于小淇 謝俊霞 徐華敏
[摘要] 目的 探討枸櫞酸鐵銨(FAC)處理對(duì)原代培養(yǎng)的小膠質(zhì)細(xì)胞M1亞型標(biāo)志物CD86及M2亞型標(biāo)志物CD206表達(dá)的影響。方法 FAC處理原代培養(yǎng)的小膠質(zhì)細(xì)胞24 h后,應(yīng)用蛋白質(zhì)免疫印跡(Western Blot)方法檢測(cè)小膠質(zhì)細(xì)胞內(nèi)CD86和CD206的表達(dá)。結(jié)果 FAC處理小膠質(zhì)細(xì)胞24 h后,M1亞型的標(biāo)志物CD86的表達(dá)明顯降低,而M2亞型的標(biāo)志物CD206的表達(dá)明顯升高,與對(duì)照組相比差異均有統(tǒng)計(jì)學(xué)意義(t=2.160、3.543,P<0.05)。結(jié)論 高鐵能夠?qū)⑿∧z質(zhì)細(xì)胞激活為抗炎性的M2表型。
[關(guān)鍵詞] 帕金森病;鐵;小神經(jīng)膠質(zhì)細(xì)胞;B7-2抗原;CD206抗原
[中圖分類號(hào)] R338.2 ?[文獻(xiàn)標(biāo)志碼] A ?[文章編號(hào)] 2096-5532(2020)02-0147-03
doi:10.11712/jms.2096-5532.2020.56.061 [開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[網(wǎng)絡(luò)出版] http://kns.cnki.net/kcms/detail/37.1517.R.20200407.0943.009.html;2020-04-08 09:48
[ABSTRACT] Objective To investigate the effect of ferric ammonium citrate (FAC) on the expression of M1 subtype marker CD86 and M2 subtype marker CD206 in primary cultured microglia. ?Methods Primary cultured microglial cells were treated with FAC for 24 h, and Western Blot was performed to determine the expression levels of CD86 and CD206. ?ResultsFAC treatment (24 h) significantly decreased the expression of CD86 and significantly increased the expression of CD206 in the primary cultured microglial cells compared with the control group (t=2.160,3.543;P<0.05). ?Conclusion High level of iron can activate microglia into an anti-inflammatory M2 phenotype.
[KEY WORDS] Parkinson disease; iron; microglia; B7-2 antigen; CD206 antigen
作為第二大最常見(jiàn)的神經(jīng)退行性疾病——帕金森?。≒D)的癥狀主要包括靜止性震顫、運(yùn)動(dòng)遲緩等運(yùn)動(dòng)癥狀[1-4]。越來(lái)越多的證據(jù)表明,黑質(zhì)(SN)區(qū)鐵的過(guò)度沉積是PD發(fā)病的關(guān)鍵因素之一[5-7]。小膠質(zhì)細(xì)胞是駐留在中樞神經(jīng)系統(tǒng)中的最豐富的免疫細(xì)胞,與神經(jīng)元在生理和功能上都存在緊密的聯(lián)系[8],在生理和病理?xiàng)l件下表現(xiàn)出廣泛的功能。研究發(fā)現(xiàn),在病理狀態(tài)下,小膠質(zhì)細(xì)胞可由靜止?fàn)顟B(tài)轉(zhuǎn)變?yōu)榧せ顮顟B(tài)并遷移到損傷部位,分泌促炎或抗炎的細(xì)胞因子,減弱或加劇損傷[9]。當(dāng)大腦受到缺血損傷后,大量小膠質(zhì)細(xì)胞迅速激活并轉(zhuǎn)化為兩種不同的激活亞型,即M1型和M2型[10-15]。但高鐵對(duì)小膠質(zhì)細(xì)胞激活狀態(tài)的影響目前尚不明確。本實(shí)驗(yàn)旨在研究高鐵狀態(tài)下小膠質(zhì)細(xì)胞的激活亞型,以闡明高鐵在小膠質(zhì)細(xì)胞激活中的作用。
1 材料與方法
1.1 實(shí)驗(yàn)材料
原代培養(yǎng)的小膠質(zhì)細(xì)胞(從大鼠乳鼠中腦內(nèi)獲?。?,DMEM/F12基礎(chǔ)培養(yǎng)液、胰酶(美國(guó)Hyclone公司),胎牛血清(FBS,美國(guó)Gibco公司),青霉素-鏈霉素溶液(100×,中國(guó)北京索萊寶科技有限公司),枸櫞酸鐵胺(FAC)、D-多聚賴氨酸(美國(guó)Sigma公司),ECL發(fā)光液(Millipore公司),CD86抗體和CD206抗體(美國(guó)R&D System公司)。
1.2 原代小膠質(zhì)細(xì)胞的培養(yǎng)
實(shí)驗(yàn)前高壓滅菌實(shí)驗(yàn)器具。150 cm2細(xì)胞培養(yǎng)瓶用D-多聚賴氨酸處理過(guò)夜,再用高壓滅菌后的去離子水洗3次備用。取2個(gè)玻璃培養(yǎng)皿,加入基礎(chǔ)培養(yǎng)液(蓋過(guò)底部即可),置于冰上。將乳鼠斷頸,用眼科鑷剝?nèi)≈心X置于培養(yǎng)皿中,眼科剪剪碎后,用移液槍將中腦組織塊輕輕吹打至消散,將其吸至離心管中,以1 000 r/min離心5 min。棄上清,用完全培養(yǎng)液重懸沉淀,接種于培養(yǎng)瓶中,置于37 ℃、含體積分?jǐn)?shù)0.05 CO2的培養(yǎng)箱中培養(yǎng)。細(xì)胞培養(yǎng)7 d后,將細(xì)胞培養(yǎng)瓶封口后固定在空氣浴恒溫?fù)u床上,以230 r/min劇烈震蕩2 h。取上清培養(yǎng)液至離心管中,以1 000 r/min離心5 min。棄上清,加入完全培養(yǎng)液重懸沉淀,接種到孔板或培養(yǎng)瓶中。
1.3 實(shí)驗(yàn)分組及處理
實(shí)驗(yàn)分為對(duì)照組和FAC處理組。將原代培養(yǎng)的小膠質(zhì)細(xì)胞接種于6孔板中,每孔1.5 mL細(xì)胞懸液;第2天分組處理細(xì)胞,將兩組細(xì)胞培養(yǎng)液均換成基礎(chǔ)培養(yǎng)液,F(xiàn)AC處理組加用FAC(100 μmol/L)處理,置于37 ℃、含體積分?jǐn)?shù)0.05 CO2的培養(yǎng)箱中孵育24 h。
1.4 蛋白質(zhì)免疫印跡(Western Blot)檢測(cè)
將6孔板每孔加入80 μL蛋白裂解液,冰上裂解30 min,用刮板刮下貼附在板底的小膠質(zhì)細(xì)胞,用移液槍移入預(yù)先標(biāo)記好的EP管中,在4 ℃下以12 000 r/min離心20 min,吸取上清至另一個(gè)EP管中,用BCA試劑盒檢測(cè)蛋白濃度,加入Loading Buffer,95 ℃煮5 min。SDS-PAGE電泳之后轉(zhuǎn)至PVDF膜上,室溫下用50 g/L脫脂奶粉封閉目的條帶2 h后,分別加入CD206、CD86和β-actin的一抗,于4 ℃搖床上孵育過(guò)夜。用TBST洗3次,每次10 min,再用對(duì)應(yīng)的山羊抗兔的二抗室溫孵育1 h,最后以TBST洗3次后應(yīng)用ECL發(fā)光液底物避光孵育1 min,顯影。用Image J軟件進(jìn)行分析,結(jié)果以目的條帶與內(nèi)參條帶灰度值之比表示。
1.5 統(tǒng)計(jì)學(xué)處理
應(yīng)用SPSS 17.0軟件進(jìn)行統(tǒng)計(jì)學(xué)處理,實(shí)驗(yàn)結(jié)果以±s表示,兩獨(dú)立樣本比較采用Students t檢驗(yàn),以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié) ?果
2.1 FAC對(duì)小膠質(zhì)細(xì)胞CD86蛋白表達(dá)的影響
FAC處理組和對(duì)照組細(xì)胞內(nèi)CD86蛋白表達(dá)水平分別為1.557±0.336和2.272±0.517(n=6),F(xiàn)AC處理組較對(duì)照組明顯降低,差異有統(tǒng)計(jì)學(xué)意義(t=2.160,P<0.05)。
2.2 FAC對(duì)小膠質(zhì)細(xì)胞CD206蛋白表達(dá)的影響
FAC處理組和對(duì)照組細(xì)胞內(nèi)CD206蛋白表達(dá)水平分別為0.538±0.074和0.367±0.039(n=6),F(xiàn)AC處理組CD206的表達(dá)水平明顯高于對(duì)照組,差異有統(tǒng)計(jì)學(xué)意義(t=3.543,P<0.05)。
3 討 ?論
PD是世界第二大常見(jiàn)的神經(jīng)退行性疾病,但迄今為止,其病因尚不明確。研究表明,環(huán)境因素、遺傳因素、年齡老化、氧化應(yīng)激均可能參與了PD的發(fā)病[5,16-21]。尸檢發(fā)現(xiàn),PD病人腦內(nèi)SN有大量的鐵沉積[6-7]。SN鐵的異常沉積,可以導(dǎo)致腦內(nèi)鐵代謝紊亂,是PD發(fā)病的關(guān)鍵病因之一[5,16-21]。神經(jīng)退行性疾病的病理特征是神經(jīng)變性,而小膠質(zhì)細(xì)胞的活化通常與神經(jīng)變性有關(guān)[22-25]。在生理?xiàng)l件下,小膠質(zhì)細(xì)胞雙向信號(hào)對(duì)于神經(jīng)回路的信息傳導(dǎo)尤為重要,介導(dǎo)各種腦功能,例如突觸可塑性[26-28]。在PD病理狀態(tài)下,小膠質(zhì)細(xì)胞可以由靜止?fàn)顟B(tài)轉(zhuǎn)變?yōu)榧せ顮顟B(tài)并遷移到損傷部位,而從靜止?fàn)顟B(tài)到激活狀態(tài)的轉(zhuǎn)變需要復(fù)雜的調(diào)控機(jī)制,以嚴(yán)格調(diào)控小膠質(zhì)細(xì)胞的激活[29]。不同的靶標(biāo)和受體可能以不同的方式調(diào)節(jié)小膠質(zhì)細(xì)胞的激活狀態(tài),以減弱或加劇神經(jīng)元的損傷[8,30-31]。
本實(shí)驗(yàn)以從出生24 h內(nèi)大鼠中腦提取并培養(yǎng)成熟的小膠質(zhì)細(xì)胞作為實(shí)驗(yàn)對(duì)象,用高濃度的FAC處理小膠質(zhì)細(xì)胞來(lái)制備高鐵模型,以還原PD病人腦內(nèi)高鐵環(huán)境對(duì)小膠質(zhì)細(xì)胞的刺激,觀察小膠質(zhì)細(xì)胞的激活狀態(tài),從而確定高鐵環(huán)境對(duì)小膠質(zhì)細(xì)胞激活狀態(tài)的影響。CD86為小膠質(zhì)細(xì)胞M1型的標(biāo)記物,其表達(dá)增加提示小膠質(zhì)細(xì)胞被激活為促炎狀態(tài),而CD206則是小膠質(zhì)細(xì)胞M2型的標(biāo)記物,其表達(dá)增加則提示小膠質(zhì)細(xì)胞被激活為抗炎狀態(tài)。本實(shí)驗(yàn)結(jié)果顯示,在高鐵環(huán)境下,原代培養(yǎng)的小膠質(zhì)細(xì)胞內(nèi)的CD86表達(dá)較對(duì)照組明顯降低,而CD206表達(dá)水平明顯高于對(duì)照組,差異具有統(tǒng)計(jì)學(xué)意義。提示在高鐵環(huán)境下,小膠質(zhì)細(xì)胞被激活為M2狀態(tài),可能在保護(hù)神經(jīng)元免受外界損傷中發(fā)揮抗炎作用。本研究結(jié)果為鐵在調(diào)控小膠質(zhì)細(xì)胞激活狀態(tài)中的作用提供了新的證據(jù)。
[參考文獻(xiàn)]
[1] KANSARA S, TRIVEDI A, CHEN S, et al. Early diagnosis and therapy of Parkinsons disease: can disease progression be curbed[J]? Journal of Neural Transmission (Vienna, Austria:1996), 2013,120(1):197-210.
[2] BARNETT R. Parkinsons disease[J]. Lancet, 2016,387(10015):217.
[3] GRAYSON M. Parkinsons disease[J]. Nature, 2016,538(7626):S1.
[4] KLIETZ M, SCHNUR T, DREXEL S, et al. Association of motor and cognitive symptoms with health-related quality of life and caregiver burden in a German cohort of advanced Parkinsons disease patients[J]. Parkinsons Dis, 2020,2020:1-8.
[5] COOKSON M R. The biochemistry of Parkinsons disease[J]. Annual Review of Biochemistry, 2005,74(1):29-52.
[6] DE FARIAS C C, MAES M, BONIFACIO K L, et al. Parkinsons disease is accompanied by intertwined alterations in iron metabolism and activated immune-inflammatory and oxidative stress pathways[J]. CNS & Neurological Disorders-Drug Targets, 2017,16(4):484-491.
[7] JIANG H, WANG J, ROGERS J, et al. Brain iron metabolism dysfunction in Parkinsons disease[J]. Molecular Neurobiology, 2017,54(4):3078-3101.
[8] WOLF S A, BODDEKE H W, KETTENMANN H. Microglia in physiology and disease[J]. Annual Review of Physiology, 2017,79(1):619-643.
[9] HO M S. Microglia in Parkinsons disease[J]. Adv Exp Med Biol, 2019,1175:335-353.
[10] WYSS-CORAY T, MUCKE L. Inflammation in neurodege-nerative disease—a double-edged sword[J]. Neuron, 2002,35(3):419-432.
[11] HANISCH U K. Functional diversity of microglia-how heterogeneous are they to begin with[J]? Front Cell Neurosci, 2013,7(65):65.
[12] KIM C C, NAKAMURA M C, HSIEH C L, et al. Brain trauma elicits non-canonical macrophage activation states[J]. Journal of Neuroinflammation, 2016,13(1):117.
[13] MORGANTI J M, RIPARIP L K, ROSI S, et al. Call off the dog(ma): M1/M2 polarization is concurrent following traumatic brain injury[J]. PLoS One, 2016,11(1):e0148001.
[14] TANG Yu, LE Weidong. Differential roles of M1 and M2 microglia in neurodegenerative diseases[J]. Mol Neurobiol, 2016,53(2):1181-1194.
[15] YANG Xiaodong, XU Shaoqing, QIAN Yiwei, et al. Resveratrol regulates microglia M1/M2 polarization via PGC-1alpha in conditions of neuroinflammatory injury[J]. Brain Behav Immun, 2017,64:162-172.
[16] RANSOHOFF R M. A polarizing question: do M1 and M2 microglia exist[J]? Nature Neuroscience, 2016,19(8):987-991.
[17] FLEMING S M. Mechanisms of gene-environment interactions in Parkinsons disease[J]. Curr Environ Health Rep, 2017,4(2):192-199.
[18] REEVE A, SIMCOX E, TURNBULL D. Ageing and Parkinsons disease: why is advancing age the biggest risk factor[J]? Ageing Research Reviews, 2014,14(100):19-30.
[19] DAUER W, PRZEDBORSKI S. Parkinsons disease: mechanisms and models[J]. Neuron, 2003,39(6):889-909.
[20] SHULMAN J M, DE JAGER P L, FEANY M B. Parkin-eurosons disease: genetics and pathogenesis[J]. Annu Rev Pathol, 2011,6:193-222.
[21] BRAAK H, DEL TREDICI K, RB U, et al. Staging of brain pathology related to sporadic Parkinsons disease[J]. Neuro-biology of Aging, 2002,24(2):197-211.
[22] SULZER D. Multiple hit hypotheses for dopamine neuron loss in Parkinsons disease[J]. Trends in Neurosciences, 2007,30(5):244-250.
[23] WANG Ruili, LI Qing, HE Ya, et al. MiR-29c-3p inhibits microglial NLRP3 inflammasome activation by targeting NFAT5 in Parkinsons disease[J]. Genes Cells, 2020. doi:10.1111/gtc.12764.
[24] WANG Le, GONG Xiaoli, LIU Yang, et al. CD200 maintains the region-specific phenotype of microglia in the midbrain and its role in Parkinsons disease[J]. Glia, 2020. doi:10.1002/glia.23811.
[25] CHENG Jinbo, LIAO Yajin, DONG Yuan, et al. Microglial autophagy defect causes Parkinson disease-like symptoms by accelerating inflammasome activation in mice[J]. Autophagy, 2020. doi:10.1080/15548627.2020.1719723.
[26] ZHAN Y, PAOLICELLI R, SFORAZZINI F, et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior[J]. Nature Neuroscience, 2014,17(3):400-406.
[27] SCHAFER D P, LEHRMAN E K, KAUTZMAN A G, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner[J]. Neuron, 2012,74(4):691-705.
[28] PAOLICELLI R C, BOLASCO G, PAGANI F, et al. Synaptic pruning by microglia is necessary for normal brain development[J]. Science, 2011,333(648):1456-1458.
[29] JOERS V, TANSEY M G, MULAS G, et al. Microglial phenotypes in Parkinsons disease and animal models of the di-sease[J]. Prog Neurobiol, 2017,155:57-75.
[30] HANISCH U K, KETTENMANN H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain[J]. Nature Neuroscience, 2007,10(11):1387-1394.
[31] SIERRA A, ABIEGA O, SHAHRAZ A, et al. Janus-faced microglia: beneficial and detrimental consequences of microg-lial phagocytosis[J]. Front Cell Neurosci, 2013,7:6.
(本文編輯 馬偉平)