陳兵兵 宓曉晴 李云 謝俊霞 宋寧
[摘要] 目的 探究檸檬酸鐵胺(FAC)對SH-SY5Y多巴胺能細(xì)胞系葡萄糖腦苷脂酶(GCase)活性及其蛋白表達(dá)的影響。方法 用FAC、GCase活性抑制劑環(huán)己烯四醇環(huán)氧化物(CBE)分別或共同處理細(xì)胞48 h,應(yīng)用熒光法檢測GCase活性,免疫印跡法檢測GCase蛋白表達(dá)。結(jié)果 FAC和CBE兩種因素共處理,對GCase活性及其蛋白表達(dá)的影響不存在交互作用(P>0.05)。FAC處理SH-SY5Y細(xì)胞后,GCase活性降低,蛋白表達(dá)升高,與對照組比較差異具有統(tǒng)計(jì)學(xué)意義(F=8.191、4.934,P<0.05);CBE處理SH-SY5Y細(xì)胞后,GCase活性降低,蛋白表達(dá)升高,與對照組比較差異具有統(tǒng)計(jì)學(xué)意義(F=14.605、4.182,P<0.05)。結(jié)論 高鐵可降低SH-SY5Y細(xì)胞中GCase的活性,升高蛋白的表達(dá)。
[關(guān)鍵詞] 鐵;檸檬酸鹽類;葡糖苷酰鞘氨醇酶;SH-SY5Y細(xì)胞
[中圖分類號] R338.1;R345.62 ?[文獻(xiàn)標(biāo)志碼] A ?[文章編號] 2096-5532(2020)02-0143-04
doi:10.11712/jms.2096-5532.2020.56.058 [開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID)]
[網(wǎng)絡(luò)出版] http://kns.cnki.net/kcms/detail/37.1517.R.20200407.0930.004.html;2020-04-07 14:57
[ABSTRACT] Objective To explore the effect of ferric ammonium citrate (FAC) on glucocerebrosidase (GCase) activity and expression in SH-SY5Y dopaminergic cells. ?Methods SH-SY5Y dopaminergic cells were treated with FAC and the GCase inhibitor conduritol B epoxide (CBE), alone or in combination, for 48 h. Fluorometric assay was used to determine the GCase acti-vity. Western blotting was performed to determine the expression level of GCase. ?Results When FAC and CBE were used in combination to treat the SH-SY5Y cells, there was no interaction between them with regard to the effect on GCase activity and expression (P>0.05). SH-SY5Y cells treated with FAC alone showed a significantly decreased GCase activity and a significantly increased GCase expression level compared with the control group (F=8.191,4.934,P<0.05); SH-SY5Y cells treated with CBE alone also showed a significantly decreased GCase activity and a significantly increased GCase expression level compared with the control group (F=14.605,4.182,P<0.05). ?Conclusion High level of iron can decrease the activity and increase the expression level of GCase in SH-SY5Y cells.
[KEY WORDS] iron; citrates; glucosylceramidase; SH-SY5Y cells
近年來遺傳基因的發(fā)現(xiàn)為家族性和散發(fā)性帕金森?。≒D)的發(fā)病機(jī)制提供新見解,有5%~10%的PD病例是遺傳因素所致[1-2]。臨床研究發(fā)現(xiàn),PD病人中編碼葡萄糖腦苷酯酶(GCase)的基因GBA突變率達(dá)20%,因此GBA突變是目前已知的PD和相關(guān)突觸核蛋白病發(fā)展的最常見的遺傳危險(xiǎn)因素[3-5]。GCase是一種具有497個氨基酸的膜相關(guān)性蛋白,該蛋白在內(nèi)質(zhì)網(wǎng)中合成和經(jīng)糖基化修飾后,被溶酶體膜整合蛋白-2轉(zhuǎn)運(yùn)至溶酶體中,發(fā)揮生物學(xué)功能[6]。GCase活性的降低可以導(dǎo)致葡萄糖神經(jīng)酰胺的聚積,進(jìn)而導(dǎo)致戈謝病的發(fā)生[7]。在PD中,GBA突變降低了GCase的活性,導(dǎo)致α-突觸核蛋白聚集,而聚集的α-突觸核蛋白又進(jìn)一步促進(jìn)了GCase活性的降低,形成惡性循環(huán),造成多巴胺能神經(jīng)元的死亡,因此GCase的活性與PD的發(fā)病進(jìn)程密切相關(guān)[8-12]。鐵是PD發(fā)病的重要因素之一[13],鐵可以誘導(dǎo)氧化應(yīng)激和鐵死亡等[14-16],從而造成多巴胺能神經(jīng)元的選擇性損傷。然而,目前關(guān)于鐵對GCase活性及其蛋白表達(dá)的影響尚未見報(bào)道。因此,本研究應(yīng)用檸檬酸鐵銨(FAC)制備SH-SY5Y多巴胺能細(xì)胞系的高鐵模型,并使用GCase的不可逆競爭性抑制劑環(huán)己烯四醇環(huán)氧化物(CBE)作為對照藥,探討鐵對GCase活性及其蛋白表達(dá)的影響?,F(xiàn)將結(jié)果報(bào)告如下。
1 材料與方法
1.1 實(shí)驗(yàn)材料
SH-SY5Y細(xì)胞系由中國科學(xué)院上海細(xì)胞庫提供,DMEM高糖基礎(chǔ)培養(yǎng)液、胎牛血清(FBS)購自以色列BI公司,4-甲基傘形酮-β-葡萄糖苷(4-MU-β-GLC)、CBE、FAC和GCase一抗購自美國Sigma公司,β-actin抗體、HRP-IgG標(biāo)記的二抗購自北京博奧森公司,ECL發(fā)光液為Millipore公司產(chǎn)品,其他試劑均為國產(chǎn)分析純。
1.2 SH-SY5Y細(xì)胞的培養(yǎng)
實(shí)驗(yàn)前將實(shí)驗(yàn)器具高壓滅菌。從液氮中取出凍存的SH-SY5Y細(xì)胞轉(zhuǎn)移到37 ℃水浴中迅速(30 s內(nèi))解凍,充分搖勻后置于離心機(jī)中,以1 000 r/min離心5 min,棄去上清,加入完全培養(yǎng)液吹打均勻后接種到25 cm2細(xì)胞培養(yǎng)瓶中,光鏡下觀察細(xì)胞是否貼壁,然后置于培養(yǎng)箱中(37 ℃、含體積分?jǐn)?shù)0.05 CO2)培養(yǎng),每隔2 d傳代1次。
1.3 實(shí)驗(yàn)分組及處理
將SH-SY5Y細(xì)胞分為對照組(A組)、FAC處理組(B組)、CBE處理組(C組)、FAC和CBE共處理組(D組)。將SH-SY5Y細(xì)胞以2×104/cm2的密度接種于6孔板中,每孔加入1.5 mL的細(xì)胞混懸液。當(dāng)細(xì)胞達(dá)到50%~70%融合時,對照組加入新鮮無血清的培養(yǎng)液;FAC處理組加入100 μmol/L的FAC;CBE處理組則加入100 μmol/L的CBE;FAC和CBE共處理組先加入100 μmol/L的CBE預(yù)孵育30 min,再加入100 μmol/L的FAC。上述各組藥物處理時間均為48 h。
1.4 GCase酶活性的測定
藥物處理48 h后每孔加入100 μL的磷酸鹽緩沖液,于冰上靜置30 min后用刮板刮下細(xì)胞并在細(xì)胞破碎儀中破碎,破碎強(qiáng)度為30%;在4 ℃下以12 000 r/min離心10 min;取2.5 μL的上清,加入5 mmol/L的4-MU-β-GLC 12.5 μL,37 ℃孵育30 min后,加入1 mol/L的甘氨酸緩沖液(pH值=10)終止反應(yīng)。在酶標(biāo)儀上設(shè)定激發(fā)光波長EX=360 nm、發(fā)射光波長Em=460 nm,檢測產(chǎn)物4-甲基傘形酮的含量,以相對熒光單位(RFU)表示,并應(yīng)用BCA蛋白定量試劑盒檢測提取樣品的蛋白濃度(RFU/μg總蛋白)。
1.5 免疫印跡法檢測GCase蛋白表達(dá)
藥物處理48 h后提取蛋白,用BCA蛋白定量試劑盒檢測提取蛋白的濃度,以每孔總蛋白量為20 μg計(jì)算蛋白上樣量,加入Loading Buffer,95 ℃煮5 min。經(jīng)120 g/L的SDS-PAGE凝膠電泳后濕轉(zhuǎn)到0.45 μm 的PVDF膜上,室溫下用100 g/L的脫脂奶粉溶液封閉2 h,再分別加入GCase(1∶1 000)和β-actin(1∶10 000)一抗于4 ℃搖床過夜。第2天用山羊抗兔的HRP-IgG(1∶10 000)孵育1 h后以TBST溶液洗3次,每次10 min,ECL發(fā)光液顯影后用Image J統(tǒng)計(jì)結(jié)果。
1.6 統(tǒng)計(jì)學(xué)處理
應(yīng)用SPSS 22.0軟件進(jìn)行統(tǒng)計(jì)分析,實(shí)驗(yàn)結(jié)果以±s表示,針對FAC和CBE兩種處理因素,采用析因設(shè)計(jì)的方差分析進(jìn)行處理,以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié) ?果
2.1 FAC對GCase活性的影響
析因設(shè)計(jì)方差分析顯示,F(xiàn)AC和CBE這兩種因素對GCase活性的影響不存在交互作用(P>0.05),因此進(jìn)一步分析FAC、CBE主效應(yīng)的結(jié)果是否具有統(tǒng)計(jì)學(xué)意義。100 μmol/L FAC處理SH-SY5Y細(xì)胞48 h后,F(xiàn)AC處理組酶活性較對照組有明顯的下降,差異有統(tǒng)計(jì)學(xué)意義(F=8.191,P<0.05);在CBE處理SH-SY5Y細(xì)胞48 h后,CBE處理組酶活性也較對照組明顯下降,差異有統(tǒng)計(jì)學(xué)意義(F=14.605,P<0.05)。見表1。
2.2 FAC對GCase蛋白表達(dá)的影響
析因設(shè)計(jì)方差分析顯示,F(xiàn)AC和CBE兩種因素不存在交互作用(P>0.05),因此進(jìn)一步分析FAC、CBE主效應(yīng)是否有統(tǒng)計(jì)學(xué)意義。100 μmol/L FAC處理SH-SY5Y細(xì)胞48 h后,F(xiàn)AC處理組蛋白表達(dá)較對照組明顯上調(diào),差異有統(tǒng)計(jì)學(xué)意義(F=4.934,P<0.05);在100 μmol/L CBE處理SH-SY5Y細(xì)胞48 h后,CBE處理組與對照組比較蛋白表達(dá)明顯上調(diào),差異有統(tǒng)計(jì)學(xué)意義(F=4.182,P<0.05)。見表1。
3 討 ?論
PD的發(fā)病機(jī)制迄今未明,研究表明遺傳因素、環(huán)境因素和老化因素均可參與PD中多巴胺能神經(jīng)元的變性死亡過程[17-19]。據(jù)文獻(xiàn)報(bào)道,在PD病人的黑質(zhì)(SN)中鐵的總量隨疾病嚴(yán)重程度的增加而增加[20-23],這些過量的不穩(wěn)定性鐵可通過Fenton反應(yīng)催化產(chǎn)生具有高細(xì)胞毒性的羥自由基[14,22-25],導(dǎo)致細(xì)胞死亡,從而造成疾病的發(fā)生。在GBA突變的PD病人的小腦、殼核、杏仁核、SN中GCase活性降低,其中以SN最明顯。同時,在非GBA突變的散發(fā)性PD病人小腦和SN中GCase活性也明顯下降[26-27]。在6-羥基多巴胺制備的PD大鼠模型中,檢測到SN和紋狀體的GCase活性下降[28]。
本實(shí)驗(yàn)用100 μmol/L FAC、100 μmol/L CBE處理SH-SY5Y多巴胺能神經(jīng)元細(xì)胞系,研究鐵對GCase活性及蛋白表達(dá)的影響。文獻(xiàn)報(bào)道,溶酶體內(nèi)的酶都是水解酶,而且一般最適pH值為5.0,所以都是酸性水解酶[29]。有研究表明,在鐵負(fù)載的細(xì)胞中,溶酶體pH值從5.0增加到5.7,高鐵破壞了細(xì)胞內(nèi)溶酶體的酸性環(huán)境[30]。本研究結(jié)果顯示,在FAC處理SH-SY5Y細(xì)胞48 h后,GCase的活性明顯降低,提示細(xì)胞內(nèi)的高鐵環(huán)境破壞了溶酶體內(nèi)的酸性環(huán)境,從而使GCase的活性降低。而GCase活性的降低可能代償性地引起了GCase蛋白表達(dá)的增加。有關(guān)文獻(xiàn)報(bào)道,神經(jīng)元中加入野生型或者A53T突變的α-突觸核蛋白在降低溶酶體中GCase活性的同時增加了GCase的蛋白表達(dá),α-突觸核蛋白可抑制GCase在細(xì)胞內(nèi)的運(yùn)輸[31]。既往有研究表明,在SH-SY5Y細(xì)胞中,F(xiàn)AC可以誘導(dǎo)α-突觸核蛋白表達(dá)升高[32-33],CBE也可以誘導(dǎo)α-突觸核蛋白表達(dá)升高[34-36]。本實(shí)驗(yàn)加入鐵后細(xì)胞的GCase蛋白表達(dá)明顯升高,推測可能是細(xì)胞內(nèi)高鐵環(huán)境誘導(dǎo)了α-突觸核蛋白表達(dá)升高,升高的α-突觸核蛋白抑制了內(nèi)質(zhì)網(wǎng)中GCase的合成,使其不能折疊成正常的構(gòu)象而無法到達(dá)高爾基體加工成熟,未加工成熟的蛋白不具備酶的活性,因此GCase蛋白的表達(dá)升高,而酶活性降低。本實(shí)驗(yàn)中沒有觀察到FAC與GCase抑制劑兩者的協(xié)同作用(析因設(shè)計(jì)方差分析顯示,F(xiàn)AC、CBE兩種因素之間無交互作用,因此說明FAC與CBE無協(xié)同作用)。
綜上所述,在高鐵環(huán)境下,SH-SY5Y細(xì)胞內(nèi)GCase的活性降低,蛋白的表達(dá)升高。本實(shí)驗(yàn)結(jié)果為進(jìn)一步深入研究GCase在PD發(fā)病中的作用提供了一定的實(shí)驗(yàn)依據(jù)。
[參考文獻(xiàn)]
[1] BLAUWENDRAAT C, REED X, KROHN L, et al. Genetic modifiers of risk and age at onset in GBA associated Parkinsons disease and Lewy body dementia[J]. Brain,2020,143(1):234-248.
[2] LEE A, GILBERT R M. Epidemiology of Parkinson disease[J]. Neurologic Clinics, 2016,34(4):955-965.
[3] TOFFOLI M, SMITH L, SCHAPIRA A H. The biochemical basis of interactions between Glucocerebrosidase and alpha-synuclein in GBA1 mutation carriers[J]. Journal of Neuroche-mistry, 2020. doi:org/10.1111/jnc.14968.
[4] LUNDE K A, CHUNG J, DALEN I, et al. Association of glucocerebrosidase polymorphisms and mutations with dementia in incident Parkinsons disease[J]. Alzheimers & Dementia: the Journal of the Alzheimers Association, 2018,14(10):1293-1301.
[5] NALLS M A, DURAN R, LOPEZ G, et al. A multicenter study of glucocerebrosidase mutations in dementia with Lewy bodies[J]. JAMA Neurology, 2013,70(6):727-735.
[6] DO J, MCKINNEY C, SHARMA P, et al. Glucocerebrosidase and its relevance to Parkinson disease[J]. Molecular Neurodegeneration, 2019,14(1):36-52.
[7] HRUSKA K S, LAMARCA M E, SCOTT C R, et al. Gaucher disease: mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA)[J]. Human Mutation, 2008,29(5):567-583.
[8] LERCHE S, WURSTER I, ROEBEN B, et al. Parkinsons disease: glucocerebrosidase 1 mutation severity is associated with CSF alpha-synuclein profiles[J]. Movement Disorders, 2020,35(3):495-499.
[9] YANG S Y, GEGG M, CHAU D, et al. Glucocerebrosidase activity, cathepsin D and monomeric alpha-synuclein interactions in a stem cell derived neuronal model of a PD associated GBA1 mutation[J]. Neurobiol Dis, 2020,134:104620.
[10] BLANZ J, SAFTIG P. Parkinsons disease: acid-glucocerebrosidase activity and alpha-synuclein clearance[J]. J Neurochem, 2016,139(Suppl 1):198-215.
[11] XILOURI M, BREKK O R, STEFANIS L. Autophagy and alpha-synuclein: relevance to Parkinsons disease and related synucleopathies[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2016,31(2):178-192.
[12] HENDERSON M X, SEDOR S, MCGEARY I, et al. Glucocerebrosidase activity modulates neuronal susceptibility to pathological alpha-synuclein insult[J]. Neuron, 2020,105(5):1-15.
[13] JIANG H, WANG J, ROGERS J, et al. Brain iron metabolism dysfunction in Parkinsons disease[J]. Molecular Neurobiology, 2017,54(4):3078-3101.
[14] DE FARIAS C C, MAES M, BONIFACIO K L, et al. Parkinsons disease is accompanied by intertwined alterations in iron metabolism and activated immune-inflammatory and oxidative stress pathways[J]. CNS & Neurological Disorders-Drug Targets, 2017,16(4):484-491.
[15] LAN A P, CHEN J, CHAI Z F, et al. The neurotoxicity of iron, copper and cobalt in Parkinsons disease through ROS-mediated mechanisms[J]. Bio Metals, 2016,29(4):665-678.
[16] YANG W S, SRIRAMARATNAM R, WELSCH M E, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014,156(1/2):317-331.
[17] DENG H, WANG P, JANKOVIC J. The genetics of Parkinson disease[J]. Ageing Res Rev, 2018,42:72-85.
[18] TRANCHANT C. Introduction and classical environmental risk factors for Parkinson[J]. Revue Neurologique, 2019,175(10):650-651.
[19] CHESNOKOVA A Y, EKIMOVA I V, PASTUKHOV Y F. Parkinsons disease and aging[J]. Adv Gerontol, 2018,31(5):668-678.
[20] BERGSLAND N, ZIVADINOV R, SCHWESER F, et al. Ventral posterior substantia nigra iron increases over 3 years in Parkinsons disease[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2019,34(7):1006-1013.
[21] YU Shuyang, CAO Chenjie, ZUO Lijun, et al. Clinical features and dysfunctions of iron metabolism in Parkinson disease patients with hyper echogenicity in substantia nigra: a cross-sectional study[J]. BMC Neurology, 2018,18(1):9-17.
[22] WYPIJEWSKA A, GALAZKA-FRIEDMAN J, BAUMIN-GER E R, et al. Iron and reactive oxygen species activity in Parkinsonian substantia nigra[J]. Parkinsonism & Related Disorders, 2010,16(5):329-333.
[23] BELAIDI A A, BUSH A I. Iron neurochemistry in Alzheimers disease and Parkinsons disease: targets for therapeutics[J]. J Neurochem, 2016,139(Suppl 1):179-197.
[24] GOZZELINO R, AROSIO P. Iron homeostasis in health and disease[J]. International Journal of Molecular Sciences, 2016,17(1):130-144.
[25] SUN Y, PHAM A N, WAITE T D. The effect of vitamin C and iron on dopamine-mediated free radical generation: implications to Parkinsons disease[J]. Dalton Transactions (Cambridge, England:2003), 2018,47(12):4059-4069.
[26] GEGG M E, BURKE D, HEALES S J, et al. Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains[J]. Annals of Neurology, 2012,72(3):455-463.
[27] MURPHY K E, GYSBERS A M, ABBOTT S K, et al. Reduced glucocerebrosidase is associated with increased alpha-synuclein in sporadic Parkinsons disease[J]. Brain, 2014,137(Pt 3):834-848.
[28] MISHRA A, CHANDRAVANSHI L P, TRIGUN S K, et al. Ambroxol modulates 6-hydroxydopamine-induced temporal reduction in glucocerebrosidase (GCase) enzymatic activity and Parkinsons disease symptoms[J]. Biochem Pharmacol, 2018,155:479-493.
[29] LUZIO J P, PRYOR P R, BRIGHT N A. Lysosomes: fusion and function[J]. Nature Reviews. Molecular Cell Biology, 2007,8(8):622-632.
[30] KAO J K, WANG S C, HO L W, et al. Chronic iron overload results in impaired bacterial killing of THP-1 derived macrophage through the inhibition of lysosomal acidification[J]. PLoS One, 2016,11(5):e0156713.
[31] MAZZULLI J R, XU Y H, SUN Y, et al. Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies[J]. Cell, 2011,146(1):37-52.
[32] WANG R, WANG Y, QU L, et al. Iron-induced oxidative stress contributes to alpha-synuclein phosphorylation and up-regulation via polo-like kinase 2 and casein kinase 2[J]. Neurochem Int, 2019,125:127-135.
[33] GANGULY U, BANERJEE A, CHAKRABARTI S S, et al. Interaction of alpha-synuclein and Parkin in iron toxicity on SH-SY5Y cells: implications in the pathogenesis of Parkinsons disease[J]. Biochemical Journal, 2020. doi:org/10.1042/BCJ20190676.
[34] ROCHA E M, SMITH G A, PARK E, et al. Sustained systemic glucocerebrosidase inhibition induces brain alpha-synuclein aggregation, microglia and complement C1q activation in mice[J]. Antioxidants & Redox Signaling, 2015,23(6):550-564.
[35] XU YH, SUN Y, RAN H, et al. Accumulation and distribution of alpha-synuclein and ubiquitin in the CNS of Gaucher disease mouse models[J]. Mol Genet Metab, 2011,102(4):436-447.
[36] MANNING-BOG A B, SCHULE B, LANGSTON J W. Alpha-synuclein-glucocerebrosidase interactions in pharmacological Gaucher models: a biological link between Gaucher disease and Parkinsonism[J]. Neurotoxicology, 2009,30(6):1127-1132.
(本文編輯 馬偉平)