国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

小麥、玉米兩熟秸稈還田土壤中6種有機(jī)酸對(duì)小麥紋枯病的化感作用

2020-08-15 02:35趙緒生齊永志閆翠梅甄文超
關(guān)鍵詞:化感甲氧基苯甲酸

趙緒生,齊永志,閆翠梅,甄文超

小麥、玉米兩熟秸稈還田土壤中6種有機(jī)酸對(duì)小麥紋枯病的化感作用

趙緒生1,2,齊永志1,2,閆翠梅1,2,甄文超2,3,4

(1河北農(nóng)業(yè)大學(xué)植物保護(hù)學(xué)院,河北保定 071001;2省部共建華北作物改良與調(diào)控國(guó)家重點(diǎn)實(shí)驗(yàn)室,河北保定 071001;3河北農(nóng)業(yè)大學(xué)農(nóng)學(xué)院, 河北保定 071001;4河北省作物生長(zhǎng)調(diào)控重點(diǎn)實(shí)驗(yàn)室,河北保定 071001)

【】冬小麥、夏玉米一年兩熟是中國(guó)北方最廣泛的農(nóng)作制度,中國(guó)北方小麥、玉米生產(chǎn)普遍采用秸稈還田的耕作方式,關(guān)于秸稈還田對(duì)小麥土傳病害的影響一直存在爭(zhēng)議。通過(guò)分析不同秸稈還田年限地塊耕層土壤中的主要有機(jī)酸對(duì)小麥幼苗生長(zhǎng)、禾谷絲核菌()及紋枯病發(fā)生的化感作用,明確我國(guó)北方冬小麥、夏玉米一年兩熟種植體系下秸稈還田對(duì)小麥紋枯病發(fā)生的影響。利用GC-MS技術(shù)分析玉米秸稈還田地塊耕層土壤乙酸乙酯提取物中化學(xué)物質(zhì)的種類與含量,并分別用氯化三苯基四氮唑(TTC)還原法、電導(dǎo)率法、氮藍(lán)四唑光化(NBT)還原法和愈創(chuàng)木酚比色法測(cè)定含量較高的6種有機(jī)酸對(duì)小麥幼苗根系活力、根系細(xì)胞膜透性、超氧化物歧化酶(SOD)和過(guò)氧化物酶(POD)活性的影響,用常規(guī)方法測(cè)定其對(duì)禾谷絲核菌和紋枯病發(fā)生的影響。秸稈還田地塊耕層土壤中含有機(jī)酸、烷烴、醇、酰胺及醛類等化學(xué)物質(zhì),相對(duì)含量分別為45.45%、17.70%、17.08%、6.12%和5.44%;含量較高的有機(jī)酸類物質(zhì)包括鄰羥基苯甲酸(9.24%)、3-苯基-2-丙烯酸(4.12%)、對(duì)羥基苯甲酸(3.21%)、4-羥基-3,5-二甲氧基苯甲酸(2.26%)、二十一烷酸(1.88%)、4-甲氧基鄰氨基苯甲酸(1.73%)、8-十八碳烯酸(0.76%)和3-(4-羥基-3-甲氧基苯基)-2-丙烯酸(0.52%)。0.08—10.0 μg·mL-1濃度的4-甲氧基鄰氨基苯甲酸和3-(4-羥基-3-甲氧基苯基)-2-丙烯酸對(duì)禾谷絲核菌的菌絲生長(zhǎng)(10.0 μg·mL-14-甲氧基鄰氨基苯甲酸除外)、菌絲干重和菌核數(shù)量均表現(xiàn)明顯促進(jìn)作用,且2種物質(zhì)在土壤中的含量均隨秸稈還田年限延長(zhǎng)呈增多趨勢(shì)。0.4和0.08μg·mL-1鄰羥基苯甲酸對(duì)禾谷絲核菌的菌絲生長(zhǎng)和菌核形成有明顯促進(jìn)作用;而50.0 μg·mL-1鄰羥基苯甲酸和4-羥基-3-甲氧基-苯甲酸,以及0.4—50.0μg·mL-1苯甲酸均表現(xiàn)為抑制作用。在2.0—50.0 μg·mL-1濃度范圍內(nèi),隨著6種有機(jī)酸濃度的提高,其對(duì)小麥幼苗生長(zhǎng)的抑制作用越強(qiáng),對(duì)羥基苯甲酸抑制作用最強(qiáng),其次是鄰羥基苯甲酸,4-甲氧基鄰氨基苯甲酸最弱。0.4—50.0 μg·mL-1濃度的3-(4-羥基-3-甲氧基苯基)-2-丙烯酸、4-甲氧基鄰氨基苯甲酸、鄰羥基苯甲酸和對(duì)羥基苯甲酸均加重小麥紋枯病發(fā)生,其中,3-(4-羥基-3-甲氧基苯基)-2-丙烯酸助長(zhǎng)作用最強(qiáng),發(fā)病率和病情指數(shù)最高增幅分別達(dá)49.0%和46.7%;而苯甲酸和4-羥基-3-甲氧基-苯甲酸對(duì)小麥紋枯病發(fā)生無(wú)顯著影響。冬小麥、夏玉米一年兩熟秸稈還田土壤中含有機(jī)酸、酯、烴、酰胺及醛類等化學(xué)物質(zhì),有機(jī)酸類物質(zhì)相對(duì)含量最高。3-(4-羥基-3-甲氧基苯基)-2-丙烯酸、4-甲氧基鄰氨基苯甲酸、鄰羥基苯甲酸和對(duì)羥基苯甲酸在一定濃度下均可助長(zhǎng)小麥紋枯病的發(fā)生,其中3-(4-羥基-3-甲氧基苯基)-2-丙烯酸助長(zhǎng)作用最強(qiáng),而苯甲酸和4-羥基-3-甲氧基-苯甲酸對(duì)紋枯病發(fā)生無(wú)明顯影響。還田秸稈在土壤中腐解產(chǎn)生的有機(jī)酸類物質(zhì)促進(jìn)病原菌生長(zhǎng)、抑制小麥根系生理活性和生長(zhǎng)的化感作用,可能是中國(guó)北方小麥、玉米兩熟秸稈還田條件下小麥紋枯病加重發(fā)生的主要原因之一。

秸稈還田;小麥紋枯??;禾谷絲核菌;GC-MS;化感作用;有機(jī)酸

0 引言

【研究意義】冬小麥、夏玉米一年兩熟是中國(guó)北方最廣泛的農(nóng)作制度。自1990年以來(lái),中國(guó)北方小麥-玉米一年兩熟區(qū)普遍采用秸稈還田的耕作方式,每年秸稈還田面積約1 100萬(wàn)公頃。秸稈還田不僅有利于提高土壤有機(jī)質(zhì)含量、調(diào)節(jié)土壤溫濕度、提高生產(chǎn)效率,還能減少因焚燒秸稈造成的環(huán)境污染[1-2]。但近年來(lái)發(fā)現(xiàn),由禾谷絲核菌()引起的小麥紋枯病(wheat sheath blight,WSB)在長(zhǎng)期秸稈還田地塊呈加重趨勢(shì)[3-5],已成為中國(guó)北方小麥優(yōu)質(zhì)、高產(chǎn)的重要限制因素[6-9]。據(jù)統(tǒng)計(jì),近十年來(lái),小麥紋枯病在河南、山東、河北3省麥區(qū)每年發(fā)生總面積高達(dá)150萬(wàn)公頃以上,一般發(fā)病地塊減產(chǎn)5%—30%,嚴(yán)重地塊減產(chǎn)超過(guò)50%[7-9]。關(guān)于秸稈還田對(duì)小麥土傳病害的影響一直存在爭(zhēng)議,明確秸稈還田與當(dāng)前小麥紋枯病發(fā)生加重的相關(guān)性,可為小麥紋枯病綜合防控提供參考?!厩叭搜芯窟M(jìn)展】有研究者認(rèn)為還田秸稈為小麥土傳病原菌存活、增殖營(yíng)造了適宜的生態(tài)環(huán)境條件,進(jìn)而提高了病原菌基數(shù),最終導(dǎo)致土傳病害重發(fā)[10-12]。但是,秸稈還田也可提高土壤有機(jī)質(zhì)含量,增加土壤中拮抗菌數(shù)量,增強(qiáng)作物抗病性,從而抑制病害發(fā)生[13-14]。Chou等[15]研究表明,腐熟稻渣中檢測(cè)出對(duì)羥基苯甲酸等5種有機(jī)物質(zhì),該類物質(zhì)對(duì)水稻和萵苣種子的胚根生長(zhǎng)有顯著抑制作用;張玉銘等[16]研究發(fā)現(xiàn),在播種后第5—10天覆蓋麥秸釋放出的水溶性毒素(化感物質(zhì))對(duì)玉米幼苗生長(zhǎng)的抑制作用最強(qiáng)。玉米秸稈對(duì)小麥幼苗的相克作用最強(qiáng),但對(duì)大豆幼苗生長(zhǎng)的他感相生和玉米幼苗的自感相生作用次之;小麥秸稈覆蓋后釋放的化感物質(zhì)能抑制玉米株高、干重、根干重等生物指標(biāo)[17]。筆者所在實(shí)驗(yàn)室前期研究發(fā)現(xiàn),盆栽條件下,澆灌0.12—0.48 g·mL-1的玉米秸稈腐解液,顯著加重了紋枯病發(fā)病程度;GC-MS分析發(fā)現(xiàn)玉米秸稈腐解物中苯甲酸衍生物和鄰苯二甲酸酯類物質(zhì)相對(duì)含量較高[18]?!颈狙芯壳腥朦c(diǎn)】基于小麥、玉米兩熟秸稈還田地區(qū)小麥紋枯病呈現(xiàn)加重趨勢(shì)的生產(chǎn)現(xiàn)實(shí)問(wèn)題,以秸稈還田土壤中主要有機(jī)化學(xué)物質(zhì)對(duì)小麥紋枯病的化感作用為切入點(diǎn),明確秸稈還田麥區(qū)紋枯病重發(fā)機(jī)制[19-20]?!緮M解決的關(guān)鍵問(wèn)題】利用GC-MS技術(shù)分析不同秸稈還田年限地塊耕層土壤中的主要化學(xué)物質(zhì)成分,通過(guò)模擬試驗(yàn)測(cè)定相對(duì)含量較高的6種有機(jī)酸對(duì)小麥幼苗生長(zhǎng)、禾谷絲核菌生長(zhǎng)及紋枯病發(fā)生的化感作用,明確秸稈還田與小麥紋枯病重發(fā)的相關(guān)性,為小麥紋枯病綜合防控提供科學(xué)依據(jù)。

1 材料與方法

1.1 小麥、玉米兩熟秸稈還田土壤中有機(jī)化學(xué)物質(zhì)的GC-MS分析

試驗(yàn)區(qū)在河北農(nóng)業(yè)大學(xué)望都試驗(yàn)基地(E115°05′,N38°39′)。試驗(yàn)地為壤土、肥力中等。采用小麥、玉米一年兩熟秸稈還田種植方式,每年收獲玉米后,秸稈粉碎還田,并旋耕至0—20 cm土層;小麥?zhǔn)斋@后,秸稈粉碎還田,覆蓋于土壤表面。該地塊2008—2010年小麥紋枯病發(fā)病較重。2011—2018年,每年10月上旬播種小麥,品種為良星66(國(guó)審麥2008010),播量225 kg·hm-2,行距15 cm,播深4—5 cm。底肥施120 kg·hm-2N,135 kg·hm-2P2O5和105 kg·hm-2K2O。12月上旬灌溉一次,次年3月下旬追肥(120 kg·hm-2N)并第二次灌溉,灌溉量均為600 m3·hm-2。6月中旬播種玉米,品種為鄭單958(國(guó)審玉20000009),密度69 000株/hm2,行距60 cm。隨播種施225 kg·hm-2N,135 kg·hm-2P2O5和105 kg·hm-2K2O。播后灌水600 m3·hm-2。

分別于2012、2015和2018年小麥拔節(jié)期(紋枯病發(fā)生高峰期),每年隨機(jī)選取12個(gè)樣點(diǎn),用直徑5 cm土鉆在小麥根系周圍取0—20 cm土壤,混勻過(guò)40目篩后,用四分法取200 g土壤樣品;然后用乙酸乙酯按質(zhì)量體積比1﹕1萃取3次,合并萃取液,室溫下減壓濃縮至2 mL后冷干;再加入250 μL硅烷化試劑(BSTFA﹕吡啶=5﹕1),并在80℃水浴2 h,得耕層土壤提取液;提取液經(jīng)0.45 μm濾膜過(guò)濾后利用質(zhì)譜聯(lián)機(jī)(Agilent 7890A/5975C GCMS,USA)進(jìn)行分析[18]。

色譜分析條件:毛細(xì)管柱(HP-5,Crosslinked 5% pH ME Siloxanle,30 m×0.25 mm×0.25 μm)進(jìn)樣口溫度250℃;程序升溫:柱溫50℃(2 min),以6℃·min-1程序升溫至250℃(保持15 min);載氣:He;流速:1.0 ml·min-1。質(zhì)譜條件:EI源(電子轟擊源);轟擊電壓70 eV;掃描范圍m/z:30—600;掃描速度0.2 s掃全程;離子源溫度:200℃;四極桿溫度:150℃。

1.2 6種有機(jī)酸對(duì)禾谷絲核菌的化感效應(yīng)測(cè)定

根據(jù)1.1中所測(cè)主要有機(jī)酸及其含量,選取4-甲氧基鄰氨基苯甲酸、3-(4-羥基-3-甲氧基苯基)-2-丙烯酸、4-羥基-3-甲氧基-苯甲酸、鄰羥基苯甲酸、苯甲酸和對(duì)羥基苯甲酸6種有機(jī)酸(購(gòu)自Sigma公司),分別定量稱取,用無(wú)菌水充分溶解后配制成500 μg·mL-1母液;母液用無(wú)菌水依次稀釋至100、20、4和0.8 μg·mL-1,再經(jīng)0.22 μm濾膜過(guò)濾;取6 mL濾液加入含有54 mL 50℃ PDA培養(yǎng)基的三角瓶中,搖勻得含有機(jī)酸分別為50.0、10.0、2.0、0.4和0.08 μg·mL-1的培養(yǎng)基,并倒入直徑為9 cm培養(yǎng)皿中,每皿15 mL,以加入等體積無(wú)菌水為對(duì)照,每種有機(jī)酸每濃度4次重復(fù),每重復(fù)4皿。

無(wú)菌條件下,分別在已培養(yǎng)3 d的禾谷絲核菌(RHD1205,河北農(nóng)業(yè)大學(xué)植物病害生態(tài)學(xué)研究室提供)菌落邊緣打制直徑0.5 cm菌餅,將菌餅轉(zhuǎn)接到上述含不同有機(jī)酸、鋪有無(wú)菌玻璃紙的培養(yǎng)基上,25℃黑暗倒置培養(yǎng)。在菌落未長(zhǎng)滿培養(yǎng)皿前,采用十字交叉法測(cè)量各處理菌落直徑;黑暗培養(yǎng)21 d后統(tǒng)計(jì)每皿禾谷絲核菌形成菌核數(shù)量,并于80℃條件下烘干至恒重;用無(wú)菌鑷子將菌絲從玻璃紙上刮下,稱其鮮重后放入80℃鼓風(fēng)干燥箱中烘至恒重稱量。

1.3 6種有機(jī)酸對(duì)小麥幼苗生長(zhǎng)及其根系生理指標(biāo)的化感效應(yīng)測(cè)定

采集農(nóng)田土壤,類型為壤土,有機(jī)質(zhì)為1.34%,全氮、速效磷和速效鉀含量分別88.6、12.5和48.7 mg·kg-1,pH 6.8,自然陰涼處風(fēng)干并過(guò)40目篩;再經(jīng)121℃濕熱滅菌3次(60 min/次),室溫晾干后分別取3 kg壤土置于20 cm×20 cm×25 cm的營(yíng)養(yǎng)缽中。每缽播種50粒表面經(jīng)1% HgCl2消毒(5 min)[12]的小麥種子,品種為良星66(國(guó)審麥2008010)。分別用50.0、10.0、2.0、0.4和0.08 μg·mL-1濃度的6種有機(jī)酸稀釋液均勻澆灌,每缽300 mL,以澆灌等體積無(wú)菌水為對(duì)照。每處理3次重復(fù),每重復(fù)4缽。自然條件下培養(yǎng)50 d后,測(cè)定各處理小麥根數(shù)、根長(zhǎng)和根系干鮮重,每濃度處理各測(cè)2缽,共6缽;取每濃度處理剩余6缽小麥根系,分別用2,3,5-三苯基氯化四氮唑(TTC)還原法、電導(dǎo)率法、氮藍(lán)四唑光化還原法和愈創(chuàng)木酚比色法測(cè)定小麥幼苗根系活力、根系細(xì)胞膜透性、超氧化物歧化酶(SOD)和過(guò)氧化物酶(POD)活性[21-22]。

1.4 6種有機(jī)酸對(duì)小麥紋枯病發(fā)生的影響測(cè)定

分別將禾谷絲核菌RHD1205接種到PDA培養(yǎng)基上,在菌落外緣打取直徑為0.5 cm菌餅,并接種至含有200 g無(wú)菌煮熟麥粒的500 mL三角瓶中,每瓶接種20個(gè)菌餅。25℃黑暗培養(yǎng)40 d后,搖勻得帶菌的麥粒接種體。

稱取90 g接菌種體接種到滅菌壤土中并充分混勻,分別播種3個(gè)小麥品種(良星66,國(guó)審麥2008010;石新828,冀審麥2013012;邯6172,國(guó)審麥2003036,均為感病品種),然后每缽澆灌不同濃度有機(jī)酸稀釋液300 mL,播種、培養(yǎng)方法同上。以澆灌等體積無(wú)菌水為對(duì)照,每品種每濃度處理3次重復(fù),每重復(fù)3缽。培養(yǎng)50 d后,調(diào)查小麥紋枯病發(fā)病率和病情指數(shù)[18]。

1.5 數(shù)據(jù)統(tǒng)計(jì)分析

采用SPSS13.0軟件的新復(fù)極差法(Duncan’s multiple range test)進(jìn)行方差分析。參照Williamson等[23]的方法,采用化感效應(yīng)系數(shù)()進(jìn)行化感效應(yīng)分析,當(dāng)T≥C時(shí),=1-C/T;當(dāng)T<C時(shí),=T/C-1。式中,C為對(duì)照值,T為處理值。當(dāng)≥0時(shí),為促進(jìn)作用;當(dāng)<0時(shí),為抑制作用,絕對(duì)值的大小與作用強(qiáng)度一致。

2 結(jié)果

2.1 小麥、玉米兩熟秸稈還田土壤乙酸乙酯提取物中主要有機(jī)化學(xué)物質(zhì)

利用GC/MS對(duì)土壤乙酸乙酯提取物中主要有機(jī)化學(xué)物質(zhì)成分進(jìn)行分析,2012、2015和2018年檢測(cè)結(jié)果如表1、表2所示,在土壤乙酸乙酯提取物中,有機(jī)酸類物質(zhì)含量均相對(duì)最高,平均占總鑒定物質(zhì)的45.45%;其次是烷烴類、醇類和酰胺類,分別占17.70%、17.08%和6.12%;醛類、酯類相對(duì)含量較低,各占5.44%和3.01%。2012年土壤中檢測(cè)到萘類、烯烴類,但2015年和2018年未檢測(cè)到。2018年檢測(cè)到安自香酸鹽類物質(zhì),但2012年和2015年均未檢測(cè)到。

檢測(cè)到的有機(jī)酸類物質(zhì)中,主要包含鄰羥基苯甲酸(9.24%)、3-苯基-2-丙烯酸(4.12%)、對(duì)羥基苯甲酸(3.21%)、4-羥基-3,5-二甲氧基苯甲酸(2.26%)、二十一烷酸(1.88%)、4-甲氧基鄰氨基苯甲酸(1.73%)、8-十八碳烯酸(0.76%)和3-(4-羥基-3-甲氧基苯基)-2-丙烯酸(0.52%)。其他類化學(xué)物質(zhì)中,三十四烷、鄰苯二甲酸二丁酯、甲酸癸酯、N-乙基乙酰胺、3,5-二甲基苯甲醛和2-甲基戊基-鄰苯二甲酸異二丁酯等相對(duì)含量較高。對(duì)比2012、2015和2018年3次檢測(cè)結(jié)果發(fā)現(xiàn),隨著秸稈還田時(shí)間的延長(zhǎng),麥田耕層土壤中鄰羥基苯甲酸、4-羥基-3,5-二甲氧基苯甲酸、3-苯基-2-丙烯酸、9-十六碳烯酸和3-(4-羥基-3-甲氧基苯基)-2-丙烯酸等相對(duì)含量均呈增加趨勢(shì)。

表1 不同年度土壤乙酸乙酯提取物中檢測(cè)出的有機(jī)物質(zhì)

a:化合物在色譜柱中的保留時(shí)間Retention time of compounds in the column;b:三甲基硅衍生物Identified as a trimethylsilyation (TMS) derivative;c:色譜峰面積,以百分?jǐn)?shù)表示Area of peak in the chromatogram expressed as a percentage;“-”:含量低未檢測(cè)出The content was too low and couldn’t be detected

表2 不同年度土壤乙酸乙酯提取物中檢測(cè)出的各類有機(jī)物質(zhì)所占比例

“-”:含量低未檢測(cè)出The content was too low and couldn’t be detected

2.2 6種有機(jī)酸對(duì)禾谷絲核菌的作用

6種有機(jī)酸中除苯甲酸外,其他有機(jī)酸對(duì)禾谷絲核菌菌絲生長(zhǎng)、菌絲干重和菌核形成均表現(xiàn)低濃度促進(jìn)、高濃度抑制的作用,但不同種類有機(jī)酸對(duì)上述指標(biāo)影響程度差異明顯(表3)。其中,0.08—10.0 μg·mL-1濃度的4-甲氧基鄰氨基苯甲酸和3-(4-羥基-3-甲氧基苯基)-2-丙烯酸對(duì)禾谷絲核菌的菌絲生長(zhǎng)(10.0 μg·mL-14-甲氧基鄰氨基苯甲酸除外)、菌絲干重和菌核數(shù)量均表現(xiàn)明顯促進(jìn)作用,在0.03—0.23。而50.0 μg·mL-1濃度的4-羥基-3-甲氧基-苯甲酸能抑制禾谷絲核菌菌絲生長(zhǎng),降低菌絲干重、菌核干重和菌核數(shù)量,分別為-0.11、-0.14、-0.13和-0.17,其他濃度均無(wú)顯著作用。

0.4和0.08 μg·mL-1鄰羥基苯甲酸均明顯促進(jìn)了禾谷絲核菌的菌絲生長(zhǎng),提高了菌絲干重,最高達(dá)0.21;而50.0 μg·mL-1濃度處理對(duì)菌落直徑、菌核數(shù)量和菌核干重均表現(xiàn)明顯抑制作用,分別為-0.11、-0.10和-0.05。苯甲酸在測(cè)試濃度>0.4 μg·mL-1的所有處理對(duì)禾谷絲核菌的菌絲生長(zhǎng)、菌絲干重、菌核數(shù)量和菌核干重均表現(xiàn)明顯抑制作用,且抑制作用隨濃度增高逐漸增強(qiáng),最高為-0.26。>2.0 μg·mL-1處理的對(duì)羥基苯甲酸對(duì)禾谷絲核菌的菌核數(shù)量、菌核干重也均表現(xiàn)明顯抑制作用,在-0.16—-0.01,而≤0.4 μg·mL-1濃度的處理對(duì)羥基苯甲酸對(duì)菌絲生長(zhǎng)無(wú)顯著作用。

2.3 6種有機(jī)酸對(duì)小麥幼苗生長(zhǎng)的影響

6種有機(jī)酸對(duì)小麥幼苗生長(zhǎng)影響的測(cè)定結(jié)果如表4所示,除0.4和0.08 μg·mL-14-甲氧基鄰氨基苯甲酸外,隨著6種有機(jī)酸濃度的增高,其對(duì)小麥幼苗生長(zhǎng)的抑制作用增強(qiáng)。對(duì)羥基苯甲酸抑制作用最強(qiáng),50 μg·mL-1濃度處理的種子萌發(fā)率為0;其次是鄰羥基苯甲酸,50 μg·mL-1濃度處理后小麥根系鮮重僅為0.1 g,地上部單株鮮重不足0.05 g;4-甲氧基鄰氨基苯甲酸抑制作用最弱,最高濃度處理對(duì)小麥單株根數(shù)、根長(zhǎng)、根系鮮重和地上部鮮重的分別為-0.28、-0.58、-0.45和-0.30。

2.4 6種有機(jī)酸對(duì)小麥幼苗根系生理活性的作用

6種有機(jī)酸對(duì)小麥根系生理活性的作用測(cè)定結(jié)果表明,所有供試濃度鄰羥基苯甲酸和對(duì)羥基苯甲酸均顯著降低了小麥根系活力,降幅分別在10.7—99.5和8.6—99.5 μg·g-1·h-1;除最低濃度外,4-甲氧基鄰氨基苯甲酸、3-(4-羥基-3-甲氧基苯基)-2-丙烯酸、4-羥基-3-甲氧基-苯甲酸和苯甲酸各濃度處理的小麥根系活力也均明顯降低。6種有機(jī)酸較高濃度處理均顯著增大了根系相對(duì)電導(dǎo)率,而0.4 μg·mL-1濃度處理下根系相對(duì)電導(dǎo)率均無(wú)顯著變化。2.0—50.0 μg·mL-1濃度的4-甲氧基鄰氨基苯甲酸、3-(4-羥基-3-甲氧基苯基)-2-丙烯酸、4-羥基-3-甲氧基-苯甲酸、鄰羥基苯甲酸和對(duì)羥基苯甲酸均顯著抑制了小麥根系SOD和POD活性,降幅為10.8%—87.5%;而0.08和0.4 μg·mL-1濃度處理對(duì)這2種酶活性無(wú)明顯作用。除0.08 μg·mL-1濃度處理外,其他濃度苯甲酸對(duì)小麥根系SOD和POD活性具有顯著抑制作用(表5)。

2.5 6種有機(jī)酸對(duì)小麥紋枯病發(fā)生的作用

室內(nèi)盆栽試驗(yàn)表明6種有機(jī)酸對(duì)小麥紋枯病發(fā)生的影響有所不同(表6),苯甲酸和4-羥基-3-甲氧基-苯甲酸各濃度處理均未影響小麥品種良星66、石新 828和邯6172紋枯病的發(fā)生程度。除0.08 μg·mL-1處理外,其他3-(4-羥基-3-甲氧基苯基)-2-丙烯酸的濃度處理均顯著增強(qiáng)3個(gè)小麥品種紋枯病發(fā)生程度。2.0—50.0 μg·mL-1濃度的4-甲氧基鄰氨基苯甲酸也明顯加重了3個(gè)小麥品種紋枯病發(fā)生程度。鄰羥基苯甲酸和對(duì)羥基苯甲酸的各濃度處理均加重了紋枯病發(fā)生,3個(gè)小麥品種發(fā)病率和病情指數(shù)平均增幅均超過(guò)9.0%。

表3 6種有機(jī)酸對(duì)禾谷絲核菌菌絲生長(zhǎng)和菌核形成的影響

表中值為每組重復(fù)的平均值;同列數(shù)據(jù)后不同字母表示處理間差異顯著(<0.05)。下同

Values in the table are the mean of each group of replicates; Different letters in the same column after the data indicate significant difference among treatments at<0.05 level. The same as below

表4 6種有機(jī)酸對(duì)小麥幼苗生長(zhǎng)的作用

“-”:該值無(wú)法測(cè)量The value couldn’t be measured

表5 6種有機(jī)酸對(duì)小麥幼苗根系生理活性的影響

“-”:根太少或沒有根The root was too few or no root

3 討論

3.1 秸稈還田后在土壤中分解產(chǎn)生的化感物質(zhì)種類

有研究表明,田菁不同濃度秸稈提取液對(duì)水稻幼苗地上部和根系生長(zhǎng)均表現(xiàn)出明顯的抑制作用[24];麥秸分解液中可分離出含量相對(duì)較高的丁香酰甘油9-O--D-吡喃葡萄糖甙和L-色氨酸,兩者在一定濃度下均能抑制萵苣和水芹的根系生長(zhǎng)[25];黃瓜、碗豆和草莓根系殘茬在土壤中腐解產(chǎn)生苯甲酸、3-苯基-2-丙烯酸、對(duì)羥基苯甲酸等,對(duì)下茬植株具有較強(qiáng)的自毒作用[26-27]。本實(shí)驗(yàn)室前期研究發(fā)現(xiàn),玉米秸稈腐解物對(duì)小麥幼苗具有不利的化感作用,有利于小麥紋枯病和根腐病的發(fā)生[18]。本研究在小麥、玉米秸稈還田耕層土壤中檢測(cè)出有機(jī)酸類、酯類、烴類、酰胺類、醛類等化學(xué)物質(zhì),其中相對(duì)含量較高的鄰羥基苯甲酸、3-苯基-2-丙烯酸、對(duì)羥基苯甲酸、9-十六碳烯酸、4-甲氧基鄰氨基苯甲酸等,均已被證明是對(duì)黃瓜、豌豆和草莓等作物有顯著影響的化感物質(zhì)[26-28]。對(duì)羥基苯甲酸對(duì)小麥幼苗根系生長(zhǎng)指標(biāo)的抑制作用最強(qiáng)[29],各濃度抑制率在15.4%—100.0%;其次是鄰羥基苯甲酸(水楊酸)。

表6 6種有機(jī)酸對(duì)不同品種小麥紋枯病發(fā)生的影響

3.2 化感物質(zhì)對(duì)土傳病害發(fā)生的促進(jìn)作用

He等[30-31]研究發(fā)現(xiàn),西洋參根區(qū)土壤中的香豆酸、丁香酸、香草酸等有機(jī)酸類物質(zhì)對(duì)立枯絲核菌()和木賊鐮孢()菌絲生長(zhǎng)均表現(xiàn)出一定的促進(jìn)作用;NICOL等[32]研究表明,人參腐解物中化感物質(zhì)皂甙能促進(jìn)疫霉和腐霉的增長(zhǎng),從而導(dǎo)致人參根部病害明顯加重;大豆、甜瓜、西瓜和花生等作物殘茬或根系腐解產(chǎn)物中阿魏酸、苯甲酸、肉桂酸等物質(zhì)在土壤中積累,會(huì)刺激尖鐮孢()的菌絲生長(zhǎng)和孢子萌發(fā)[33-36],從而加重枯萎病發(fā)生;亦有研究表明,綠原酸可顯著抑制萵苣根尖細(xì)胞分裂,降低莖長(zhǎng)及鮮重[37-38];肉桂酸、阿魏酸、香草酸等化感物質(zhì)可顯著降低西瓜、杉木、黃瓜、草莓和楊樹根系活力,增強(qiáng)根系離子滲漏,降低根系SOD或POD活性,進(jìn)而減弱其抗逆或抗病能力[28,34-35,39]。本研究發(fā)現(xiàn),小麥、玉米秸稈還田耕層土壤中的鄰羥基苯甲酸、4-羥基-3-甲氧基-苯甲酸和4-甲氧基鄰氨基苯甲酸等化感物質(zhì)對(duì)禾谷絲核菌具有顯著促進(jìn)作用,對(duì)小麥幼苗生長(zhǎng)、根系活力和保護(hù)酶活性均表現(xiàn)抑制作用,可能是秸稈還田條件下小麥紋枯病發(fā)生加重的主要原因之一。

鄰羥基苯甲酸、3-(4-羥基-3-甲氧基苯基)-2-丙烯酸和4-甲氧基鄰氨基苯甲酸對(duì)禾谷絲核菌生長(zhǎng)的促進(jìn)作用可能為小麥紋枯病加重發(fā)生的主要因素;但是,對(duì)禾谷絲核菌生長(zhǎng)無(wú)明顯影響的對(duì)羥基苯甲酸處理后,紋枯病亦加重發(fā)生,究其原因可能與該物質(zhì)對(duì)小麥幼苗生長(zhǎng)較強(qiáng)的抑制作用密切相關(guān)[29]。本試驗(yàn)中,苯甲酸對(duì)禾谷絲核菌生長(zhǎng)表現(xiàn)出明顯抑制作用,可能由于其降低了小麥幼苗根系生理活性,減弱了受體抗逆性,最終導(dǎo)致發(fā)病程度亦未明顯減輕。

3.3 利用化感物質(zhì)降解菌防控土傳病害

如何減輕化感物質(zhì)對(duì)作物生長(zhǎng)的抑制作用和對(duì)土傳病害的促進(jìn)作用,己成為許多學(xué)者關(guān)注的焦點(diǎn)問(wèn)題。據(jù)報(bào)道,鞘氨醇桿菌、柔膜菌、芽孢桿菌等均對(duì)化感物質(zhì)具有很強(qiáng)的降解能力,能明顯緩解作物土傳病害的發(fā)生[40-43]。向土壤中施加優(yōu)勢(shì)木霉菌可調(diào)整微生物群落結(jié)構(gòu)和降解土壤中殘留的化感物質(zhì),提高植株抗病性,起到緩解連作障礙的作用[44]。在明確秸稈腐解產(chǎn)物中促進(jìn)土傳病害發(fā)生的化感物質(zhì)種類基礎(chǔ)上,篩選有益微生物,創(chuàng)制微生物菌劑,降解秸稈還田土壤中有害化感物質(zhì),克服對(duì)小麥生長(zhǎng)的抑制作用,減緩對(duì)紋枯病的促進(jìn)作用,可為我國(guó)小麥、玉米兩熟區(qū)秸稈還田條件下小麥紋枯病等土傳病害綠色防控提供新的思路和方法。

4 結(jié)論

冬小麥、夏玉米一年兩熟秸稈還田土壤中含有機(jī)酸、酯、烴、酰胺及醛類等化學(xué)物質(zhì),有機(jī)酸類相對(duì)含量最高。相對(duì)含量較高的3-(4-羥基-3-甲氧基苯基)-2-丙烯酸、4-甲氧基鄰氨基苯甲酸、鄰羥基苯甲酸和對(duì)羥基苯甲酸能通過(guò)促進(jìn)禾谷絲核菌菌絲生長(zhǎng)、增加菌核產(chǎn)生數(shù)量、降低小麥幼苗根系細(xì)胞保護(hù)酶活性、增強(qiáng)細(xì)胞內(nèi)養(yǎng)分外滲,進(jìn)而產(chǎn)生助長(zhǎng)小麥紋枯病發(fā)生的化感作用;其中,3-(4-羥基-3-甲氧基苯基)-2-丙烯酸對(duì)小麥紋枯病發(fā)生的助長(zhǎng)作用最強(qiáng),而苯甲酸和4-羥基-3-甲氧基-苯甲酸對(duì)紋枯病的發(fā)生無(wú)顯著影響。耕層土壤中有機(jī)酸類物質(zhì)產(chǎn)生和積累,可能是中國(guó)北方小麥、玉米兩熟秸稈還田條件下小麥紋枯病加重發(fā)生的主要原因之一。

[1] WitT C, Cassman K G, Olk D C, BIKER U, LIBOON S P, SAMSON M I, OTTOW J C. Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems.,2000, 225(1): 263-278.

[2] SHARMA P, ABROL V, Sharma R K. Impact of tillage and mulch management on economics, energy requirement and crop performance in maize-wheat rotation in rainfed subhumid inceptions, India., 2011, 34: 46-51.

[3] 陳延熙, 唐文華, 張敦華, 簡(jiǎn)小鷹. 我國(guó)小麥紋枯病病原學(xué)的初步研究. 植物保護(hù)學(xué)報(bào), 1986, 13(1): 39-44.

Chen Y X, Tang W H, Zhang D H, Jian X Y. A preliminary study on etiology of sharp eyespot of wheat in china.,1986, 13(1): 39-44. (in Chinese)

[4] Kumar J, Sch?fer P, Hückelhoven R, Langen G, Baltruschat H, Stein E, Nagarajan S, Kogel K H., a cereal pathogen of global concern: cytological and molecular approaches towards better control., 2002, 3(4): 185-195.

[5] Daval S, Lebreton L, Gazengel K, Boutin M, Guillerm-Erckelboudt A Y, Sarniguet A. The biocontrol bacteriumPf29Arp strain affects the pathogenesis-related gene expression of the take-all fungusvar.on wheat roots., 2011, 12: 839-854.

[6] Lu L, Rong W, Zhou R, Huo N, Zhang Z. TaCML36, a wheat calmodulin-like protein, positively participates in an immune response to., 2019,7(5): 608-618.

[7] Hamada M S, Yin Y N, Chen H G, Ma Z H. The escalating threat of, the causal agent of sharp eyespot in wheat., 2011, 67(11): 1411-1419.

[8] Yang M M, Mavrodi D V, Mavrodi O V, Bonsall R F, Parejko J A, Paulitz T C, Thomashow L S, Yang H T, Weller D M, Guo J H. Biological control of take-all by fluorescentspp. from Chinese wheat fields.,2011, 101(12): 1481-1491.

[9] Qu T L, Zhang J L, Meng Z L, Liu X L, Cao Y S, Li J Q, Hao J J. Metabolism of fungicide 2-allylphenol in., 2014, 102: 136-141.

[10] 董金皋. 農(nóng)業(yè)植物病理學(xué). 2版. 北京: 中國(guó)農(nóng)業(yè)出版社, 2007.

Dong J G... Beijing: China Agriculture Press, 2007.(in Chinese)

[11] 張雪松, 曹永勝, 曹克強(qiáng). 保護(hù)性耕作與小麥主要土傳病害問(wèn)題和治理對(duì)策. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2005, 33(增刊): 47-48.

Zhang X S, Cao Y S, Cao K Q. Management of wheat soil-borne diseases under the conservative farming system.,2005, 33(Suppl.): 47-48. (in Chinese)

[12] Lemańczyk G, Kwa?naH. Effects of sharp eyespot () on yield and grain quality of winter wheat., 2013, 135: 187-200.

[13] Bailey K L, Lazarovits G. Suppressing soil-borne diseases with residue management and organic amendments., 2003, 72(2): 169-180.

[14] Gill J S, Sivasithamparam K, Smettem K R J. Soil moisture affects disease severity and colonisation of wheat roots byAG-8., 2001, 33(10): 1363-1370.

[15] Chou C H, Lin H J. Autointoxication mechanism of. I. Phytotoxic effects of decomposing rice residues in soil., 1976, 2(3): 353-367.

[16] 張玉銘, 馬永清. 麥秸覆蓋夏玉米對(duì)其苗期生長(zhǎng)發(fā)育的生化他感作用研究初報(bào). 生態(tài)學(xué)雜志, 1994, 13(3): 70-72.

Zhang Y M, Ma Y Q. Alleopathic effect of wheat straw mulching on seedling growth and development of summer corn., 1994, 13(3): 70-72. (in Chinese)

[17] 謝瑞芝, 李少昆, 李小君, 金亞征, 王克如, 初震東, 高世菊. 中國(guó)保護(hù)性耕作研究分析——保護(hù)性耕作與作物生產(chǎn). 中國(guó)農(nóng)業(yè)科學(xué), 2007, 40(9): 1914-1924.

Xie R Z, Li S K, Li X J, Jin Y Z, Wang K R, Chu Z D, Gao S J. The analysis of conservation tillage in China—conservation tillage and crop production: reviewing the evidence., 2007, 40(9): 1914-1924. (in Chinese)

[18] Qi Y Z, Zhen W C, Li H Y. Allelopathy of decomposed maize straw products on three soil-born diseases of wheat and the analysis by GC-MS., 2015, 14(1): 88-97.

[19] VILLAGRASA M, GUILLAMON M, LABANDEIRA A, TABERNER A, ELJARRAT E, BARCELO D. Benzoxazinoid allelochemicals in wheat: distribution among foliage, roots and seeds., 2006, 54(4): 1009-1015.

[20] QIAN H F, XU X Y, CHEN W, JIANG H, JIN Y X, LIU W P, FU Z W. Allelochemical stress causes oxidative damage and inhibition of photosynthesis in., 2009, 75(3): 368-375.

[21] Khamssi N N, Najaphy A. Physiological and biochemical responses of durum wheat under mild terminal drought stress., 2018, 64(4): 59-63.

[22] Tian X Y, He M R, Wang Z L, Zhang J W, Song Y L, He Z L, Dong Y J. Application of nitric oxide and calcium nitrate enhances tolerance of wheat seedlings to salt stress., 2015, 77(3): 343-356.

[23] Williamson G B, Richardson D. Bioassays for allelopathy: Measuring treatment responses with independent controls., 1988, 14(1): 181-187.

[24] Gonzalez T, Ruíz Y, Pérez R, García Y, Franco I, Nogueiras C. Allelopathic activity ofBrem. before black glume weedy (red) rice (L)., 2006, 18(2): 134-137.

[25] Nakano H, Morita S, Shigemori H, Hasegawa K. Plant growth inhibitory compounds from aqueous leachate of wheat straw., 2006, 48(3): 215-219.

[26] Ye S F, Zhou Y H, Sun Y, Zou L Y, Yu J Q. Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence ofwilt., 2006, 56: 255-262.

[27] Wang X j, Peter S, Liu Z q, Armstrong R, Rochfort S, Tang C x. Allelopathic effects account for the inhibitory effect of field-pea (L.) shoots on wheat growth in dense clay subsoils.,2019, 55(7): 649-659.

[28] Zhao X S, Zhen W C, Qi Y Z, Liu X J, Yin B Z. Coordinated effects of root autotoxic substances andSchl. f. sp.on the growth and replant disease of strawberry., 2009, 3(1): 34-39.

[29] 齊永志. 玉米秸稈還田的微生態(tài)效應(yīng)及對(duì)小麥紋枯病的適應(yīng)性控制技術(shù)[D]. 保定: 河北農(nóng)業(yè)大學(xué), 2014.

QI Y Z. Micro-ecological effect of maize straw returning to field and the adaptive control technology on wheat sheath blight[D]. Baoding: Hebei agricultural university, 2014. (in Chinese)

[30] He C N, Gao W W, Yang J X, Bi W, Zhang X S, Zhao Y J. Identification of autotoxic compounds from fibrous roots ofL., 2009, 318(1/2): 63-72.

[31] Goswami R S, Punja Z K. Molecular and biochemical characterization of defense responses in ginseng () roots challenged with., 2008, 72(1): 10-20.

[32] Nicol R W, YOUSEF L, Traquair J A, Bernards M A. Ginsenosides stimulate the growth of soilborne pathogens of American ginseng., 2003, 64(1): 257-264.

[33] Wang J l, Li X L, Zhang J L, Yao T, Wei D, Wang Y F, Wang J G. Effect of root exudates on beneficial microorganisms— Evidence from a continuous soybean monoculture., 2012, 213(12): 1883-1892.

[34] 楊瑞秀, 高增貴, 姚遠(yuǎn), 劉限, 孫淑清, 王瑩. 甜瓜根系分泌物中酚酸物質(zhì)對(duì)尖孢鐮孢菌的化感效應(yīng). 應(yīng)用生態(tài)學(xué)報(bào), 2014, 25(8): 2355-2360.

YANG R X, GAO Z G, YAO Y, LIU X, SUN S Q, WANG Y. Allelopathic effects of phenolic compounds of melon root exudates onf. sp.., 2014, 25(8): 2355-2360. (in Chinese)

[35] 郝文雅, 冉煒, 沈其榮, 任麗軒. 西瓜、水稻根分泌物及酚酸類物質(zhì)對(duì)西瓜?;图怄哏牭毒挠绊? 中國(guó)農(nóng)業(yè)科學(xué), 2010, 43(12): 2443-2452.

Hao W Y, Ran W, Shen Q R, Ren L X. Effects of root exudates from watermelon, rice plants and phenolic acids onf. sp..,2010, 43(12): 2443-2452. (in Chinese)

[36] Liu P, Liu Z H, Wang C B, Guo F, Wang M, Zhang Y F, Dong L, Wan S B. Effects of three long-chain fatty acids present in peanut (L.) root exudates on its own growth and the soil enzymes activities., 2012, 29(1): 13-24.

[37] Caspersen S, Alsanius B W, Sundin P, Jensén P. Bacterial amelioration of ferulic acid toxicity to hydroponically grown lettuce (L.)., 2000, 32(8/9): 1063-1070.

[38] Caspersen S, Sundin P, Munro M, Aealsteinsson S, Hooker J E, Jensén P. Interactive effects of lettuce (L.), irradiance, and ferulic acid in axenic, hydroponic culture., 1999, 210(1): 115-126.

[39] Chen L c, Wang S l, Wang P, Kong C h. Autoinhibition and soil allelochemical (cyclic dipeptide) levels in replanted Chinese fir () plantations., 2014, 374(1/2): 793-801.

[40] Schmidt S K. Degradation of juglone by soil bacteria., 1988, 14(7): 1561-1571.

[41] Dong L L, Xu J, Li Y, FANG H L, NIU W H, LI X W, ZHANG Y J, DING W L, CHEN S L. Manipulation of microbial community in the rhizosphere alleviates the replanting issues in., 2018, 125: 64-74.

[42] Liu S, Qin F, Yu S.root-associated fungi can counteract the negative influence of phenolic acid allelochemicals., 2018, 127: 1-7.

[43] Chen S Y, Guo L Y, Bai J G, Zhang Y, Zhang L, Wang Z, Chen J X, Yang H X, Wang X J. Biodegradation of p-hydroxybenzoic acid in soil byCSY-P1 isolated from cucumber rhizosphere soil., 2014, 389(1): 197-210.

[44] Chen A W, Zeng G M, Chen G Q, Fan J Q, Zou Z J, Li H, Hu X J, Long F. Simultaneous cadmium removal and 2,4-dichlorophenol degradation from aqueous solutions by., 2011, 91(3): 811-821.

Allelopathy of Six Organic Acids on Wheat Sheath Blight in the Soil of Winter Wheat-Summer Maize Double Cropping Straw Returning System

Zhao XuSheng1,2, QI YongZhi1,2, YAN CuiMei1,2, ZHEN WenChao2,3,4

(1College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei;2State Key Laboratory for Crop Improvement and Control in North China, Baoding 071001, Hebei;3College of Agronomy, Hebei Agricultural University, Baoding 071001, Hebei;4Hebei Key Laboratory of Crop Growth Control, Baoding 071001, Hebei)

【】Double cropping of winter wheat and summer maize is the most extensive farming system in northern China. Straw returning has been widely used in wheat and maize production. But, the effect of straw returning on the occurrence of soil borne diseases of wheat has been controversial. The objective of this study is to analyze the main chemical constituents in the cultivated-layer soil with different straw returning years and the allelopathic effects of the main organic acids on the growth of wheat seedlings, the mycelium growth and sclerotia formation ofand occurrence of wheat sheath blight (WSB), and to understand the relationship between straw returning and WSB incidence.【】Gas chromatography-mass spectrometry (GC-MS) technique was used to analyze the types and contents of chemical substances in the extract of ethyl acetate from the cultivated soil where maize straw returning, and the effects of 6 organic acids with higher content on the root activity, root cell membrane permeability, superoxide dismutase (SOD) and peroxidase (POD) activity of wheat seedlings were determined with the TTC reduction, electrical conductivity, NBT photoreduction and guaiacol colorimetry methods, respectively. Meanwhile, the effects of these organic acids on the mycelium growth, sclerotium formation and occurrence of WSB were determined by the conventional methods.【】The relative contents of organic acids, alkanes, alcohols, amides, and aldehydes in the cultivated-layer soil and straw returning were 45.45%, 17.70%, 17.08%, 6.12%, and 5.44%, respectively. Organic acids mainly included o-hydroxybenzoic acid (9.24%), 3-phenyl-2-acrylic acid (4.12%), p-hydroxybenzoic acid (3.21%), 4-hydroxy-3,5- dimethoxybenzoic acid (2.26%), heneicosanoic acid (1.88%), 4-methoxy-anthranilic acid (1.73%), 8-octadecanoic acid (0.76%) and 3-(4-hydroxy-3- methoxyphenyl)-2-acrylic acid (0.52%). 4-methoxy-anthranilic acid and 3-(4-hydroxy-3-methoxyphenyl)-2-acrylic acid at 0.08-10.0 μg·mL-1had significant promoting effects on mycelial growth (expect 4-methoxy-anthranilic acid at 10.0 μg·mL-1), dry weight and sclerotium formation of, and the relative content of the two substances increased with the extension of straw returning years. o-hydroxybenzoic acid significantly promoted mycelial growth and sclerotia formation ofat 0.4 and 0.08 μg·mL-1. In contrast, 50.0 μg·mL-1of o-hydroxybenzoic acid and 4-hydroxyl-3-methoxy-benzoic acid, and 0.4-50.0 μg·mL-1of benzoic acid all showed inhibitory effects. All 6 organic acids at concentrations of 2.0-5.0 μg·mL-1inhibited the growth of wheat seedlings in a dose-dependent manner. The inhibitory effect of p-hydroxybenzoic acid was the strongest, followed by o-hydroxybenzoic acid, and 4-methoxy-anthranilic acid was the weakest. 3-(4-hydroxy-3-methoxyphenyl)-2-acrylic acid, 4-methoxyanthranilic acid, o-hydroxybenzoic acid, and p-hydroxybenzoic acid at concentrations of 0.4-50.0 μg·mL-1aggravated the occurrence of WSB. 3-(4-hydroxy-3-methoxyphenyl)-2-acrylic acid had the strongest enhancing effect, with the incidence and disease index increased by 49.0% and 46.7%, respectively. Benzoic acid and 4-hydroxy-3-methoxyphenyl-benzoic acid had no significant effect on the occurrence of WSB.【】Organic acids, esters, hydrocarbons, amides, and aldehydes were found in the cultivated-layer soil in the winter wheat-summer maize double cropping straw returning system. Organic acids were the most abundant of those chemicals. 3-(4-hydroxy-3-methoxyphenyl)-2-acrylic acid, 4-methoxyanthranilic acid, o-hydroxybenzoic acid, and p-hydroxybenzoic acid at a certain concentration can promote the occurrence of WSB. 3-(4-hydroxy-3-methoxyphenyl)-2-acrylic acid has the strongest stimulatory effect, while benzoic acid and 4-hydroxy-3-methoxy-benzoic acid have no effect on the occurrence of WSB. Allelopathic effects of organic acids in the cultivated-layer soil, including the promotion on pathogen growth and inhibition on physiological activity and growth of wheat roots, may be one of the main reasons for the serious occurrence of WSB in the straw returning region in northern China.

straw returning; wheat sheath blight;; GC-MS; allelopathy; organic acid

10.3864/j.issn.0578-1752.2020.15.010

2020-02-29;

2020-04-02

國(guó)家重點(diǎn)研發(fā)計(jì)劃(2017YFD0300906)、國(guó)家科技支撐計(jì)劃(2012BAD04B06)、河北省教育廳項(xiàng)目(ZD2016162)、河北省自然科學(xué)基金(C2016204211)、河北省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系小麥產(chǎn)業(yè)技術(shù)創(chuàng)新團(tuán)隊(duì)建設(shè)項(xiàng)目(HBCT2018010205)

趙緒生,E-mail:zhaoxusheng2000@yeah.net。齊永志,E-mail:qiyongzhi1981@163.com。趙緒生和齊永志為同等貢獻(xiàn)作者。通信作者甄文超,E-mail:wenchao@hebau.edu.cn

(責(zé)任編輯 岳梅)

猜你喜歡
化感甲氧基苯甲酸
醫(yī)藥中間體2,4,5-三氟-3-甲氧基苯甲酸的合成路線及應(yīng)用研究進(jìn)展
美沙西汀-甲氧基-13C及其類似物的合成
青藏高原地區(qū)馬鈴薯主栽品種水浸提液的化感抑草作用
HP-β-CD水相中4-甲氧基苯甲硫醚的選擇性氧化
玉米秸稈的化感活性物質(zhì):對(duì)羥基肉桂酸類化合物和對(duì)羥基苯甲醛
稗草種植液誘導(dǎo)對(duì)不同化感潛力水稻生長(zhǎng)和土壤酶活性的影響
木薯器官及其腐解物水浸液對(duì)橡膠樹白根病病菌的化感作用
紅棗100%檢出防腐劑,這些人心黑了?
含有苯甲酸的紅棗不能吃?
紅棗檢出“防腐劑”?
图片| 逊克县| 广宁县| 清水县| 吉隆县| 通许县| 阿尔山市| 平塘县| 互助| 泉州市| 陵水| 扶风县| 康保县| 常州市| 蓬莱市| 蕉岭县| 华阴市| 连南| 湘西| 瑞丽市| 丁青县| 香格里拉县| 南涧| 兴业县| 文安县| 蒙山县| 漳浦县| 通江县| 寻乌县| 子长县| 塔河县| 凤山市| 明溪县| 岗巴县| 望都县| 平潭县| 内江市| 喀喇| 富平县| 彭山县| 恩施市|