国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

廣西仙島公園和沙井紅樹林土壤碳氮儲(chǔ)量的空間分布*

2020-09-26 03:13陶玉華王薛平鐘秋平亢振軍
漁業(yè)科學(xué)進(jìn)展 2020年5期
關(guān)鍵詞:土壤有機(jī)紅樹林儲(chǔ)量

陶玉華 黃 星 王薛平 鐘秋平 亢振軍

廣西仙島公園和沙井紅樹林土壤碳氮儲(chǔ)量的空間分布*

陶玉華①黃 星 王薛平 鐘秋平 亢振軍

(北部灣大學(xué) 廣西北部灣海洋災(zāi)害研究重點(diǎn)實(shí)驗(yàn)室 廣西北部灣海岸科學(xué)與工程實(shí)驗(yàn)室 欽州 535011)

通過(guò)對(duì)廣西茅尾海的仙島公園和沙井紅樹林土壤有機(jī)碳(SOC)、全氮(TN)含量和空間分布特征,以及碳氮比(C/N)與SOC和TN的相關(guān)性研究,結(jié)果顯示,仙島公園紅樹林的SOC和TN的平均含量分別為24.5和1.06 g/kg,沙井紅樹林的SOC和TN平均含量分別為11.9和0.71 g/kg。仙島公園和沙井紅樹林的SOC儲(chǔ)量分別為181.03和92.4t/hm2,存在顯著性差異(<0.05),仙島公園和沙井紅樹林的TN儲(chǔ)量分別為8.23和5.12t/hm2,SOC和TN儲(chǔ)量垂直分布,隨土層深度的增加呈先減少后增加的趨勢(shì)(沙井TN除外)。沙井紅樹林的SOC與TN儲(chǔ)量之間相關(guān)性極顯著(<0.01,=0.947),仙島公園紅樹林的SOC與TN儲(chǔ)量之間相關(guān)系數(shù)為0.407。這2個(gè)研究地點(diǎn)的C/N值為16.77~24.39,其有機(jī)質(zhì)主要來(lái)源于陸地,仙島公園紅樹林的C/N值與SOC儲(chǔ)量存在顯著的相關(guān)性(<0.01),沙井紅樹林的C/N值與TN儲(chǔ)量呈顯著負(fù)相關(guān)(<0.05)。仙島公園紅樹林的SOC儲(chǔ)量高于我國(guó)森林土壤平均碳儲(chǔ)量,顯示了紅樹林土壤較高的固碳能力。

仙島公園;沙井;紅樹林;碳氮儲(chǔ)量;空間分布

紅樹林是熱帶、亞熱帶海岸重要的濕地生態(tài)系統(tǒng),是全球生產(chǎn)力最高的區(qū)域之一,具有極其重要的生態(tài)和環(huán)境價(jià)值(高天倫等, 2017; 許永輝等, 2018)。碳和氮是海洋初級(jí)生產(chǎn)力的關(guān)鍵營(yíng)養(yǎng)元素(張雪等, 2018),土壤有機(jī)碳(Soil organic carbon, SOC)和全氮(Total nitrogen, TN)是評(píng)價(jià)土壤肥力的重要指標(biāo),直接影響濕地生態(tài)系統(tǒng)的生產(chǎn)力,對(duì)生態(tài)系統(tǒng)結(jié)構(gòu)和功能的形成具有重要作用。土壤的碳氮比(C/N)是反映土壤質(zhì)量變化的敏感指標(biāo),也是反映土壤微生物群落結(jié)構(gòu)的重要標(biāo)志,印證著區(qū)域生態(tài)系統(tǒng)的演變規(guī)律(肖玉等, 2003)。人類活動(dòng)對(duì)紅樹林產(chǎn)生了極大的干擾,從填海造地等土地利用變化到過(guò)度挖掘、捕獲海洋經(jīng)濟(jì)動(dòng)物對(duì)紅樹林的損壞,以及船只出入對(duì)紅樹林的壓踩等,都影響了紅樹林生態(tài)系統(tǒng)的物質(zhì)循環(huán)。通過(guò)對(duì)不同人類活動(dòng)區(qū)域的紅樹林碳氮儲(chǔ)量變化的研究,可為紅樹林物質(zhì)循環(huán)及其保護(hù)提供理論依據(jù)。全球氣候變化日益受到重視,濱海濕地碳氮儲(chǔ)量及其分布特征越來(lái)越受到關(guān)注(Liu, 2007)。國(guó)外對(duì)紅樹林生態(tài)系統(tǒng)碳氮儲(chǔ)量研究較多,尤其是集中于有機(jī)碳儲(chǔ)量的研究(Chen, 2014; Laanbroek, 2018; Marchand, 2017; Morimaru,2017)。我國(guó)關(guān)于紅樹林濕地研究多集中在重金屬、微生物和有機(jī)碳等方面(羅松英等, 2018; 丁蘇麗等, 2018; 胡杰龍等, 2015),少有同時(shí)對(duì)其碳庫(kù)和氮庫(kù)的研究以及C/N與碳、氮相關(guān)性的研究,而且對(duì)紅樹林濕地碳庫(kù)和氮庫(kù)的研究多集中在海南、閩江和廣東等地,而對(duì)于廣西紅樹林濕地的相關(guān)研究不多,不利于總結(jié)規(guī)律性的成果。

本研究地點(diǎn)設(shè)立在廣西北部灣茅尾海紅樹林保護(hù)區(qū)。茅尾海紅樹林是我國(guó)面積最大、最典型的島群紅樹林和特有的巖灘紅樹林,是北部灣最北端的紅樹林分布區(qū),植物群落類型為桐花樹()群落、秋茄()+桐花樹群落、白骨壤()+桐花樹群落和白骨壤群落。仙島公園是紅樹林受到較好保護(hù)的地點(diǎn),而沙井位于漁業(yè)區(qū)范圍內(nèi),受到人為活動(dòng)影響較大,研究其土壤有機(jī)碳和全氮儲(chǔ)量及分布特征,分析C/N與SOC和TN儲(chǔ)量之間的相關(guān)性,試圖揭示廣西茅尾海紅樹林濕地SOC和TN的分布規(guī)律,有助于更好地認(rèn)識(shí)茅尾海紅樹林濕地的碳匯能力,為區(qū)域性碳氮循環(huán)研究和紅樹林保護(hù)提供理論依據(jù),對(duì)理解生物地球化學(xué)循環(huán)和生態(tài)作用具有重要意義。

1 地理概貌

茅尾海位于北部灣頂部欽州灣海域,為半封閉式內(nèi)海,連接著欽江和茅嶺江,面積約為135 km2,處于南亞熱帶,受熱帶海洋氣候的影響,季風(fēng)環(huán)流明顯,年均氣溫為22℃,平均年降雨量為2104.2 mm,年平均降雨日數(shù)為171 d(劉永泉等, 2009)。茅尾海海底底質(zhì)以淤泥、淤泥質(zhì)土以及粗、中、細(xì)和粉砂為主。沿岸紅樹林面積約為2302 km2,主要為木欖()、秋茄、桐花樹、海漆()、白骨壤、紅海欖()、無(wú)瓣海桑()、銀葉樹()、黃槿()、露兜樹()、小花老鼠簕()和老鼠簕()。茅尾海紅樹林自然保護(hù)區(qū)于2005年成立,所在海域?yàn)椴灰?guī)則全日潮,平均潮差為2.52 m (常濤等, 2014)。選取茅尾海的仙島公園和沙井作為研究地點(diǎn),與保護(hù)較好的仙島公園相比,沙井是欽州養(yǎng)殖大蠔的主要產(chǎn)區(qū),受人為活動(dòng)影響稍大。研究區(qū)域紅樹林種類包括桐花樹、秋茄、白骨壤和少量的無(wú)瓣海桑及半紅樹植物老鼠簕,通過(guò)樣方調(diào)查測(cè)定仙島公園紅樹林平均胸徑為4.03 cm,樹高為3.03 m,沙井紅樹林平均胸徑為2.4 cm,樹高為2.1 m。

2 研究方法

2.1 采集土樣

分別在仙島公園和沙井紅樹林區(qū)域設(shè)立8個(gè)5 m× 5 m的樣方,在每個(gè)樣方內(nèi)隨機(jī)選取3個(gè)土壤采樣點(diǎn),土壤剖面深度分別為0~20 cm、20~40 cm和40~60 cm,采用100 cm3環(huán)刀取樣,并測(cè)定土壤容重。將土壤樣品放入聚乙烯自封袋后運(yùn)回實(shí)驗(yàn)室,經(jīng)過(guò)自然風(fēng)干、過(guò)篩和去除凋落物、石礫和根系(雜物)后,用于SOC含量和全氮含量的測(cè)定。

2.1.1 SOC和TN的測(cè)定 SOC含量采用重鉻酸鉀外加熱法測(cè)定,土壤TN含量采用凱氏定氮法測(cè)定。

2.1.2 土壤SOC儲(chǔ)量和TN儲(chǔ)量的計(jì)算 土壤容重的計(jì)算公式如下:

rs=·100/·(100+)

式中,rs為土壤容重(g/cm3),為環(huán)刀土鮮重(g),為環(huán)刀容積(100 cm3),為樣品含水百分?jǐn)?shù)(不帶%)

SOC儲(chǔ)量和TN儲(chǔ)量計(jì)算公式如下:

式中,SOC為一定深度內(nèi)的SOC儲(chǔ)量(t/hm2),STN為一定深度內(nèi)土壤TN儲(chǔ)量(t/hm2),i為第層土壤容重(g/cm3),i為第層SOC含量(g/kg),N為第層土壤TN含量(g/kg),i為第層土壤厚度(cm),為土層數(shù)。

2.2 統(tǒng)計(jì)分析

用Pearson相關(guān)法和SPSS 19.0軟件進(jìn)行統(tǒng)計(jì)分析,比較仙島公園與沙井紅樹林濕地SOC和TN儲(chǔ)量的差異,并分析C/N與SOC和TN儲(chǔ)量的相關(guān)性。

3 結(jié)果與分析

3.1 仙島公園和沙井紅樹林SOC和TN含量變化

仙島公園和沙井SOC和TN含量表現(xiàn)為表聚性特征,即最高值出現(xiàn)在0~20 cm。仙島公園SOC含量在0~60 cm的范圍為22.4~27.03 g/kg,TN含量為1.02~1.1 g/kg。沙井SOC含量在0~60 cm的范圍為10.5~14.2 g/kg,TN含量為0.57~0.79 g/kg。仙島公園SOC和TN均高于沙井,二者SOC含量在0~20 cm土層沒(méi)有顯著差異,但在20~40 cm和40~60 cm土層中,二者SOC含量均有顯著差異。仙島公園和沙井TN含量?jī)H在40~60 cm土層中有顯著差異。同一研究點(diǎn)不同土層SOC和TN含量均無(wú)顯著差異(>0.05) (圖2)。

3.2 仙島公園和沙井紅樹林SOC和TN儲(chǔ)量的分配

仙島公園紅樹林總SOC儲(chǔ)量和總TN儲(chǔ)量均大于沙井。仙島公園紅樹林在0~60 cm土層的SOC總儲(chǔ)量為181.03t/hm2,大于沙井SOC儲(chǔ)量(92.4t/hm2),二者存在顯著差異。仙島公園紅樹林在20~40 cm和40~60 cm土層的SOC均與沙井紅樹林存在顯著性差異。仙島公園的TN儲(chǔ)量(8.23 t/hm2)大于沙井(5.12 t/hm2),但差異不顯著,在各土層間無(wú)顯著差異。仙島公園和沙井紅樹林SOC儲(chǔ)量和TN儲(chǔ)量在0~60 cm的3個(gè)土層均無(wú)顯著差異(>0.05)。2個(gè)研究地點(diǎn)的SOC儲(chǔ)量均表現(xiàn)為表聚性。仙島公園0~20 cm、20~40 cm和40~60 cm層的SOC儲(chǔ)量分別占總SOC儲(chǔ)量的34.5%、32.1%和34.4%,沙井各層SOC儲(chǔ)量則為35.5%、30.2%和34.3%。仙島公園TN儲(chǔ)量最高值出現(xiàn)在20~40 cm土層,占總TN儲(chǔ)量的34.8%。沙井TN儲(chǔ)量占總儲(chǔ)量的35.3%(表1)。

圖2 仙島公園和沙井土壤有機(jī)碳和全氮含量

不同大寫字母表示不同地點(diǎn)在同一土層差異顯著(<0.05),不同小寫字母表示同一地點(diǎn)不同土層深度差異顯著(<0.05),下同

Different capital letters mean significant differences at 0.05 level among different location in same soil layer. Small letters mean significant differences at 0.05 level among the same location in different soil layer, the same as below

3.3 C/N與SOC和TN的相關(guān)性

由表2可知,仙島公園C/N值與SOC儲(chǔ)量存在顯著相關(guān)性(<0.01,=0.961),C/N值與TN相關(guān)性不顯著,SOC儲(chǔ)量與TN儲(chǔ)量之間相關(guān)性不顯著。沙井C/N值與SOC儲(chǔ)量無(wú)顯著相關(guān)性,與TN儲(chǔ)量顯著負(fù)相關(guān)(<0.05,= –0.681),SOC儲(chǔ)量與TN儲(chǔ)量之間相關(guān)性極顯著(<0.01,=0.947)。

表1 仙島公園和沙井SOC和TN儲(chǔ)量

Tab.1 Storage of soil organic carbon and total nitrogen in Xiandao Park and Shajing

注:不同大寫字母表示不同地點(diǎn)在同一土層差異顯著(<0.05),不同小寫字母表示同一地點(diǎn)不同土層差異顯著(<0.05)

Note: Different capital letters mean significant differences at 0.05 level among different locations in the same soil layer. Small letters mean significant differences at 0.05 level among the same location in different soil layers

表2 仙島公園和沙井SOC、TN儲(chǔ)量與C/N的相關(guān)性

Tab.2 Correlation coefficients between storage of soil organic carbon, total nitrogen and C/N in Xiandao Park and Shajing

注:*:在0.05級(jí)別(雙尾),相關(guān)性顯著;**:在0.01級(jí)別(雙尾),相關(guān)性顯著

Note: *: The correlation was significant at 0.05 level (double tail); **: The correlation was significant at 0.01 level (double tail)

3.4 仙島公園和沙井土壤C/N的變化

仙島公園和沙井紅樹林土壤C/N值在0~60 cm土層的變化范圍為16.77~24.39。仙島公園紅樹林土壤C/N值均大于沙井,但差異不顯著,仙島公園C/N最大值出現(xiàn)在0~20 cm紅樹林土層中,沙井紅樹林土壤C/N最大值出現(xiàn)在40~60 cm土層(圖3)。

圖3 仙島公園和沙井C/N值的變化

4 討論

4.1 SOC和TN的分布及碳氮相關(guān)性

仙島公園紅樹林SOC和TN含量和儲(chǔ)量均大于沙井,茅尾海紅樹林濕地是全國(guó)天然大蠔的主要繁殖場(chǎng)所之一,被漁業(yè)區(qū)所包圍,距離居民區(qū)較近,周邊居民的生產(chǎn)生活對(duì)紅樹林產(chǎn)生了一定的影響,尤其沙井是大蠔人工養(yǎng)殖區(qū),人為活動(dòng)較多,如制作蠔排和蠔樁、拾螺撿貝、挖泥丁和彈涂魚以及船只出入踏踩紅樹林,土壤擾動(dòng)易造成營(yíng)養(yǎng)物質(zhì)的流失,造成厭氧環(huán)境的改變,導(dǎo)致土壤氮的礦化作用和加快有機(jī)碳的分解,從而使土壤SOC和TN下降(陳志杰等, 2016; Hanke, 2013)。相比之下,仙島公園保護(hù)管理較好,受人為活動(dòng)影響較少。沙井紅樹林大多數(shù)為次生林,較矮小,挖掘、捕獲活動(dòng)對(duì)紅樹林根系有損害,危及紅樹林幼苗和繁殖體庫(kù),使其植物群落更新困難。仙島公園的紅樹林長(zhǎng)勢(shì)較好,樹高和胸徑明顯高于沙井,Tian等(2010)研究表明,植物生物量對(duì)SOC積累起著重要作用,植物與其土壤養(yǎng)分之間具有互相促進(jìn)的關(guān)系,高生物量區(qū)域的SOC和TN儲(chǔ)量較高。

仙島公園和沙井SOC含量均低于湛江和東寨港紅樹林(郭志華等, 2014; 許方宏等, 2012)。仙島公園SOC含量高于雷州半島紅樹林(楊娟等, 2012)和閩東紅樹林濕地,沙井SOC平均含量與閩東紅樹林濕地SOC含量相近(廖小娟等, 2013)。除仙島公園的TN儲(chǔ)量外,仙島公園和沙井紅樹林SOC和TN含量和儲(chǔ)量表現(xiàn)為表聚性現(xiàn)象,即最高值出現(xiàn)在0~20 cm土層,與海南紅樹林SOC儲(chǔ)量的分布(辛琨等, 2014)及崇明東灘濕地SOC和TN含量的分布一致(陳懷璞等, 2017)。紅樹林濕地SOC來(lái)源有內(nèi)源性和外源性2種輸入,內(nèi)源性主要來(lái)源于植物枯落物、根系和其分泌物以及動(dòng)物殘?bào)w和排泄物等,經(jīng)過(guò)土壤中微生物的分解作用釋放到土壤表層,使得土壤表層的SOC量高,加之紅樹林地處熱帶和亞熱帶地區(qū),光照和降水充足,植被豐富,凋落物量大,增加了SOC的內(nèi)源性輸入;外源性輸入主要來(lái)自潮汐、降雨和河水等攜帶的有機(jī)物。在受到來(lái)自人類活動(dòng)影響小的情況下,紅樹林濕地SOC來(lái)源主要以內(nèi)源性輸入為主。紅樹林及其所處的動(dòng)態(tài)環(huán)境,在沉積物、植被、間隙水、海水和大氣之間存在多個(gè)界面的碳氮交換過(guò)程,同時(shí)受多種理化因子的影響,紅樹林沉積物有機(jī)碳存在很大的不確定性(Kauffman, 2011; Giri,2011)。因此,不同地點(diǎn)、不同群落SOC和TN含量的變化會(huì)存在較大差異。閩江河口區(qū)濕地SOC含量最高值出現(xiàn)在0~10 cm土層(王維奇等, 2012)。海南島紅樹林土壤SOC含量最高值出現(xiàn)在20~40 cm(郭志華等, 2014)。海南東寨港秋茄紅樹林SOC含量最高值出現(xiàn)在40~50 cm(詹紹芬等, 2015)。深圳紅樹林SOC含量最高值卻出現(xiàn)在70 cm處(喬永民等, 2018)。

與一般陸地森林土壤分布規(guī)律不同,2個(gè)研究地點(diǎn)SOC和TN垂直分布特征總體上表現(xiàn)為,隨著土層深度的增加呈先減少后增加的趨勢(shì)(沙井的TN除外),與廣西欽州灣混交林紅樹林濕地SOC儲(chǔ)量研究結(jié)果相近(周慧杰等, 2015)。有研究報(bào)道,土壤表層SOC和TN儲(chǔ)量較高是因?yàn)橹脖坏厣峡萋湮锏妮斎?,深層土壤SOC和TN儲(chǔ)量則主要受植物根系的影響(Yang, 2015)。紅樹林根系發(fā)達(dá),在土壤40~60 cm處還存在大量的細(xì)根,細(xì)根為土壤提供豐富的碳氮,根系及其活動(dòng)是土壤深層碳氮的重要來(lái)源之一(辛琨等, 2014)。同時(shí),紅樹林濕地所處的水淹的厭氧環(huán)境造成土壤呼吸釋放緩慢,有利于深層土壤中氮和有機(jī)碳的積累。仙島公園紅樹林SOC儲(chǔ)量(181.03 t/hm2)遠(yuǎn)高于廣西主要森林SOC儲(chǔ)量(124.7 mg/hm2)(杜虎等, 2016),高于我國(guó)森林SOC平均儲(chǔ)量(107.8 t/hm2)(劉世榮等, 2011),遠(yuǎn)高于福州和海南濱海人工防護(hù)林(尾巨桉、木麻黃、紋莢相思) SOC儲(chǔ)量(葛露露等, 2018; 宿少鋒等, 2018),顯示了紅樹林濕地巨大的碳匯能力。

SOC和TN受土壤理化特性、水文氣候條件和濕地生物以及人類活動(dòng)等多因素的影響(張劍等, 2017; 辛琨等, 2014)。討論SOC和TN的影響因素需要考慮外界影響因子和土壤本身特性的綜合性因素,本研究未涉及紅樹林沉積物間隙水以及海水的SOC和TN的研究,還不能從多個(gè)碳交換界面去全面分析與SOC和TN的關(guān)系。

沙井紅樹林SOC與TN儲(chǔ)量之間相關(guān)性極顯著(<0.01,=0.947),仙島公園紅樹林SOC與TN儲(chǔ)量之間相關(guān)系數(shù)為0.407,與陳懷璞等(2017)和崔靜等(2012)的研究結(jié)果相近。陳懷璞等(2017)研究顯示,土壤SOC與TN儲(chǔ)量間呈極顯著正相關(guān)性。SOC與TN之間存在一定的消長(zhǎng)和耦合效應(yīng),增加氮素可促進(jìn)植物的生長(zhǎng),從而提高有機(jī)碳的積累,而有機(jī)碳的分解也可以促進(jìn)氮素在土壤中的釋放(吳綻蕾等, 2015),碳固定能引起氮固定。

4.2 土壤C/N變化及與SOC和TN儲(chǔ)量的相關(guān)性

濕地沉積物中C/N值是確定其有機(jī)質(zhì)來(lái)源的一個(gè)重要方法,當(dāng)沉積物中C/N>10時(shí),沉積物有機(jī)質(zhì)以外源為主,C/N<10時(shí),以內(nèi)源有機(jī)質(zhì)為主,C/N≈10時(shí),外源與內(nèi)源有機(jī)質(zhì)達(dá)到平衡狀態(tài)(Krishnamurthy, 1986)。本研究中,紅樹林濕地C/N值范圍為16.77~24.39,平均值為20.45,依此判斷為標(biāo)準(zhǔn),仙島公園和沙井紅樹林濕地有機(jī)質(zhì)主要來(lái)源于陸地,與夏鵬等(2015)通過(guò)同位素示蹤研究廣西欽州灣紅樹林有機(jī)碳來(lái)源的結(jié)果一致。

仙島公園C/N值與SOC儲(chǔ)量存在極顯著相關(guān)性(<0.01,=0.961),Wang等(2014)和Yang等(2013)研究報(bào)道,濕地土壤較高的C/N值會(huì)導(dǎo)致土壤微生物活性降低,使活性碳庫(kù)周轉(zhuǎn)率降低,減少有機(jī)碳的氧化和流失,最終,加快SOC的積累。所以,較高的C/N值表明有機(jī)碳的積累多,仙島公園和沙井紅樹林平均C/N值大于中國(guó)土壤平均C/N值(王紹強(qiáng)等, 2008),說(shuō)明紅樹林濕地具有強(qiáng)大的固碳能力。

5 結(jié)論

仙島公園沙井紅樹林的SOC儲(chǔ)量分別為181.03和92.4t/hm2,二者存在顯著性差異(<0.05),其垂直分布特征均表現(xiàn)為隨土層深度的增加呈先減少后增加的趨勢(shì)。仙島公園和沙井紅樹林TN儲(chǔ)量分別為8.23和5.12 t/hm2,仙島公園紅樹林TN垂直特征同SOC,沙井紅樹林TN隨土層深度的增加呈減少的趨勢(shì)。

沙井紅樹林的SOC與TN儲(chǔ)量之間相關(guān)性極顯著(<0.01,=0.947),仙島公園紅樹林SOC與TN儲(chǔ)量之間相關(guān)系數(shù)為0.407。2個(gè)研究地點(diǎn)C/N值為16.77~24.39,平均值為20.45,說(shuō)明有機(jī)質(zhì)主要來(lái)源于陸地,仙島公園紅樹林C/N值與SOC儲(chǔ)量存在極顯著相關(guān)性(<0.01,=0.961),C/N值與TN相關(guān)性不顯著,沙井紅樹林C/N值與TN儲(chǔ)量存在顯著負(fù)相關(guān)(<0.05)。

Chang T, Wu ZQ, Huang LL. Species composition and diversity of fish larvae and juveniles in the creek of mangrove of Maowei Gulf, Guangxi Province. Transactions of Oceanlogy and Limnology, 2014(4): 52–58 [常濤, 吳志強(qiáng), 黃亮亮, 等. 廣西茅尾海紅樹林潮溝仔稚魚種類組成及其多樣性研究. 海洋湖沼通報(bào), 2014(4): 52–58]

Chen GC, Ulumuddin YI, Pramudji S,. Rich soil carbon and nitrogen but low atmospheric greenhouse gas fluxes from North Sulawesi mangrove swamps in Indonesia. Science of the Total Environment, 2014, 487: 91–96

Chen HP, Zhang TY, Ge ZM,. Distribution of soil carbon and nitrogen stocks in salt marsh wetland in Dongtan of Chongming. Journal of Ecology and Rural Environment, 2017, 33(3): 242–251 [陳懷璞, 張?zhí)煊? 葛振鳴, 等. 崇明東灘鹽沼濕地土壤碳氮儲(chǔ)量分布特征. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 2017, 33(3): 242–251]

Chen ZJ, Han SJ, Zhang JH. Effects of land use change on soil organic carbon fractions in mangrove wetland of Zhangjiangkou. Chinese Journal of Ecology, 2016, 35(9): 2379–2385 [陳志杰, 韓士杰, 張軍輝. 土地利用變化對(duì)漳江口紅樹林土壤有機(jī)碳組分的影響. 生態(tài)學(xué)雜志, 2016, 35(9): 2379–2385]

Cui J, Chen YM, Huang JJ,. Soil carbon sequestration characteristics ofplantations and influencing factors in loess hilly semiarid region. Chinese Journal of Eco-Agriculture, 2012, 20(9): 1197–1203 [崔靜, 陳云明, 黃佳健, 等. 黃土丘陵半干旱區(qū)人工檸條林土壤固碳特征及其影響因素. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2012, 20(9): 1197–1203]

Ding SL, Zhang QJ, Dong J. Microbial community structure and its relationship to heavy metals in Shenzhen and Hong Kong mangrove sediments. Chinese Journal of Ecology, 2018, 37(10): 3018–3030 [丁蘇麗, 張祁炅, 董俊, 等. 深港紅樹林沉積物微生物群落多樣性及其與重金屬的關(guān)系. 生態(tài)學(xué)雜志, 2018, 37(10): 3018–3030]

Du H, Zeng FP, Song TQ,Spatial pattern of soil organic carbon of the main forest soils and its influencing factors in Guangxi, China. Chinese Journal of Plant Ecology, 2016, 40(4): 282–291 [杜虎, 曾馥平, 宋同清, 等. 廣西主要森林土壤有機(jī)碳空間分布及其影響因素. 植物生態(tài)學(xué)報(bào), 2016, 40(4): 282–291]

Gao TL, Guan W, Mao J,. Carbon storage and influence factors of major mangrove communities in Fucheng, LeizhouPeninsula, Guangdong Province. Ecology and Environmental Sciences, 2017, 26(6): 985–990 [高天倫, 管偉, 毛靜, 等. 廣東省雷州附城主要紅樹林群落碳儲(chǔ)量及其影響因子. 生態(tài)環(huán)境學(xué)報(bào), 2017, 26(6): 985–990]

Ge LL, Meng QQ, Lin Y,. Carbon storage and its allocation to different plantations in a coastal sandy area. Chinese Journal of Applied and Environmental Biology , 2018, 24(4): 723–728 [葛露露, 孟慶權(quán), 林宇, 等. 濱海沙地不同樹種人工林的碳儲(chǔ)量及其分配格局. 應(yīng)用與環(huán)境生物學(xué)報(bào), 2018, 24(4): 723–728]

Giri C, Ochieng E, Tieszen LL,. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 2011, 20(1): 154–159

Guo ZH, Zhang L, Guo YR,. Soil carbon sequestration and its relationship with soil pH in Qinglangang mangrove wetlands in Hainan Island. Scientia Silvae Sinicae, 2014, 50(10): 8–15 [郭志華, 張莉, 郭彥茹, 等. 海南清瀾港紅樹林濕地土壤有機(jī)碳分布及其與pH的關(guān)系. 林業(yè)科學(xué), 2014, 50(10): 8–15]

Hanke A, Cerli C, Muhr J,. Redox control on carbon mineralization and dissolved organic matter along a chronosequence of paddy soils. European Journal of Soil Science, 2013, 64(4): 476–487

Hu JL, Xin K, Li Z,. Carbon storage and sequestration function evaluation in Dongzhaigang mangrove reserve of Hainan. Wetland Science, 2015, 13(3): 338–343 [胡杰龍, 辛琨, 李真, 等. 海南東寨港紅樹林保護(hù)區(qū)碳儲(chǔ)量及固碳功能價(jià)值評(píng)估. 濕地科學(xué), 2015, 13(3): 338–343]

Kauffman JB, Heider C, Cole TG,. Ecosystem carbon stocks of Micronesian mangrove forests. Wetlands, 2011, 31(2): 343–352

Krishnamurthy RV, Bhattacharya SK, Kusumgar S. Palaeoclimatic changes deduced from13C/12C and C/N ratios of Karewa Lake sediments, India. Nature, 1986, 323(6084): 150–152

Laanbroek H, Zhang QF, Leite M,. Effects ofleaf litter and seedlings on carbon and nitrogen cycling in salt marshes?potential consequences of climate- induced mangrove migration. Plant and Soil, 2018, 426(1–2): 383–400

Liao XJ, He DJ, Wang R,. Distribution pattern of soil organic carbon contents in the coastal wetlands in Eastern Fujian. Wetland Science, 2013, 11(2): 192–197 [廖小娟, 何東進(jìn), 王韌, 等. 閩東濱海濕地土壤有機(jī)碳含量分布格局. 濕地科學(xué), 2013, 11(2): 192–197]

Liu CQ, Tian HQ. Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data. Journal of Geophysical Research Atmospheres, 2007, 112 (D22): 229–238

Liu SR, Wang H, Luan JW. A review of research progress and future prospective of forest soil carbon stock and soil carbon process in China. Acta Ecologica Sinica, 2011, 31(19): 5437–5448 [劉世榮, 王暉, 欒軍偉. 中國(guó)森林土壤碳儲(chǔ)量與土壤碳過(guò)程研究進(jìn)展. 生態(tài)學(xué)報(bào), 2011, 31(19): 5437–5448]

Liu YQ, Ling BW, Xu PF. On the wetland ecosystem protection of Maowei Sea mangrove reserve in Qinzhou, Guangxi. Journal of Hebei Agricultural Sciences, 2009, 13(4): 97–99, 102 [劉永泉, 凌博聞, 徐鵬飛. 談廣西欽州茅尾海紅樹林保護(hù)區(qū)的濕地生態(tài)保護(hù). 河北農(nóng)業(yè)科學(xué), 2009, 13(4): 97–99, 102]

Luo SY, Wang JQ, Zhou M,. Spatial distribution and ecological risk assessment of heavy metals in the surface soils of mangrove wetland in Donghai Island, Zhanjiang. Ecology and Environmental Sciences, 2018, 27(8): 1547– 1555 [羅松英, 王嘉琦, 周敏, 等. 湛江東海島紅樹林濕地表層土壤重金屬空間分布特征及生態(tài)風(fēng)險(xiǎn)評(píng)價(jià). 生態(tài)環(huán)境學(xué)報(bào), 2018, 27(8): 1547–1555]

Marchand C. Soil carbon stocks and burial rates along a mangrove forest chronosequence (French Guiana). Forest Ecology and Management, 2017, 384: 92–99

Morimaru K, Mitsutoshi T, Yasuo L,. High salinity leads to accumulation of soil organic carbon in mangrove soil. Chemosphere, 2017, 177: 51–55

Qiao YM, Tan JB, Ma SX,. The distribution pattern and sources analysis for nitrogen and phosphorus in core sediment of Shenzhen mangrove wetland. Environmental Science and Technology, 2018, 41(2): 34–40 [喬永民, 譚鍵濱, 馬舒欣, 等. 深圳紅樹林濕地沉積物氮磷分布與來(lái)源分析. 環(huán)境科學(xué)與技術(shù), 2018, 41(2): 34–40]

Su SF, Xue Y, Yang ZY,. Carbon storage allocation pattern offorest with different ages in Wenchang City of Hainan. Guangdong Agricultural Sciences, 2018, 45(11): 46–52 [宿少鋒, 薛楊, 楊眾養(yǎng), 等. 海南文昌不同林齡木麻黃人工林碳儲(chǔ)量分配格局. 廣東農(nóng)業(yè)科學(xué), 2018, 45(11): 46–52]

Tian H, Chen G, Zhang C,. Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry, 2010, 98: 139–151

Wang SQ, Yu GR. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecologica Sinica, 2008, 28(8): 3937–3947 [王紹強(qiáng), 于貴瑞. 生態(tài)系統(tǒng)碳氮磷元素的生態(tài)化學(xué)計(jì)量學(xué)特征. 生態(tài)學(xué)報(bào), 2008, 28(8): 3937–3947]

Wang W, Sardans J, Zeng C,. Responses of soil nutrient concentrations and stoichiometry to different human land uses in a subtropical tidal wetland. Geoderma, 2014, 232–234: 459–470

Wang WQ, Wang C, Tong C,. Soil organic carbon along a salinity gradient inmarsh in the Minjiang River estuary. Wetland Science, 2012,10(2): 164–169 [王維奇, 王純, 仝川, 等.閩江河口區(qū)鹽—淡水梯度下蘆葦沼澤土壤有機(jī)碳特征. 濕地科學(xué), 2012, 10(2): 164–169]

Wu ZL,Wang DQ, Li YJ,. The contribution ofto sediment carbon storage of Chongming East Tidal Flat wetland in Yangtze River Estuary. Acta Scientiae Circumstantiae, 2015, 35(11): 3639–3646 [吳綻蕾, 王東啟,李楊杰, 等. 長(zhǎng)江口崇明東灘海三棱藨草對(duì)沉積物有機(jī)碳庫(kù)的貢獻(xiàn)研究. 環(huán)境科學(xué)學(xué)報(bào), 2015, 35(11): 3639–3646]

Xia P, Meng XW, Ping AP,Historical retrospection on mangrove development using stable carbon isotopes and pollen analysis, and its response to climate change and human activity. Haiyang Xuebao, 2015, 37(3): 77–85 [夏鵬, 孟憲偉, 平愛(ài)平, 等. 廣西欽州灣百年來(lái)紅樹林演變的有機(jī)碳同位素和孢粉示蹤及其影響因素. 海洋學(xué)報(bào), 2015, 37(3): 77–85]

Xiao Y, Xie GD, An K. The function and economic value of soil conservation of ecosystems in Qinghai-Tibet Plateau. Acta Ecologica Sinica, 2003, 23(11): 2367–2376 [肖玉, 謝高地, 安凱. 青藏高原生態(tài)系統(tǒng)土壤保持功能及其價(jià)值. 生態(tài)學(xué)報(bào), 2003, 23(11): 2367–2378]

Xin K, Yan K, Li Z,Distribution of soil organic carbon in mangrove wetlands of Hainan Island and its influencing factors. Acta Pedologica Sinica, 2014, 51(5): 1078–1086 [辛琨, 顏葵, 李真, 等. 海南島紅樹林濕地土壤有機(jī)碳分布規(guī)律及影響因素研究. 土壤學(xué)報(bào), 2014, 51(5): 1078–1086]

Xu FH, Zhang JP, Zhang QM,Carbon storage of three natural mangrove forests in Gaoqiao, Zhanjiang. Value Engineering, 2012, 31(15): 5–6 [許方宏, 張進(jìn)平, 張倩媚, 等. 廣東湛江高橋三個(gè)天然紅樹林的土壤碳庫(kù). 價(jià)值工程, 2012, 31(15): 5–6]

Xu YH, Cui ZG, Qu KM,. Purification efficiency of mariculture wastewater in constructed wetlands with two salt-tolerant plants. Progress in Fishery Sciences, 2018, 39(3): 80–88 [許永輝, 崔正國(guó), 曲克明, 等. 不同耐鹽植物人工濕地凈化養(yǎng)殖外排水效果. 漁業(yè)科學(xué)進(jìn)展, 2018, 39(3): 80–88]

Yang J, Jay G, Liu BL,. Edge effects of mangrove boundaries and their impact on organic carbon pool along the coast of Leizhou Peninsula. Acta Oceanologica Sinica, 2012, 34(5): 161–168 [楊娟, Jay G, 劉寶林, 等. 雷州半島紅樹林邊緣效應(yīng)及其對(duì)海岸有機(jī)碳庫(kù)的影響. 海洋學(xué)報(bào), 2012, 34(5): 161–168]

Yang SL, Xu KH, Milliman JD,. Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes. Scientific Reports, 2015, 5: 12581

Yang W, Zhao H, Chen XL,. Consequences of short-term C4plantinvasions for soil organic carbon dynamics in a coastal wetland of Eastern China. Ecological Engineering, 2013, 61(12): 50–57

Zhan SF, Huang B, Chen YJ,. Study of soil organic carbon in different mangrove communities. Journal of Tropical Biology, 2015, 6(4): 397–402 [詹紹芬, 黃勃, 陳玉軍, 等. 不同紅樹林群落土壤環(huán)境有機(jī)碳比較. 熱帶生物學(xué)報(bào), 2015, 6(4): 397–402]

Zhang J, Wang LP, Xie JP,. Distribution and influencing factors of soil organic carbon in Dunhuang Yangguan wetland. Chinese Journal of Ecology, 2017, 36(9): 2455– 2464 [張劍, 王利平, 謝建平, 等. 敦煌陽(yáng)關(guān)濕地土壤有機(jī)碳分布特征及其影響因素. 生態(tài)學(xué)雜志, 2017, 36(9): 2455–2464]

Zhang X, Xu XF, Dai YY,. Phytoplankton community characteristics and variation at artificial reefs of Tianjin offshore. Progress in Fishery Sciences, 2018, 39(6): 1–10 [張雪, 徐曉甫, 戴媛媛, 等. 天津近岸人工魚礁海域浮游植物群落及其變化特征. 漁業(yè)科學(xué)進(jìn)展, 2018, 39(6): 1– 10]

Zhou HJ, Mo LP, Liu YD,. Correlation analysis between soil organic carbon density and soil physical and chemical properties of mangrove wetland in Qinzhou Bay of Guangxi. Journal of Anhui Agricultural Sciences, 2015, 43(17): 120–123, 240 [周慧杰, 莫莉萍, 劉云東, 等. 廣西欽州灣紅樹林濕地土壤有機(jī)碳密度與土壤理化性質(zhì)相關(guān)性分析. 安徽農(nóng)業(yè)科學(xué), 2015, 43(17): 120–123, 240]

Spatial Distribution of Soil Carbon and Nitrogen Stocks in Mangrove Wetland of Xiandao Park and Shajing in Guangxi

TAO Yuhua①, HUANG Xing, WANG Xueping, ZHONG Qiuping, KANG Zhenjun

(Beibu Gulf University,Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, and Key Laboratory of Coastal Science and Engineering, Beibu Gulf, Qinzhou 535011)

The contents and storage patterns of soil organic carbon (SOC) and total nitrogen (TN), spatial distribution characteristics of SOC and TN, C/N ratios, and correlation between SOC and TN in Xiandao Park and Shajing (Guangxi) mangrove wetlands were assessed. The average SOC and TN contents of the Xiandao Park mangrove wetlands were 24.5 and 1.06 g/kg, respectively, and those of the Shajing mangrove wetlands were 11.9 and 0.71 g/kg, respectively. SOC storage capacities of the Xiandao Park and Shajing mangrove wetlands were 181.03and92.4t/hm2, respectively, and were significantly different (<0.05). TN storage capacities of Xiandao Park and Shajing mangrove wetlands were 8.23 and 5.12 t/hm2, respectively. The highest-to-lowest vertical distribution of SOC storage at both sites and TN storage at Xiandao Park was 20~40 cm > 40~60 cm > 0~20 cm, while TN storage at Shajing decreased with increasing soil depth. A significant correlation was observed between SOC and TN contents at Shajing (<0.01); the correlation coefficient was 0.947. C/N ratio at both sites ranged from 16.77 to 24.39, indicating that the organic matter came primarily from the land. A significant correlation between soil C/N and SOC storage was evident at Xiandao Park (<0.01), and a significant negative correlation between C/N and TN storage was evident at Shajing (<0.05). The SOC storage of the Xiandao Park mangrove wetlands was higher than that of Chinese forests, indicating that mangrove soil has a higher carbon sequestration capacity.

Xiandao Park; Shajing; Mangrove; Storage of SOC and TN; Spatial distribution

TAO Yuhua, E-mail: arlenetao12@aliyun.com

S154.1

A

2095-9869(2020)05-0005-08

10.19663/j.issn2095-9869.20190629001

http://www.yykxjz.cn/

陶玉華, 黃星, 王薛平, 鐘秋平, 亢振軍. 廣西仙島公園和沙井紅樹林土壤碳氮儲(chǔ)量的空間分布. 漁業(yè)科學(xué)進(jìn)展, 2020, 41(5): 38–45

Tao YH, Huang X, Wang XP, Zhong QP, Kang ZJ.Spatial distribution of soil carbon and nitrogen stocks in Mangrove Wetland of Xiandao Park and Shajing in Guangxi. Progress in Fishery Sciences, 2020, 41(5): 38–45

* 欽州學(xué)院高層次人才科研啟動(dòng)項(xiàng)目(2017KYQD203)和廣西北部灣海洋災(zāi)害研究重點(diǎn)實(shí)驗(yàn)室自主項(xiàng)目(2018TS01)共同資助[This work was supported by Qinzhou University High-level Scientific Research Foundation for the Introduction of Talent(2017KYQD203), and Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf(2018TS01)].

陶玉華,教授,E-mail: arlenetao12@aliyun.com

2019-06-29,

2019-07-16

(編輯 馬璀艷)

猜你喜歡
土壤有機(jī)紅樹林儲(chǔ)量
GRACE下的青海省水儲(chǔ)量時(shí)空變化與降水相關(guān)性
黑土根際土壤有機(jī)碳及結(jié)構(gòu)對(duì)長(zhǎng)期施肥的響應(yīng)
氮添加對(duì)亞熱帶常綠闊葉林土壤有機(jī)碳及土壤呼吸的影響
俄標(biāo)儲(chǔ)量與SPE-PRMS儲(chǔ)量對(duì)標(biāo)分析
藏著寶藏的紅樹林
喀斯特槽谷區(qū)植被演替對(duì)土壤有機(jī)碳儲(chǔ)量及固碳潛力的影響研究
13.22億噸
海岸衛(wèi)士——紅樹林
四川盆地海相碳酸鹽巖天然氣資源量?jī)?chǔ)量轉(zhuǎn)換規(guī)律
走過(guò)紅樹林
南丹县| 马龙县| 云南省| 武隆县| 镇江市| 郸城县| 尼勒克县| 章丘市| 吉隆县| 双辽市| 宁化县| 崇义县| 郓城县| 招远市| 图们市| 锡林郭勒盟| 来宾市| 东山县| 恭城| 剑河县| 太康县| 泰顺县| 临沧市| 鄂托克旗| 都兰县| 乐陵市| 密云县| 龙口市| 乌恰县| 德清县| 山阳县| 九江县| 洛隆县| 庆阳市| 库尔勒市| 林甸县| 淳安县| 和龙市| 于田县| 綦江县| 宜春市|