武 旭 帥 健 許 葵
(中國石油大學(北京) 安全與海洋工程學院,北京102249)
斷裂韌性是材料最重要的性能之一,準確測試材料的斷裂韌性對確保油氣管道安全運營具有重要意義。自20 世紀60 年代以來,國內(nèi)外對斷裂韌性測試方法進行了較為廣泛的研究,各種斷裂韌性試驗方法得到了廣泛發(fā)展,其中最常用的標準試件為緊湊拉伸(compact tension, CT) 試件和單邊缺口彎曲(single edge notched bend, SENB) 試件。這些標準試件在裂紋尖端具有較高約束條件[1-3],對于淺裂紋,由于裂紋尖端約束較小,使用標準CT 或SENB試樣測量的斷裂韌性通常過于保守。因此,適用于低約束條件下的斷裂韌性測試方法應運而生[4]。
在石油和天然氣行業(yè)中,通常采用單邊缺口拉伸試件(single edge notched tension, SENT) 測量管線鋼低約束狀態(tài)下的斷裂韌性。該方法在基于應變的設計、工程臨界評估以及適用性評價中都得到了廣泛應用,大大節(jié)省了管道設計和維護成本,促進了管道安全運營技術的發(fā)展[5-6]。挪威船級社、加拿大礦物與能源研究中心[7-8]、??松梨赱9]分別針對SENT 試件J 積分阻力曲線和裂紋尖端張開位移(crack tip opening displacement, CTOD)阻力曲線提出了三種具有代表性的測試方法,其中DNV 方法為多試樣法,其余兩種為單試樣法。英國標準協(xié)會在2014 年12 月發(fā)布了首個SENT 試件測試標準BS 8571[10]。然而,BS 8571 主要是基于DNV-RPF108 提出的,因而具有一定的局限性;美國材料與試驗協(xié)會開發(fā)的SENB 和CT 試樣阻力曲線測試標準ASTM E1820[11]并不適用于SENT 試件;我國也尚未發(fā)布關于低約束SENT 試件斷裂韌性的測試標準。
本文對現(xiàn)有SENT 試件測試方法進行歸納總結,分析低約束試件常用斷裂韌性表征參數(shù)的分類與組成,對比闡述測試方法中各關鍵問題的發(fā)展現(xiàn)狀及趨勢,總結需要深入研究的內(nèi)容,為低約束試件斷裂韌性測試發(fā)展提供一定依據(jù)。
SENT 試件根據(jù)其加載方式和幾何特征可分為夾持型和銷釘型,通常銷釘式SENT 試件用于測試管道軸向裂紋,而夾持型SENT 試件用于測試管道的環(huán)向裂紋。由于環(huán)向裂紋是基于應變設計的主要研究問題,因而夾持型SENT 試件已成為低約束斷裂測試方法的研究熱點。
關于低約束試件斷裂韌性測試最早可追溯到1962 年,Irwin、Krafft 和Sullivan 為了測量彈性平面應變斷裂韌度在美國材料與試驗協(xié)會會議上首次提出了SENT 試樣的概念。1964 年, Sullivan[12]提出了一種銷釘式SENT 試件,Srawley 等[13]采用該試件測試了彈性能量釋放率(G)。1965 年,Srawley等[14]提出了銷釘式SENT 試樣應力強度因子(K)的封閉解。1973 年,Tada 等[15]獲得了銷釘式SENT試件較為準確的應力強度因子方程和的柔度方程。
2006 年,挪威船級社為評估海底淺裂紋管道的斷裂韌性,出版了管道低約束SENT 試件斷裂韌性測試標準DNV-RP-F108[16]。該標準采用夾持型或銷釘型SENT 試樣測試材料的J 積分阻力曲線(J–R)。DNV 建議試件進行疲勞裂紋預制,預裂紋長度0.2 ≥a/W≥0.5,試件不需要開側槽,最大裂紋擴展長度為3 mm。DNV 采用多試樣法,要求至少測試6 個有效SENT 試件。該方法不考慮裂紋擴展修正,因而裂紋擴展較短時,該方法簡單實用??紤]焊縫強度匹配和延性裂紋擴展等因素造成的不確定性,該方法在J 積分塑性因子的表達式中添加了安全系數(shù)0.85,該安全系數(shù)可能導致斷裂韌性偏于保守,且測試所需時間與材料成本較大。
2008 年,加拿大礦物與能源研究中心 Shen等[7-8]參考ASTM E1820 中SENB 試樣J–R 曲線試驗流程,提出了一種單試件方法,用于評估夾持型SENT 試件的J–R 阻力曲線。該方法要求試樣的寬度和厚度相等(W=B),兩個夾持端之間的距離H=10W,預制疲勞裂紋的長度0.1 ≥a0/W≥0.7。為了保證裂紋前緣平直擴展以及裂紋尖端附近處于平面應變條件,該方法建議開側槽,側槽占試件厚度的7.5%。采用單應變規(guī)測量裂紋嘴張開位移(crack mouth opening displacement, CMOD),使用卸載柔度法估算裂紋擴展長度。
2009 年,巴西圣保羅大學Gravero 等[17-18]、Mathias 等[19]和Ruggieri[20]提出了使用卸載柔度法測試單個SENT 試件J–R 曲線的方法。該方法與加拿大礦物與能源研究中心提出的測試方法以及ASTM E1820 標準方法類似,但各方法中應力強度因子、J積分塑性因子以及基于 CMOD 的柔度方程不盡相同。
2010 年,埃克森美孚公司提出了一種使用雙應變規(guī)測量單個試件CTOD 阻力曲線(CTOD–R)的方法[9]。該方法建議對試件進行疲勞裂紋預制或使用直徑不大于0.15 mm 的線切割(electrical discharge machining, EDM) 加工,以確保初始長度在0.25 ≥a0/W≥0.35 的范圍內(nèi)。EDM 可使切口前沿均勻,初始裂紋長度更精確,對于高韌性管線鋼和焊縫建議采用,但對于低斷裂韌性材料,EDM 方法可能會導致斷裂韌性偏高。該方法建議試件側槽深度占試件厚度的5%。
2013 年,比利時根特大學的Verstraete 等[21-23]提出了一種采用單個試件測試材料CTOD–R 曲線的方法。雖然其CTOD 測試也采用DCG 方法,但CTOD 的定義與??松梨诜椒ǖ亩x不同。裂紋擴展長度測量上采用直流電位梯度法(direct current potential drop,DCPD)。
2014 年,英國標準協(xié)會基于上述測試方法,制定了SENT 試件斷裂韌性測試標準BS 8571[10]。該標準包括J–R 曲線和CTOD–R 曲線測試流程,而J–R 曲線試驗又分為多試樣法和單試樣法。J 積分方程與標準DNV-RP-F108 所用方程式相同,不考慮裂紋擴展修正。采用雙應變規(guī)方法確定CTOD,CTOD計算與??松梨诜椒╗9]不同。BS 8571 中允許使用銷釘型和夾持型SENT 試件,但僅對夾持型SENT試件的測試流程進行了詳盡闡述。各低約束試件斷裂韌性測試方法的具體參數(shù)對比見表1,不同方法中試件的幾何尺寸、側槽深度、初始裂紋長度、斷裂韌性表征參數(shù)等不盡相同。
表1 SENT 試件斷裂韌性測試方法對比
斷裂韌性測試過程中,通常采用CTOD 或者J積分進行材料性能表征。1963 年,Wells[24]在英國焊接研究所中首次提出CTOD 的概念,Wells 將其稱為裂紋張開位移(COD),但為區(qū)別于CMOD,將其名稱改為CTOD。CTOD 常見的定義方式有三種,即原始裂紋尖端位移、裂紋尖端90?角截距位移和原始裂紋尖端90?角截距位移(見圖1)。
由于局部塑性變形,加載后裂紋尖端鈍化。如果加載時,遠離裂紋尖端的裂紋表面未變形,只圍繞韌帶上一點進行剛性旋轉(zhuǎn),且與初始裂尖處的鈍裂紋前緣相切,則兩切點之間的距離即為原始裂紋尖端位移。原始裂紋尖端位移已用于BS 8571[10]和??松梨陔p應變規(guī)方法的CTOD 測試中,該CTOD定義與裂紋尺寸和材料硬化響應有關,如果切點位于原始裂紋尖端后,則會高估實際CTOD 值。
圖1 CTOD 的分類
為了便于在有限元分析中計算裂紋的CTOD,將鈍化裂紋尖端開始的兩條垂直直線與裂紋表面的截距作為裂紋尖端90?角截距位移。由于在試件有限元模擬中的便利性,該CTOD 定義得到廣泛應用,但不適用于擴展裂紋。加拿大礦物與能源研究中心研究J 積分與CTOD 轉(zhuǎn)換關系時,采用了此定義計算CTOD。
韌性材料裂紋尖端在加載后會發(fā)生鈍化現(xiàn)象,但隨著加載過程鈍化裂紋會再次形成尖裂紋,因此裂紋擴展時裂紋尖端90?角截距位移便失去其物理意義。Verstraete 等[23]和Van 等[25]基于裂紋擴展的剛性旋轉(zhuǎn)假設,提出了原始裂紋尖端90?角截距位移的定義,該方法使裂紋擴展時的CTOD 具有可比性。
Rice[26]于1967 年提出J 積分作為表征彈塑性材料裂紋尖端應力應變場的參數(shù)。在斷裂韌性試驗中,可將J 積分分為彈性J 積分和塑性J 積分分別進行計算,如式(1) 所示
式中,Jel和Jpl分別表示J 積分的彈性分量和塑性分量。
Jel與應力強度因子有關,按式(2) 計算
式中,ν是泊松比,E是楊氏模量。KI為I 型裂紋應力強度因子,由載荷和裂紋尺寸通過式(3) 確定
式中,a為裂紋長度,W為試樣寬度,B為試樣厚度,P為載荷,f(a/W) 為幾何因子。
J積分的塑性分量可通過引入塑性因子(η) 與載荷位移曲線下塑性區(qū)面積,由式(4) 計算
式中,b是韌帶的長度,分別代表載荷與載荷線位移(load line displacement,LLD) 或CMOD 曲線下塑性區(qū)的面積(見圖2)。
圖2 載荷?位移曲線下塑性區(qū)示意圖
J 積分的彈性部分與應力強度因子有關,應力強度因子的準確性對總J 積分的計算有直接影響。對于夾持型SENT 試件,挪威船級社采用了Ahmad等[27]提出的應力強度因子解析解。加拿大礦物與能源研究中心通過在彈性和平面應變條件下的有限元計算分析,提出了夾持型SENT 試件應力強度因子的數(shù)值解。部分學者先后使用有限元分析法或回歸分析法得到應力強度因子不同的計算式,結果對比見圖3,可知各應力強度因子計算方法在其適用范圍內(nèi)基本一致[28-29]。以Zhu[30]提出的應力強度因子全范圍解析解為參考,各方法中幾何因子的最大相對誤差不超過3% (見圖4),而Zhu[30]方法的適用范圍更廣,精確度較高,建議使用其計算夾持型SENT 試件的應力強度因子。
圖3 應力強度因子對比
圖4 幾何因子相對誤差
挪威船級社[16]、加拿大礦物與能源研究中心[7-8]和巴西圣保羅大學[18-19]等先后提出了夾持型SENT試件J 積分塑性因子的不同表達式。2006 年,挪威船級社根據(jù)三維有限元分析的數(shù)值結果,提出了與裂紋深度和試件厚度有關的五階多項式作為塑性因子評估方程。Shen 等[8]基于Ramberg–Osgood 硬化模型,采用平面應變有限元分析,擬合得到塑性因子多項式函數(shù)。巴西圣保羅大學的Cravero 等[18]提出塑性因子與應變硬化性能無關理論,并以簡單的線性函數(shù)表示J 積分塑性因子。Mathias 等[19]根據(jù)巴西圣保羅大學的數(shù)值結果[18,20],通過擬合得到J 積分塑性因子的五階多項式函數(shù)。標準BS 8571 中J積分塑性因子的計算與試件的厚寬比有關,當試件厚寬比1 ≥B/W≥2 時,采用挪威船級社使用的塑性因子方程;當試件厚寬比1/2 ≥B/W≥1 時,采用加拿大礦物與能源研究中心使用的塑性因子方程。Huang 等[31]和Wang 等[32]對有側槽和無側槽夾持型SENT 試樣進行有限元分析,并提出了與試件裂紋深度、厚寬比以及應變硬化指數(shù)有關的J 積分塑性因子方程。
各方法中J 積分塑性因子結果對比見圖5。對于基于載荷線位移的J 積分塑性因子,除Huang 方法外,其余三種方法的結果較為接近,而Huang 提出的塑性因子是在考慮試件側槽的基礎上進行的,因而結果偏高;加拿大礦物與能源研究中心提出的塑性因子適用范圍更廣,建議使用。對于基于裂紋嘴張開位移的J 積分塑性因子,挪威船級社方法明顯高于其他方法。巴西圣保羅大學方法中塑性因子與裂紋深度成線性關系,精度較低,不建議采用;加拿大礦物與能源研究中心方法在0.05 ≥a/W≥0.65 范圍內(nèi)建議使用,其余方法在各自的適用范圍內(nèi)偏差較小,而更為精確的J 積分塑性因子的表達式有待深入研究。
圖5 J 積分塑性因子結果對比
SENT 試件的CTOD 阻力曲線測試通??刹捎肑 積分轉(zhuǎn)換法或雙應變規(guī)法。Zhu 等[33]采用這兩種方法分別對高、低應變硬化性能鋼進行測試,發(fā)現(xiàn)采用不同J 積分轉(zhuǎn)換因子得到的CTOD 阻力曲線不同,而雙應變規(guī)法測定的CTOD 阻力曲線相近。特別是對于高應變硬化鋼,兩種方法的CTOD–R 曲線明顯不同。因而J 積分轉(zhuǎn)換因子的準確性對CTOD阻力曲線有直接影響。對于夾持型SENT 試件,J積分轉(zhuǎn)換法公式參考標準ASTM E1820,采用式(5)計算
式中,m為J 積分與CTOD 轉(zhuǎn)換因子,σY為屈服強度。
部分學者先后提出 SENT 試件的 J 積分與CTOD 轉(zhuǎn)換因子表達式,通過對比發(fā)現(xiàn):CANMET方法中轉(zhuǎn)換因子是基于有限元分析的線性擬合,故應用范圍受限;Huang 等[34]提出的轉(zhuǎn)換因子會導致低應變硬化材料的CTOD 阻力曲線偏高。各轉(zhuǎn)換因子方程在硬化指數(shù)n=10,單邊側槽深度為7.5%時的對比結果見圖6??芍琈oreira 等[35]和Ruggieri[36]方法中兩個平面應變轉(zhuǎn)換因子具有可比性,差異較小,均低于Sarzosa 等[37]方法的轉(zhuǎn)換因子,但在沒有額外有限元分析結果的條件下,很難確定現(xiàn)有結果的精確性。因此,需要進一步的研究,以確定一個更準確的J 積分與CTOD 轉(zhuǎn)換因子。
圖6 J 積分與CTOD 轉(zhuǎn)換因子結果對比
3.4.1 卸載柔度法
使用單試樣法進行斷裂韌性測試時,除了測試斷裂表征參數(shù),還需測試裂紋擴展長度,常用裂紋長度的測量方法分為卸載柔度法和直流電位梯度法。卸載柔度法是一種通過監(jiān)測載荷和裂紋嘴張開位移計算裂紋長度的方法。卸載柔度法在SENB 和CT 試件斷裂韌性測試中已有廣泛應用,而對于低約束SENT試件,Verstraete 等[38]通過數(shù)值模擬和實驗分析證實了卸載柔度法的有效性。不同的測試方法所規(guī)定的柔度方程不盡相同,而如何確定一個相對準確的柔度方程成為了研究的交點。加拿大礦物與能源研究中心、??松梨诠?、巴西圣保羅大學、Tyson等均提出了各自柔度方程。
將上述四個柔度方程與三組獨立的有限元計算結果進行比較,發(fā)現(xiàn)三組有限元分析結果基本一致,且與加拿大礦物與能源研究中心和巴西圣保羅大學提出的結果接近,而??松梨诠竞蚑yson 的結果與有限元分析存在明顯偏差。因此,目前應使用加拿大礦物與能源研究中心或巴西圣保羅大學提出的柔度方程。使用卸載柔度法計算裂紋尺寸時,會在初始位置出現(xiàn)裂紋負增長的情況,所以還需參考標準ASTM E1820 對初始裂紋尺寸進行修正。
3.4.2 直流電位梯度法
直流電位技術已廣泛應用于試件、管道和壓力容器的裂紋尺寸監(jiān)測[39-40],該方法假定遠離裂紋平面的電流分布均勻,且穿過裂紋的電位降與裂紋長度呈單調(diào)遞增關系,電場的唯一擾動是由裂紋的存在引起的。
1965 年,Johnson 將受拉伸載荷中心裂紋板的輸入電壓與裂紋長度聯(lián)系起來,提出了一個解析校準方程。比利時根特大學[21-23]又通過實驗證實該方程可用于校準SENT 試樣的電位降與裂紋長度之間的關系。Geldhof 和Vertraete 通過對實驗結果的比較,證明直流電位技術和卸載柔度法在用于確定SENT 試件裂紋擴展阻力曲線的精度是等效的。但從實驗操作角度,直流電位梯度法需要設備較多,實驗流程偏于復雜,建議采用卸載柔度法進行實驗。
2015 年,Weeks 等[41]采用Prandtl–Reuss 增量理論,提出了一種使用表面應變計直接測量夾持型SENT 試件J 積分的實驗方法,結果表明,在裂紋擴展1 mm 范圍內(nèi)直接測量得到的J–R 曲線與CANMET 法測定的曲線基本一致。2016 年,Weeks等[42]對實驗技術進行改進,測試了X65 管道鋼母材與焊縫的J–R 曲線,通過使用數(shù)字圖像相關技術測量試件的表面應變和遠端位移,進而直接計算J 積分,結果發(fā)現(xiàn)整個實驗過程中數(shù)字圖像相關技術直接測量的J 積分與CANMET 方法測試的結果相同。數(shù)字圖像相關技術可以測試試件表面的整體應變情況,比在表面安裝應變計更加可靠,且該方法即不需要使用基于CMOD 的J 積分方程,也不需要測量裂紋尺寸的其他裝置,因而J 積分直接測量技術對于驗證基于CMOD 的增量J 積分方程以及J–R 阻力曲線具有重要的意義。
斷裂韌性是材料的重要性能之一,低約束試件斷裂韌性測試對于油氣管道安全運營具有重要意義。本文總結了低約束試件的發(fā)展歷程、斷裂韌性表征參數(shù),分析了測試過程中的關鍵問題,為低約束試件斷裂韌性測試發(fā)展提供一定參考。關于低約束試件斷裂韌性測試,有以下幾方面工作需要開展更深入研究:
(1) 現(xiàn)有測試方法中J 積分塑性因子方程尚未統(tǒng)一,需要通過進一步的有限元計算分析,以確定較為準確的J 積分塑性因子表達式??梢岳脭?shù)字圖像相關技術直接測量J 積分技術,驗證利用J 積分塑性因子計算得到J 積分的準確性。
(2) 采用J 積分轉(zhuǎn)換法確定CTOD–R 阻力曲線時,現(xiàn)有J 積分與CTOD 轉(zhuǎn)換因子的精確性難以比較,需要進一步通過有限元計算分析,以確定一個更為簡單、準確的J 積分與CTOD 轉(zhuǎn)換因子表達式。
(3)部分測試方法要求試件制備側槽、預制疲勞裂紋,而側槽形狀、側槽尺寸以及疲勞裂紋前沿曲率對實驗結果的影響鮮有研究,需要通過有限元分析與實驗測試結合的方法,量化上述參數(shù)的影響,確定較為合理的試件幾何模型。
(4)現(xiàn)有測試方法主要針對均質(zhì)材料,而對于管道焊縫、熱影響區(qū)等非均質(zhì)材料在低約束條件下的斷裂韌性測試受匹配系數(shù)、焊縫尺寸、熱影響區(qū)尺寸等多種因素的影響,需要對各影響因素進行量化,確定非均質(zhì)材料斷裂韌性的測試方法。
(5)在數(shù)值分析和實驗驗證的基礎上,發(fā)展我國關于低約束試件斷裂韌性測試相關標準。