464-469.
[23] LI J, XU Y. Use of clay to remediate cadmium contaminated soil under different water management regimes., 2017, 141: 107-112.
[24] 楊定清, 雷紹榮, 李霞, 周婭, 羅麗卉, 李旭毅. 大田水分管理對(duì)控制稻米鎘含量的技術(shù)研究. 中國(guó)農(nóng)學(xué)通報(bào), 2016, 32(18): 11-16.
YANG D Q, LEI S R, LI X, ZHOU Y, LUO L H, LI X Y. Controlling cadmium concentration in rice by field water management technology., 2016, 32(18): 11-16. (in Chinese)
[25] 張燕, 鐵柏清, 劉孝利, 張淼, 葉長(zhǎng)城, 彭鷗, 許蒙. 玉米秸稈生物炭對(duì)稻田土壤砷、鎘形態(tài)的影響. 環(huán)境科學(xué)學(xué)報(bào), 2018, 38(2): 715-721.
ZHANG Y, TIE B Q, LIU X L, ZHANG M, YE C C, PENG O, XU M. Effects of waterlogging and application of bio-carbon from corn stalks on the physicochemical properties and the forms of arsenic and cadmium in arsenic and cadmium-contaminated soils., 2018, 38(2): 715-721. (in Chinese)
[26] 陳喆, 張淼, 葉長(zhǎng)城, 毛懿德, 周細(xì)紅, 雷鳴, 魏祥東, 鐵柏清. 富硅肥料和水分管理對(duì)稻米鎘污染阻控效果研究. 環(huán)境科學(xué)學(xué)報(bào), 2015, 35(12):4003-4011.
CHEN Z, ZHANG M, YE C C, MAO Y D, ZHOU X H, LEI M, WEI X D, TIE B Q. Mitigation of Cd accumulation in rice (L.) with Si fertilizers and irrigation managements., 2015, 35(12): 4003-4011. (in Chinese)
[27] ZHANG P B, LIU Y Q, BOCHARNIKOVA E A, MATICHENKOW V V, KHOMIAKOV D M, PAKHNENKO E P. Effect of amorphous silicon dioxide on cadmium behavior in the soil–rice plant system., 2018, 73(1): 34-38.
[28] YU H Y, DING X, LI F B, WANG X Q, ZHANG S R, YI J C, LIU C P, XU X H, WANG Q. The availabilities of arsenic and cadmium in rice paddy fields from a mining area: The role of soil extractable and plant silicon., 2016, 215: 258-265.
[29] GUO L, CHEN A T, HE N, YANG D, LIU M D. Exogenous silicon alleviates cadmium toxicity in rice seedlings in relation to Cd distribution and ultrastructure changes., 2018, 18(4): 1691-1700.
[30] 徐國(guó)鑫, 王子芳, 高明, 田冬, 黃蓉, 劉江, 黎嘉成. 秸稈與生物炭還田對(duì)土壤團(tuán)聚體及固碳特征的影響. 環(huán)境科學(xué), 2018, 39(1): 355-362.
XU G X, WANG Z F, GAO M, TIAN D, HUANG R, LIU J, LI J C. Effects of straw and biochar return in soil on soil aggregate and carbon sequestration., 2018, 39(1): 355-362. (in Chinese)
[31] GAO J K, LV J L, WU H M, DAI Y C, NASIR M. Impacts of wheat straw addition on dissolved organic matter characteristics in cadmium- contaminated soils: Insights from fluorescence spectroscopy and environmental implications., 2018, 193: 1027-1035.
[32] 王震宇, 劉國(guó)成, Monica Xing, 李鋒民, 鄭浩. 不同熱解溫度生物炭對(duì)Cd(Ⅱ)的吸附特性. 環(huán)境科學(xué), 2014(12): 4735 -4744.
WANG Z Y, LIU G C, MONICA X, LI F M, ZHENG H. Adsorption of Cd (Ⅱ) varies with biochars derived at different pyrolysis temperatures., 2014(12): 4735-4744. (in Chinese)
[33] USMAN A, SALLAM A, ZHANG M, VITHTHIKA M, AHMAD M, AL-FARRAJ A, OK Y S, ABDULJABBAR A, AL-WABEL M. Sorption process of date palm biochar for aqueous Cd (II) removal: efficiency and mechanisms., 2016, 227(12): 449-464.
[34] 張華緯, 甄華楊, 岳士忠, 張慧琦, 喬玉輝. 水稻秸稈生物炭對(duì)污染土壤中鎘生物有效性的影響. 生態(tài)環(huán)境學(xué)報(bào), 2017, 26(6): 1068-1074.
ZHANG H W, ZHEN H Y, YUE S Z, ZHANG H Q, QIAO Y H. Bioavailability of Cd in contaminated soil after short-term application of rice straw biochar., 2017, 26(6): 1068-1074. (in Chinese)
[35] 李超, 艾紹英, 唐明燈, 李林峰, 王艷紅, 李義純. 礦物調(diào)理劑對(duì)稻田土壤鎘形態(tài)和水稻鎘吸收的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2018, 51(11): 2143-2154.
LI C, AI S Y, TANG M D, LI L F, WANG Y H, LI Y C. Effects of a mineral conditioner on the forms of Cd in paddy soil and Cd uptake by rice., 2018, 51(11): 2143-2154. (in Chinese)
[36] 周靜, 楊洋, 孟桂元, 馬國(guó)輝,陳艷艷. 不同鎘污染土壤下水稻鎘富集與轉(zhuǎn)運(yùn)效率. 生態(tài)學(xué)雜志, 2018, 37(1): 89-94.
ZHOU J, YANG Y, MENG G Y, MA G H, CHEN Y Y. Cadmium accumulation and translocation efficiency of rice under different cadmium-polluted soils., 2018, 37(1): 89-94. (in Chinese)
Effects of Conditioning Agents and Agronomic Measures on Cadmium Uptake by Rice in Polluted Rice Fields
PENG Ou1, LIU YuLing1, TIE BaiQing1, YE ChangCheng1, ZHANG Miao1, LI YuanXingLu1, ZHOU JunChi1, XU Meng1, ZHANG Yan1, LONG Yong2
(1College of Resources and Environment, Hunan Agricultural University/Hunan Engineering & Technology Research Center for Irrigation Water Purification, Changsha 410128;2Agricultural Technology Service Station, Nanzhou Town, Lukou District, Zhuzhou 412107, Hunan)
【Objective】How to safely use cadmium (Cd) to prevent it from contaminating cultivated land to produce up to standard rice is a hot topic for scholars. This paper mainly explored the effects of water management, conditioning agent measures and combined measures on the Cd reduction of rice in polluted rice fields. It aimed to reduce the bioavailability of soil Cd and the Cd content in rice under the premise of not significantly reducing rice yield【Method】Field rice experiments were carried out in a moderately Cd-contaminated paddy field in Zhuzhou City, Hunan Province, through a field plot test. In the experiment, rice was planted for two seasons. The early rice variety was Zhongjiazao17, and the late rice variety was Taiyou390. The test setup design was divided into 6 groups, namely water management treatment (T2), application of silicon fertilizer treatment (T3), application of bamboo charcoal treatment (T4), application of silicon fertilizer combined with water management treatment (T5), application of bamboo charcoal combined with water management treatment (T6), and control (T1), and each treatment was repeated 3 times.【Result】The effective Cd content in the paddy soil was reduced by the treatments. The bamboo charcoal combined with water management treatment (T6) significantly reduced the soil moisture in the two rice grow seasons. The silicon fertilizer combined with water management treatment (T5) had the largest reduction of available cadmium in the late rice soil. The treatments all had the effect of reducing the Cd content in all parts of rice. In the aspect of cadmium content of brown rice, the reduction of Cd content in brown rice in the five experimental treatments was the best in combination with the repair technology, namely silicon fertilizer combined with water management treatment (T5). Combined with carbon and water management (T6), in the water management and repair technology, the water management in the whole growth period has the best Cd effect, the highest reduction was 29.23%; in the application of conditioning agent repair technology, silicon fertilizer treatment (T3) and bamboo charcoal treatment (T4) significantly reduced rice husks and brown rice (<0.05). Under the silicon fertilizer treatment (T3), brown rice had the highest Cd amplitude of 49.23%; under the bamboo charcoal treatment (T4), brown rice had the highest Cd amplitude of 47.69%. In the treatment technology, the Cd content of rice brown rice could be significantly reduced. The silicon fertilizer combined with water management treatment (T5) of brown rice decreased Cd range from 60.34% to 78.46%, and bamboo charcoal combined with water management (T6) brown rice decreased Cd range from 56.90% to 67.69%. At the same time, this paper analyzed the correlation between soil available cadmium content and cadmium content in various parts of rice, and found that there was very significant positive correlation between rice grain (rice husk and brown rice) and soil available cadmium content (<0.01), and two rice varieties were consistent. The treatments also had the effect of reducing the enrichment coefficient of various parts of rice, and the best results were obtained by silicon fertilizer combined with water management treatment (T5) and carbon combined water management (T6). Regarding the effect of reducing the rice-to-grain transfer coefficients from different parts of the rice, the rules were inconsistent, but the transfer coefficients of the stalk sheaths and leaves to the grains (rice hulls and brown rice) were significantly reduced, except for water management (T2) treatment. In terms of rice yield, only water management treatment (T2) significantly reduced yield of Zhongjiazao17, and the other treatments did not decrease significantly. Each treatment had no significant effect on Taiyou390.【Conclusion】The combination measures were better than single water management or single conditioner treatment, and the maximum Cd drop in rice Cd-contaminated rice fields reached 78.46% when rice yield was not significantly reduced, which could further ensure the safe use of Cd-contaminated farmland.
rice; water management; cadmium; silicon fertilizer; bamboo charcoal
2019-04-25;
2019-09-12
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2017YFD0801505)、湖南省科技計(jì)劃項(xiàng)目重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016NK2017)、長(zhǎng)沙市科技計(jì)劃項(xiàng)目(kq1801025)
彭鷗,Tel:18508424171;E-mail:hanhexiaou@foxmail.com。通信作者鐵柏清,Tel:13507454906;E-mail:tiebq@qq.com
(責(zé)任編輯 李云霞)